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FLUTE: Fast Lookup Table Based Rectilinear
Steiner Minimal Tree Algorithm for VLSI Design

Chris Chu and Yiu-Chung Wong

Abstract—In this paper, we present a very fast and accu- At later stages in which better wirelength is required, RSMT
rate rectilinear Steiner minimal tree (RSMT) algorithm called  construction is necessary. Hwang et al. [3] provided a compre-
FLUTE. FLUTE is based on pre-computed lookup table to make  hangive discussion of various RSMT algorithms. For optimal

RSMT construction very fast and very accurate for low-degreé . . L
nets. For high-degree nets, a net breaking technique is proposed RSMT algorithm, the fastest implementation is currently the

to reduce the net size until the table can be used. A scheme GeoSteiner package [4], [5]. Griffith et al. [6] (Batched 1-
is also presented to allow users to control the tradeoff between Steiner heuristic) and Mandoiu et al. [7] are two well-known

accuracy and runtime. near-optimal algorithms. However, these optimal and near-

FLUTE is optimal for low-degree nets (up to degree 9 in our optimal algorithms are computationally too expensive to be
current implementation) and is still very accurate for nets up to  ;sed in VLSI design applications.
degree 100. So it is particularly suitable for VLSI applications in ) )
which most nets have a degree 30 or less. We show experimentally Many attempts have been made to design RSMT algorithms
that over 18 industrial circuits in the ISPD98 benchmark suite, ~ with lower runtime complexity. Borah et al. [8] presented an
FLUTE with default accuracy is more accurate than the Batched O(n2) time algorithm in which a spanning tree is iteratively
1-Steiner heuristic and is almost as fast as a very efficient . . . :
implementation of Prim’s rectilinear minimum spanning tree improved by connecting a point to a nearby edge and. deleting
(RMST) algorithm. the longest edge on the created cycle. @(mlo_g n) time
N . o . but very complicated alternative implementation was also
Index Terms—Rectilinear Steiner Minimal Tree Algorithm,  proposed. Zhou [9] used spanning graph [10] to help both gen-
Wirelength Estimation, Wirelength Minimization, Routing, In- grating the initial spanning tree and finding good candidates
terconnect Optimization RS ) ) )
for the edge substitution idea in [8]. The resulting algorithm
runs in O(nlogn) time, and produces better solution in
I. INTRODUCTION slightly less runtime than the one in [8]. Kahng et al. [11]
A rectilinear Steiner minimal tree (RSMT) is a tree with98Ve @ practicaD(nlog™n) heuristic called BGA based on
batched version of the greedy triple contraction algorithm.

minimum total edge length in Manhattan distance to conne%is algorithm produces a better solution quality and requires
iven fn ibly through some extra (i.e. in . . ! .
a given set of nodes possibly through some extra (i.e., Steing slightly shorter runtime than [8] and [9] in practice.

nodes. RSMT construction is a fundamental problem that h&s
many applications in VLSI design. In early design stages Most signal nets in VLSI circuits have a low degree.
like physical synthesis, floorplanning, interconnect plannin§0 in VLSI applications, rather than having a low runtime
and placement, it can be used to estimate wireload, routig@mplexity, it is more important for RSMT algorithms to be
congestion and interconnect delay. In global and detailegimple so that it can be efficient for small nets. An example
routing stages, it is used to generate the routing topology 6f such an approach is the single trunk Steiner tree (STST),
each net. which is constructed by connecting each pin to a trunk that

RSMT problem is NP-complete [1]. So, in practice, rectilin-90€s either horizontally or vertically through the median

ear minimum spanning tree (RMST) is often used instead @esition of all pins [12]. However, the length of STST is far
RSMT. This approach is particularly common in early desigffom optimal even for medium size nets (e.g., degree 10-15).
stages in which the design space is being explored and herfd@NCe its application is limited. Chen et al. [13] proposed an
a fast tree construction algorithm is crucial. The disadvantagid®rithm called Refined Single Trunk Tree (RST-T) to reduce
of this approach is that the length of RMST may be mucH'® Iength of STST by a refining procedure.-RST-T is proved
longer than that of RSMT since Steiner node is not allowed® P& optimal for nets up to degree 4 and is experimentally
Hwang [2] showed that length of RMST can be as much ahown to be optimal for degree 5 nets. It is reasonably accurate
1.5 times that of RSMT. However, the difference is typically’®" Medium size nets too. RST-T runs@{(n log n) time with
far less than 50% in practice. So this inaccuracy is tolerabf fairly small constant.
in early design stages. In this paper, we present a very fast and accurate lookup
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with each POWV, we also store one corresponding Steiner Pin 4

tree, which we calleghotentially optimal Steiner tre@POST). Ya ° S4=
To find the optimal RSMT of a net, we just need to compute yi|
the wirelengths corresponding to the POWVs for the group the y,| Rin2
net belongs to, and then return the POST associated with the

POWYV with minimum wirelength. This lookup table idea can Pin 1 _
optimally and efficiently handle low-degree nets (up to degree X% o5 o o X
9 in our implementation). For high-degree nets, we proposed _ .
a net breaking technique to recursively break a net until thed- 1+ llustration of some notations.
table can be used. A scheme is also presented to allow users .
to control the tradeoff between accuracy and runtime during V3

net breaking. The runtime complexity of FLUTE with fixed ﬁg"giz"“‘a‘ﬁ‘ """" v,

: s
accuracy isO(nlogn) for a net of degreen. Vertical —> vi

Since FLUTE is extremely fast and accurate for low-degree edge - °. -
nets, it is especially suitable for VLSI applications. We show vk
experimentally that over 18 industrial circuits in the ISPD9&ig. 2. An illustration of horizontal and vertical edge lengths.
benchmark suite [14], FLUTE with default accuracy is more
accurate than the Batched 1-Steiner heuristic [6] and is almost
as fast as a very efficient implementation of Prim's RMSertical edge lengthas v; = ;41 —y; for 1 < i < n — 1.

algorithm [15]. By adjusting the accuracy parameter, the errathese definitions are illustrated in Figure 2.

can be further reduced with only a small increase in runtime A Steiner tree on the Hanan grid can be decomposed into
(e.g_.,_3.1>< error reduction Wlth2._0>< runtime increase). In a collection of Hanan grid edges. So the wirelength of any
adqun', we'show that even for high-degree nets (up to degr%‘?einer tree can always be written as a linear combination of
100), it is still very fast and accurate. edge lengths such that all coefficients are positive integers.
The remainder of the paper is organized as follows. IfFor example, for the net in Figure 1, the wirelength of the
Section Il, we present the lookup table idea to find RSMTSs fathree possible Steiner trees shown in Figure 3(a), (b), and
low-degree nets. In Section lll, we describe the algorithm tc) can be written ash; + 2hy + hs + v1 + vo + 2vs,
generate the POWVs and the POSTs. In Section IV, we shaw + hy + hs + v1 + 202 + 3vs, and hy + 2he + hs +
how the lookup table size can be reduced. In Section V, wg + v, + v, respectively. For simplicity, we will express
derive a very efficient technique to evaluate all the POWVa wirelength as a vector of the coefficients, and call it a
for a given net. In Section VI, we present the net breakingiirelength vectorFor the Steiner trees in Figure 3(a), (b), and
technique for high-degree nets. In Section VII, we show thg), the wirelength vectors afe, 2, 1,1,1,2), (1,1,1,1,2,3),
experimental results. The paper is concluded in Section Vlland (1,2,1,1,1, 1), respectively.

) ) ) 3 )

oPin 3 s;=4

Il. LOOKUP TABLE APPROACH FORLOW-DEGREENETS

We define anet of degreen to be a set ofx pins. In this
paper, we only consider Steiner trees along the Hanan grid as
Hanan [16] pointed out that an optimal RSMT can always
be constructed based on the Hanan grid. Given a net, thig. 3. Three possible Steiner trees for the net in Figure 1.

Hanan grid is formed by drawing one horizontal line and one

vertical line through each pin. Let; be the x-coordinate of |y order to find the optimal wirelength for a given net,
i-th vertical Hanan grid line such that < 2 <--- <Z.. g can enumerate all possible wirelength vectors. Note that
Similarly, lety; be the y-coordinate of-th horizontal Hanan  5though the number of possible Steiner trees is huge, the
grid line such thaty, < y» < --- < y,. Assume the , mpher of possible wirelength vectors is much less. More
pins are indexed in ascending order of y-coordinate. €t jmnortantly, we notice that not all wirelength vectors have
be the rank of pini if all pins are sorted in ascending yhe potential to produce the optimal wirelength. Most vectors
order of x-coordinate. (Ties are broken arbitrarily for both, g requndant because they have a larger or equal value than
x-coordinate and y-coordinate.) Therefore, the coordinates gfther vector in all coefficients. For example, we can ignore

pin i is (x,,y:;). The notations are illustrated in Figure 1.ihq wirelength vecto(1,2,1,1,1,2) because the wirelength

s189 ... sy is called theposition sequencef the net. For the produced by the vect’o(’1,72,71,71, 1,1) is always vs less,

net in Figure 1, its position sequence is 3142. The positiofjje called a vector that can potentially produce the optimal
sequence completely specifies the relative positions of ”\Wirelength (ie., cannot be ignored) potentially optimal

pins. wirelength vector(POWV). We observe that for every low-

Note that the length of a horizontal (respectively, verticalylegree net, there are only a few POWVs. For example, for all
edge in the Hanan grid is equal to the distance between twiegree-3 nets, the only optimal wirelength vectatlisl, 1, 1),
adjacent vertical (respectively, horizontal) Hanan grid lineswvhich corresponds to the HPWL. For the net in Figure 1,
We denotehorizontal edge lengttas h; = z;41 — z; and the only two POWVs ar¢1,2,1,1,1,1) and(1,1,1,1,2,1).

(a) (b) ()
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Which one is optimal depends on which af and vy is Our RSMT approach pre-computes the set of POWVs
smaller. All possible Steiner trees corresponding to these tvassociated with each group and &rROST associated with
wirelength vectors are given in Figure 4. Each of these treemch POWV. The POWVs and POSTs are stored in a lookup
is called apotentially optimal Steiner tre¢POST). Some table. To compute the RSMT for a given net, we find out the
statistics on the number of POWVs will be given later inposition sequence of the net and then obtain the vectors for

Table I. the corresponding group from the table. Each vector generates
a wirelength by summing up the product of the vector entries

Wirelength with h;'s andv;'s. The minimum value over all vectors gives

vector: the optimal wirelength. The POST corresponding to the vector

(12.LLLY with minimum wirelength gives the RSMT.

Wirelength Ill. GENERATION OFLOOKUP TABLE
vector:
(1,1,1,1,2,1)

In this section, we discuss the generation of the sets
of POWVs and the associated POSTs. For each small net
Fig. 4. All potentially optimal Steiner trees for the net in Figure 1. degree and for each group (i.e., position sequence), we may

generate all possible Steiner trees on the Hanan grid, find
If all the POWVs and the corresponding POSTs are prethe corresponding wirelength vec_to.rs, and prune away the
edundant ones. The set of remaining vectors and trees are

computed and stored in a lookup table, the RSMT will b .
easy to find. However, the number of different nets is inﬁnitehe POWVs and POSTs for the group. A trivial approach to

as the pin coordinates can take infinite different values. T%enerate all possible Steiner trees is to enumerate all possible

handle this problem, we try to group together nets which Cacnqmbmatlons of using and n_ot using each e_dge n the Hanan
: rid and check if the resulting sub-graph is a Steiner tree

share the same set of POWVs. To see which nets can ggverin all the pins. However, this approach is extremel

grouped together, we first introduce the following definition, 9 pIns. ' PP y

Two Steiner trees for two different nets are said totdyeo- ex_pensivg. I_Even for degree 5, we need to enumerate a Hanan
logically equivalentif they can be transformed to each othergrld consisting of 40 edges for ea.ch of the 1?0 groups.

by changing the edge lengths (or equivalently, the distance\We propose a much more efficient algorithm based on
between adjacent Hanan grid lines), with the restriction th& boundary compactiortechnique. For a given group, the

their values remain positive. This concept is illustrated ifpoundary compaction technique reduces the grid size by
Figure 5. compacting one of the four boundaries, i.e., shifting all pins

on a boundary to the grid line adjacent to that boundary. The
set of Steiner trees of the original problem can be generated
by expanding the Steiner trees of the reduced grid back to the
original grid. Figure 6 uses the compaction of left boundary
as an example to illustrate the idea. Note that in Section II,
we assume each Hanan grid line is associated with only 1 pin
so that the concept of position sequence is well-defined. This
assumption is not necessary unless we consider the grouping

Lemma 1:If two nets have the same position sequenceroblem of a net. In this section, we assume a grid line may
then every Steiner tree of one net is topologically equivalerfontain more than 1 pins so that grid lines can be combined
to a Steiner tree of the other net. and grid size can be reduced by boundary compaction.

Proof: Suppose we shift the grid lines of the two Hanan

Fig. 5. Topologically equivalent Steiner trees for two different nets.

grids for two nets so that they become identical. Since they °

have the same position sequence, the pins of the two nets are o o

in the same locations in the Hanan grid. So every Steiner tree ° T

of one net will also be a Steiner tree of the other. [ | ® 3 ° Lo
Theorem 1:The set of all degree-nets can be divided into Left Left

n! groups according to the position sequence such that all nets Boundary ﬁ Boundary

in each group share the same set of POWVs. Compaction . E’:f’ans“’“

Proof: Observe that the wirelengths of topologically _

equivalent Steiner trees can be expressed by the same wire- = Osrizlﬁg:bt‘rte’f

length vector. For example, the wirelength of the two trees in . — r+

Figure 5 can both be represented (iy2, 1, 1,1, 2), although . 4 J -

the values of;'s andwv;’s are different for the two nets. Based
on this observation and Lemma 1, nets with the same positig}g'
sequence can be grouped together to share the set of POWVs. .

In general, more than one POSTSs can be stored. Then different RSMTs of

Since the position sequence of a degmeet IS a permutation the same wirelength can be constructed. Routers may explore the alternatives
of 12...n, there should be! groups. B to optimize some other objectives like congestion or timing.

6. An illustration of left boundary compaction.
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We can route a_net by performlng_ boundary compactlo.n and Algorithm Gen-LUT(G)
expansion recursively. By compacting the four boundaries in| input: A grid G with some pins at grid nodes _ .
different order, a set of different Steiner trees with different t?utl_outi One POST for each POWV of the group associated with G

. . . egin
erelength \(ectors can be gene_rgted. Sl_nce we are perforr_nln U1, If G is simple enough,
the routing in a restricted way, it is possible that some Steiner 2. generate and return the set of POSTSs for G
trees and hence some wirelength vectors will not be generated 231' else 'I a”yEboun?:Eg COEtSITn(Sc only Ori‘)?Gp)')r;

. . - . return expan en- ompac

We define a grid G to beompactableif for each POWV 5. else if there is a corner with one pin such that
V of G, there exists a boundary such thatV can be 6 both its adjacent boundariés andb2 have one other pir,
generated by expanding some POWV of the reduced grid ; return Prunelz(Expagg(ge”'tﬂ(gomPacg(g)))
obtained by compacting G at In other words, we can always |q gee Y Expands2(Gen-LUT(Compact:2(G))))
reduce the size of a compactable grid without worrying about| 10.  if there arer pins with all 7 pins on boundaries, _
missing some POWVs. Lemmas 2, 3, and 4 below give several g | S? {hTfeeS \gjg near-flnﬂ itf;lct_ufe Corl;nect'dng_a” gins

. . P . else if there are> 8 pins with > 7 pins on boundaries,
situations that a grid is compactable. The proofs of the lemmas ;3 S= Connect-adj-pins(Gq) whered = # of pins— 3

are in Appendix |. An example of non-compactable grid iS |14.  return Prune(®& Expand-left(Gen-LUT(Compact-left(G)))

given in Figure 7(a). Figure 7(b) shows the optimal Steiner ig 8Exggzg-ggp%%ﬁ”ibg{é%&fggztcgﬁgg)))
. A . X = - -
tree, which cannot be generated by boundary compaction. |7 U Expand-bot(Gen-LUT(Compact-bot(G))))

end

L] L] : Il—.—:

e ¢ Fig. 8. The POST generation algorithm for a given group. BokE

{left, right, top, bottom}, Expandb() and Compact() perform compaction

oo bad and expansion of boundary, respectively. Prune() performs pruning of

(a) (b) redundant trees not corresponding to POWVs. Connect-adj-pins() is used to
generate extra trees not producible by boundary compaction.

Fig. 7. An example of non-compactable grid.

Lemma 2:A grid G is compactable if it has a boundary Lemma 5:For a grid with 7 pins, boundary compaction
with only one pin. together with the near-ring structures can generate all POWVs.
Lemma 3:A grid G is compactable if it has a corner with
one pin P and both boundaries adjacent to P have exactly oneéFor nets with 8 or more pins, we used a function Connect-

other pin. adj-pins() to generate some extra trees. Connect-adj-pia3(G,
Lemma 4:A grid G is compactable if it has up to 6 pins connects two or more adjacent pins on the same boundary by
at the four boundaries. introducing a branch along the boundary. Those pins can be

The algorithm to generate one POST for each POWV it @ distance at mostgrid lines away from each other. (See
a given group is presented in Figure 8. With the POSTS, tHfdgure 9(a) for_ an illustration.) Then those pins are replaced
corresponding POWVs can be easily computed. Instead BY @ PSeudo-pin located somewhere on the branch. For each
enumerating all Steiner trees first and pruning the redundaR@Ssible location of the pseudo-pin, Gen-LUT() is recursively
ones (i.e., those not correspond to POWVs) at the end, V.(;@Ile.d to generate the POSTs of the reduced grid (as illustrated
prune the redundant trees for each sub-problem. By perfordi. Figure 9(b)). The POSTs of G can be constructed by
ing pruning as early as possible, the efficiency of the algorithifPMPining the branch with the POSTs of all reduced grids.

can be significantly improved. (See Figure 9(c).)
In Steps 1-2, we directly generate the POSTs when G POST by
consists of a single (horizontal or vertical) grid line or is a distance=5 Gen-LUT()
2 x 2 grid. Steps 3—4 are based on Lemma 2, and Steps 5-8 P o——o—o
are based on Lemma 3. Note that the proofs of these lemmas (RIS B Y R ° R °
actually identify which boundaries to compact without missing o Y , - ,
any POWV. Since one or two (instead of four) recursive calls FEEhSRE PR PR
are made and these cases occur frequently for low-degree nets, (a) (b) ©

the runtime of the algorithm can be dramatically reduced. If _ _ . _
Lemmas 2 and 3 cannot be applied we try compacting Aﬂg 9. An illustration for Connect-adj-pins(@) with d > 5.

four boundaries in Steps 14-17. Lemma 4 guarantees that for ) ) ]
nets with up to 6 pins, all POWVs will be generated. Note that this technique is complementary to boundary
(aompaction. It produces tree branches along a boundary that

For grids with 7 or more pins, some POWVs may be misse tb duced by bound tion, L 6 bel
by boundary compaction. So some extra Steiner trees argnnotbe produced by boundary compaction. Lemma o below

included in Steps 10-13. In Step 11, there are 7 trees in roves that boundary compaction together with Connect-adj-
Each tree is a near-ring structure, which is the bounding b hs() are sufficient to generate all POWVs for nets with

that surrounds the grid with edges connecting one of the gree up to 10. The prof’f of L.emma 6 is in Appendix |.
pairs of adjacent pins removed. Lemma 5 below proves thatLeémma 6:For a net withn pins where7 < n < 10,
boundary compaction together with the near-ring structurd¥undary compaction together with Connect-adj-pins() with
are sufficient to generate all POWVs for degree-7 nets. THlstanced = n — 3 can generate all POWVs.

proof of Lemma 5 is in Appendix I. Note that Connect-adj-pins() can also be used to handle nets
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Degree | # of groups | # of POWYS in a group different groups, both will become the grid in Figure 10(c) if
> > T 1 1 the top boundary is compacted. Note that by Lemma 2, both
3 6 1 1 1 grids are compactable at the top boundary. Hence, the two
g‘ 12240 i %-22; g groups for these nets have the same set of POWVs. Moreover,
6 720 1 4433 8 even the POSTSs can be shared between the groups. For exam-
7 5040 1 7.932 15 ple, POSTs corresponding to the POWV (1,2,1,1,1,1) for the
g ;‘ggggo i %g-ggé gg nets in Figures 10(a) and 10(b) are shown in Figures 10(d) and
: 10(e), respectively. It is clear that both POSTs have the same
TABLE | topology (consisting of branches AE, BE, EC and CD). The
NUMBER OF POWVS IN A GROUP FOR NETS OF A GIVEN DEGREE same argument can be applied to all 4 boundaries. Therefore,

up to2* = 16 different groups can share a set of POWVs and
POSTs. (The number of equivalent groups may be less than 16

with 7 pins. However, Connect-adj-pins() is very slow becausecause pins can be shared by adjacent boundaries and so not
one recursive call to Gen-LUT() is made for each possibl@" combinations exist.) Second, if two nets are symmetrical

location of the pseudo-pin. Thus, the near-ring structure gorizontally, vertically or diagonally, the POWVs and POSTs

used instead. of one group can be transformed to those of the other. Due
Th let f the alaorithm Gen-LUTO i to the overhead in solution transformation, only horizontal
e completeness of the aigonthm Gen- 0ls Summas'ymmetry is considered in our implementation. This allows

rized in the following theorem. two groups to share the POWVs and POSTSs.
Theorem 2:The algorithm Gen-LUT() generates one POST

for each POWV for nets with degree 10 or less. A B A B

Proof: This theorem follows directly from Lemma 4, g $ B E B 4B
Lemma 5 and Lemma 6. [ |

The number of POWVs in a group is listed in Table I. . : s s
We only generate the lookup table up to degree 9. The @ ®) © @ ®©
computation time for lookup table generation will be discusseglg‘ 10.
at the end of Section IV as it is affected by the table size
reduction techniques presented in Section IV.

Equivalence of different groups due to boundary compaction.

Some implementation details are described below. For any
group of degreen such that the corresponding position se-
guence iss1 sz . . . Sp, We define a modified position sequence

According to Table I, for degree 9 alone, there are 10.9:p- ...p, as follows:
million POWVs. If one byte is used to store each of the 16
entries in a POWYV, the POWYV storage requirement for degree pi
9 will be 166.3 MB. The POST associated with each POWV g 1he example in Figure By papsps — 0021. According

should have up to 7 Steiner nodes anel7 —1 = 15 branches. , e definition above, it is not hard to see thatcan take

If one byte is used to store each branch in a POST, the PO%‘II;y integral value between 0 arid- 1. We define a group
storage requirement for degree 9 will be 155.9 MB. The totgl jox for the group as:

storage requirement for both POWVs and POSTs and for all
degree up to 9 will be prohibitively large. “onl
J p p y larg [ H B xpy
=1

IV. REDUCTION OFLOOKUP TABLE SIZE

{sj:1<j<iands; <s;}| for1 <i<mn

A smaller table will reduce the usage of hard disk, main
memory and cache. It will also reduce the time of loading the
lookup table from hard disk to memory. So it is desirable to We prove in Lemma 7 below that group index can be used
reduce the size of the lookup table. as the array index for the lookup table organized as an array of

One technique to reduce the POWV storage requirement’i 9roups. Then we prove in Lemma 8 that it is sufficient for
to explore the similarity among POWVs in a group and storfe lookup table to be an array for only the fir8f'4 groups.
the differences between the POWVs according to the MSTN€ proofs of both lemmas are in Appendix II.
computed in Section V below. For this method, instead of Lemma 7:Group index is an one-to-one mapping from the
using?2 x (d — 1) bytes for each POWV of degrek we only groups of degree to an integral value between 0 antl— 1.
need 2.5 bytes or less as shown in Table Ill. However, this
method does not reduce the number of POWVs or the POST| emma 8: Any group of degree: is equivalent to a group
storage requirement. with group index between 0 and /4 — 1.

Another technique is to explore the equivalence of different some statistics of the lookup table are listed in Table II.
groups and show that the POWVs and POSTs of only a smalfe generate the lookup table up to degree 9. By exploring the
fraction of all groups need to be generated and stored. Nodguivalence of groups, we can reduce the number of groups
that the table generation time will also be reduced by thigenerated and stored by a factor of 25.8. (The table generation
technique. time should also be reduced by a similar factor.) The total table

Groups are equivalent for two reasons. First, observe thsize is only 9.00 MB, which can be easily handled by today’s
even though the nets in Figures 10(a) and 10(b) belong to tvemmputers.
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Degree # of groups Table size (MB) | Gen. Average # of ADD/SUB
n n! generated nllgen. | POWV POST| time Degree per group [ per POWV
2 2 1 2 0.00 0.00 0.0s n Independent MST [ Independent  MST
3 6 1 6 0.00 0.00 0.0s 2 0 0 0 0
4 24 2 12 0.00 0.00 00s 3 0 0 0 0
5 120 8 15 0.00 0.00 0.0s 4 1.333 1.333 0.8 0.8
6 720 36 20 0.00 0.00 0.0s 5 4.267 4.267 1.73 1.73
7 5040 222 22.70| 0.01 0.02 0.0s 6 14.422 10.333 3.253 2.331
8 40320 1638 24.62| 0.17 0.31 | 50.7s 7 39.651 20.025 4.999 2.525
9 362880 13950 26.01| 256 5.93 | 58.2 hr 8 109.136 38.561 7.156 2.528
Total | 409112 15858 25.80 2.75 6.26 | 58.2 hr 9 288.060 74.155 9.590 2.469
TABLE Il TABLE Il

SOME STATISTICS OF THE LOOKUP TABLE AVERAGE NUMBER OF ADDITION/'SUBTRACTION REQUIRED

The last column of Table Il is the lookup table generationthe wirelength of one vector to that of the other. Given a
time in a PC with a 3.4 GHz Pentium 4 processor. It isninimum spanning tree of the graph, we can evaluate the
extremely fast to generate the table up to degree 7 becausep@WVs in an order defined by a breath-first traversal of
the boundary compaction technique and the near-ring structufg tree starting from the node corresponding to the HPWL.
presented in Section Ill. For degrees 8 and 9, the generatighe total edge weight of the minimum spanning tree gives
time is much longer because of the function Connect-adihe number of addition/subtraction required to computeyall
pins(). Note that we have several ideas to significantly redugeow\Vs.

Fhe table generation _tlme (e.9., storing the solutions of a gr'.d The average number of addition/subtraction required for the
m_stead of reco_mputlng them so that they can be reused inependent approach and the MST-based approach are listed
different recursive calls). However, as the lookup table on% Table IIl. Columns two and three give the average number
needs to be generated once, we did not implement those ideﬁér group, which is proportional to the average runtime to
evaluate a net. It is clear that the MST-based approach can
significantly speed up the evaluation of high-degree nets. The
last two columns give the average number per POWYV, which

To find the optimal RSMT of a given net, we need tois proportional to the average runtime to compute a POWV.

: : . t shows that for the independent approach, a lot more entries
consider the set of POWVS in the corresponding group. Aeed to be added for POWVs of high-degree nets, while for the

straightforward approach is to evaluate the POWVS indepe IST-based approach, the number of entries to be add/subtract
dently. For each POW‘(/al,ag,...,an_l,ﬁl,ﬁg,...,ﬁn_l), . . . .

: n—1 n=1 first increases slowly with net degree and then remains around
we compute the expressioNn L = > a;h; + >, Biv;. 5
Since entries in POWVs are typically small integers, ang' '
addition is computationally much less expensive than mul-
tiplication, it is more efficient to add the edge length several VI.

times instead of using multiplication. In addition, each of the , .
edge length should be used at least once. So it is better toFOr high-degree nets, both the table size and the number of

evaluate the expression a§L = HPWL + Zﬂ:ll(ai _operations to evaluate a net will be impractically large. So the
Dh +Z?;11(5i ~1)v;. Then we have(n — 1) less terms to table lookup approach is practical only for low-degree nets.
add. In FLUTE, we have a user-defined paramelerA lookup

However, we observe that most POWVs shared by a grodP!e 1S constructed up to degrée (D = 9 in current
of nets are very similar to one another. Many of them diffef"Plémentation). Nets with degree higher thanare broken

from other in only one or two entries. Hence, some POW\VYO Several sub-nets with degree ranging from 2t which

can be efficiently evaluated by adding or subtracting somfg€ table lookup estimation can be applied.

terms from some other previously computed POWVs. By In this section, we present a technique to recursively break

exploring the dependency among the POWVs, the evaluatitvigh-degree nets. In this technique, if a net satisfies certain

of all POWVs for a net can be made more efficient than theonditions, it will be broken optimally. Otherwise, four heuris-

independent approach. tics are applied to collectively determine a score for each way
The problem of determining the best dependency amorﬂj breaking. Then several ways corresponding to the highest

POWVs for a given group can be transformed into a minimuricOres are tried. by making recursive calls. In this technique, a
spanning tree problem. Consider a group associated withSgheme is also introduced tq allow users to control the tradeoff
set of¢ POWVs. We construct a complete graph with- 1 P€tween accuracy and runtime.

nodes.q of these nodes correspond to thPOWVs in the

set and one more node corresponds to the wirelength vectpr - . ;

(1,...,1,1,...,1) (i.e.,, HPWL). The weight of each edge isp' Optimal Net Breaking Algorithm

set to the 1-norm of the difference of the two corresponding Theorem 3:For any net, if the set of pins can be partitioned
wirelength vectors. In other words, the edge weight is equal iato two sub-setd. = {Pin1,...,Pinr} and R = {Pinr +

the number of addition/subtraction required to convert from, ..., Pinn} such that the x-coordinate of any pin inis

V. SPEEDUP OFMINIMUM WIRELENGTH COMPUTATION

NET BREAKING FORHIGH-DEGREENETS
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less than or equal to that of any pin i (see Figure 11(a) lengthy,.,.1—y, (respectivelyy, —y,_1) will be counted once
for an example withr = 3), then an optimal RSMT can be in the wirelength of the upper (respectively, lower) sub-net.
constructed by merging the optimal RSMTsbt) {(z,,y.)}  Otherwise, bothy,,; — y. andy, — y,._1 are likely to be
and{(z,,y,)} UR. counted more than once in the total wirelength. So it is better

Proof: In any optimal RSMT, there should be at least© break the net at pin if y,.., —y, 1 is large.
oné “bridge” connecting the two sub-sets (Figure 11(b)). An The second component is:
optimal RSMTT™* that passes through the no@e., y,.) can
be constructed by shifting the segments of each bridge without g
changing the wirelength (Figure 11(c)). Another RSMT
with the same or less wirelength 6* can be obtained by
merging the optimal RSMTSs for the two sub-sets with the nod&/hen3 < s, <n—2, z, 1 andz,__; are the x-coordinates

(z,,y,) added to both. Hencd, should also be optimal.m  of the pins just right and just left of pin, respectively. If we
break the net at pin, in both the lower sub-net and the upper

2(333 — 332) if s,=10r2
o(r) = Ts, 41 — Ts,—1 if 3<s,<n-—2
2(xp—1 —xp—2) If s,=n—10rn

~ ) R PN sub-net, the pins on the left of pinneeds to be connected to
. bridge / ; those on the right (unless for the rare cases that there is no
L o ° .. pin either on the left or on the right of pinin a sub-net). So
N d / the edge lengths, 1 —z,, andz,, —xs. 1 will be counted
o N~ in both the upper and the lower sub-nets. Therefore, it is less

j | desirable to break the net at a pin with a large,; —z,, 1.
° ° o Whens, = 1 (respectivelyn), pinr is at the left (respectively,
‘ right) boundary and:;__, (respectivelyy,, +1) is not defined.
@ ®) © Whens, = 2 (respectivelyn — 1), as the edge length, — z;
(respectivelyr,, — z, 1) will always be counted once for any
way of breaking according to Lemma 2, it is less effective to

Theorem 4:For any net, if there exists such thats; >  US€Zs +1—7s,1 @s a prediction. For these cases, we observe

n—r+1foralie {l,...,r}, then an optimal RSMT that it is good in practice to set the second component to either

can be constructed by merging the optimal RSMTs of(23 — 2) OF 2(zn—1 — Zn_2).
{Pinl,....Pinr (zn—ry1,y-)} and {(zp—rs1,9.),Pinr + The third component is:

Fig. 11. [lllustration of the optimal net breaking algorithm.

1,...,Pinn}. T w1l
Proof: Similar to Theorem 3. n Ss(r) Sr — Xh+|r———|%x7
The optimal net breaking algorithm will break a net accord- — Xp1— 9 Yn_1 — Yo o
ing to Theorems 3 and 4 if there existse {2,...,n — 2} Whereh=————= andv==——_==.In general, it is

satisfying either one of the two conditions. Note the the sizBetter to haventhe%reaking pin closer o the center of the net. If
of the two sub-nets are+ 1 andn —r + 1. So it will not be  pin r is close to center vertically (i.er,is close to(n+1)/2),
useful to break the net if =1 orn — 1. the net will be evenly divided and hence less recursive calls
are likely to be made later. Both accuracy and runtime will be
improved as a result. If pim is close to center horizontally
(i.e.,s, is close to(n+1)/2), other pins are closer to pinon
Without loss of generality, consider breaking the net acAverage in both upper and lower sub-nets. In here, we use the
cording to y-coordinate. If the net is broken at pinthen distance of pin- from the center (in terms of number of edges
pin 1 to pin » will form one sub-net, and pin- to pin »  in Hanan grid) to predict how many extra edges need to be
will form another sub-net. To ensure that both sub-nets are 4$ed.» andv are the average edge lengths in the Hanan grid.
least a constant factor smaller than the original net, we requiB€Causer, —z,_1, Ta— 21, Yn—Yn-1, aNdyz2 —y; are always
én < r < n—dn+1 for some positive constaint We compute counted once for any solutions, they are not included in the

B. Net Breaking Heuristics

a score which is a weighted sum of four components: computation of average length of extra edges. In principle,
we can use different weights for the horizontal part and the
Score S(r) = Si(r) — aSz(r) — BS3(r) — vSa(r). vertical part ofS3 to form the score. However, we observe
A larger score means a more desirable way of breaking. Sotlﬂat a single weight works just as well.
is better forS; (r) to be large, and fof,(r), S3(r) and Sy(r) The fourth componentSy(r) is the total half-perimeter
to be small. wirelength (HPWL) of the two sub-nets. This is a direct way

to predict the resulting wirelength.
We experimentally determined that it is good to seto
Si(r) = Yr41 —Yr 0.3,5to 7.4/(n+ 10), and~y to 4.8/(n — 1). S; is the most
If we break the net at pimr, pin r» will become the only |m|3[o:tzrint (I)tf txﬁhf(t)#r ﬁ?}n}pinfgltsth Itnrz/:/(i)tﬂucrfs sr:gm?(iﬁntly
pin at the bottom (respectively, top) boundary of the Uppe*?teheer therZL:e SThe reselts'sgeeeﬁ bette? b coribyngn e:" foer
(respectively, lower) sub-net. According to Lemma 2, the edg% ) uitis ev y Ining ur.
After sub-trees for the two sub-nets are constructed, they are
31t can be proved that there is always exactly one bridge. combined to form a Steiner tree for the original net. Note that

The first component is:
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o freuit | # of Ave. Wiax.
the two sub-trees may share some edges as shown in Figure Circuit | # of nets _Ave. degree  Max. degrge

) . ibm01 | 14111 358 42
12(a). These redundant edges can be detected in constant time ibmo2 | 19584 4.15 134
and will be removed by introducing an extra Steiner node as ibm03 | 27401 3.41 55
shown in Figure 12(b). To further reduce wirelength, a local EBQSZ—,‘ géiig i-ill ‘113
refinement technique can be applied to improve the subtree in ibmos | 34826 368 35
the neighborhood of the breaking pin. This technique uses ibm07 | 48117 3.65 25
FLUTE to reconstruct the subtree connecting all pins that :Bmgg gggég g-gg ;g
are directly reachable from the breaking pin without passing ibm10 | 75196 3.96 a1
through other pins (as illustrated in Figure 12(c)). To minimize ibm1l | 81454 3.45 24
the runtime overhead, the local refinement technique is applied :Bmg g;ggg g-éé gi
only if the subtree around the breaking pin has utins. ibm1s | 152772 358 33
ibm15 | 186608 3.84 36
ibm16 | 190048 4.10 40
, ibm17 | 189581 4.54 36
Extra ibm18 | 201920 4.06 66
Steiner ] Al | 1570355 3.92 134
node
pin r \ . TABLE IV
'*. Refined BENCHMARK INFORMATION.
: subtree

(@) (b) © &

Fig. 12. Merging two Steiner sub-trees. VIl. EXPERIMENTAL RESULTS

The FLUTE algorithm described in this paper is imple-
mented in C in the software package FLUTE-2.5. For our
implementation, the runtime complexity @(n?) because a
simple O(n?) sorting algorithm is used, and the net breaking
C. Accuracy Control Scheme pin is searched in the range < r < n — 2. To minimize

. runtime, the local refinement technique introduced in Section
We can control the accuracy of FLUTE by changing thg_g js not applied for low accuracy (i.e., whet < 4). The

number of ways of breaking each net. However, we obsen®, rce code of FLUTE is posted in the “Rectilinear Spanning

that it is not as good if all sub-nets generated by recursivg,q steiner Trees” slot of the GSRC bookshelf [17].
calls are handled with the same accuracy. A better tradeoff . . .
We perform all experiments in a 3.4-GHz Intel Pentium

between accuracy and runtime can be obtained if lower-level hind. Th ¢ . d d Fi
sub-nets are handled with less accuracy. We introduce a us gmachin€. Three sets 0 ex'perlmer']ts are conducted. !rst,
defined accuracy parameter. The original net is handled W& compare the following six algorithms on nets from in-

; ; . dustrial circuits: an efficien©(n?) implementation of Prim’s
with accuracyA. That meansA different ways of breaking . . .
are tried. Then for each recursive call, the accuracy is set fgorthm (RMST) [15], Refined Single Trunk Tree (RST-T)

max{|A/2],1}. We notice that a smalll is already enough 3], the spanning graph based RSMT algorithm (SPAN) [9],

to obtain very accurate solutions. We set the default value Eﬁe batched greedy triple contraction algorithm (BGA) [11],
Ato 3 the near-optimal Batched Iterated 1-Steiner (BI1S) heuristic

[6], and FLUTE with default accuracd = 3. The exact
RSMT software GeoSteiner 3.1 [5] is used to generate the
optimal solutions. Source codes of RMST, BGA, BI1S, and
D. Time Complexity of FLUTE GeoSteiner are downloaded from the GSRC Bookshelf [20].
_ o ) Source codes of SPAN and RST-T are obtained from the
The time complexity is analyzed as follows. Consider= gythors. The 18 IBM circuits in the ISPD98 benchmark suite
1. We first need to sort all pins according to x- and ygre used. Some information of the benchmark circuits are
coordinates. Then we recursively break the net into two sUBjven in Table IV. There are totally 1.57 million nets. The
nets in a roughly even manner. In each recursive call, it tak@gacement is generated by FastPlace [21].
linear time to check the optimal breaking conditions and to
compute the scores. So the total runtim&ig:logn). Note
that the optimal net breaking algorithm may not break the n
in a even manner. However, we can implement the algorith
to search for clusters simultaneously starting from all fou . - I
corners (instead of only lower-left and lower-right corners a 5 or less. BILS is the best for the remaining three circuits
suggested by Theorem 3 and 4, respectively). Then, if t mo02, ibm08 and ibm18).
net is not broken e\/en|y (i_e_, a small cluster exists), the The breakdown of the Wirelength estimation for nets with
checking time will also be small. So the total runtime willdifferent degree is shown in Table VI. A summary of all 18
still be O(n log n): For ?CcuraCyA’ It is nOt hard to §hOW 4In earlier versions of this paper [18], [19], experiments are performed in
by mathematlcgi Jﬂ?uc“on or that the time complexity of a Sun Sparc-2 machine. For unknown‘reaséms, BI1S is significantly slower

FLUTE isO(A™ =z nlogn). in Sun machines.

The wirelength comparison is shown in Table V. FLUTE
5 the best among the six algorithms. The average wirelength
grror over all nets is only 0.075%. FLUTE produces the best
irelength for all 15 circuits in which all nets have degree
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Net breakdown Wirelength error (%)
Degree # WL RMST RST-T SPAN BGA BI1S FLUTE

2 54.92%  27.98%| 0.00 0.00 0.00 0.00 0.00 0.00
14.40%  10.26%| 2.50 0.00 0.03 0.00 0.00 0.00
7.68% 7.84% | 3.89 0.00 0.11 0.00 0.00 0.00
5.61% 8.18% | 4.74 0.00 0.21 0.07 0.05 0.00
3.20% 5.65% | 5.40 0.49 0.29 0.12 0.07 0.00
2.28% 4.82% | 591 1.02 0.37 0.13 0.09 0.00
1.98% 4.61% | 6.25 191 0.42 0.16 0.12 0.00
1.81% 4.46% | 6.79 2.65 0.48 0.21 0.15 0.00
10-17 | 6.98%  21.72%| 7.81 6.21 0.60 0.29 0.22 0.16
>18 1.15% 4.48% | 9.04 14.05 0.75 0.40 0.32 0.87

TABLE VI
BREAKDOWN OF THE WIRELENGTH ESTIMATION ACCORDING TO DEGREE FOR NETS OF ALL8 CIRCUITS.

OCoO~NO U~ W

Wirelength error (%) Runtime (s)
Circuit [ RMST RST-T SPAN BGA BIIS FLUTE Circuit [ RMST RST-T SPAN BGA BIIS FLUTE

ibm01 [ 4.092 1.933 0.251 0.129 0.106 0.074 ibm01 0.02 0.09 0.55 0.75 1.01 0.02
ibm02 | 5.849 3.780 0.331 0.143 0.115 0.20 ibm02 0.02 0.14 1.05 1.50 4.32 0.03
ibm03 | 4.637 1.919 0.271 0.125 0.095 0.063 ibm03 0.02 0.18 1.02 1.38 1.95 0.03
ibm04 | 4.048 1.255 0.203 0.084 0.060 0.05 ibm04 0.04 0.20 1.07 1.44 2.24 0.02
ibm05 | 4.489 3.134 0329 0.153 0.112 0.10¢ ibm05 0.03 0.20 1.71 2.40 2.69 0.05
ibm06 | 5.964 2.822 0.381 0.182 0.134 0.084 ibm06 0.03 0.23 1.45 1.95 2.53 0.04
ibm07 | 4.720 1.704 0.268 0.116 0.084 0.04¢ ibm07 0.05 0.32 1.96 2.59 3.26 0.04
ibm08 | 4.784 4.445 0.328 0.162 0.123 0.26 ibm08 0.06 0.35 2.63 3.74 6.60 0.09
ibm09 | 4.331 1.804 0.235 0.105 0.075 0.041 ibm09 0.07 0.40 2.42 3.19 4.13 0.06
ibm10 | 4.104 1.790 0.252 0.104 0.080 0.05 ibm10 0.08 0.53 3.59 4.77 5.85 0.09
ibml1ll | 4.018 1.227 0.219 0.087 0.062 0.024 ibm11l 0.06 0.53 2.87 3.76 5.16 0.05
ibm12 | 3.783 1.908 0.248 0.106 0.077 0.054 ibm12 0.10 0.54 3.94 5.33 6.25 0.10
ibm13 | 4.782 2.002 0.292 0.135 0.102 0.05 ibm13 0.10 0.66 3.89 5.18 6.68 0.09
ibm14 | 3.908 1540 0.221 0.095 0.068 0.04 ibm14 0.15 1.02 591 7.84 1011 0.14
ibml15 | 4.201 1.941 0.266  0.106 0.077 0.061 ibm15 0.21 1.27 8.18 10.86 13.96 0.22
ibml16 | 4.231 2.421 0.279 0.124 0.090 0.06 ibm16 0.23 1.33 9.33 12.47 14.75 0.26
ibm17 | 3.905 2.188 0.263 0.110 0.082 0.05¢ ibm17 0.28 1.39 11.06 15.06 16.63 0.31
ibm18 | 4.432 3.353 0.300 0.134 0.100 0.14] ibm18 0.26 1.40 9.81 13.28 17.82 0.30

T~~Or 0PN O i O IPo+(O—3

All 4.232 2261 0269 0.117 0.086 0.07 All 0.93 5.56 37.34 50.25 64.92 1.0
TABLE V TABLE VI
PERCENTAGE ERROR IN WIRELENGTH RUNTIME COMPARISON. THE OVERALL RUNTIMES IN THE LAST ROW ARE

NORMALIZED WITH RESPECT TOFLUTE RUNTIME.

circuits is given. Columns 2 and 3 provide a breakdown on the
number of nets and the wirelength. Notice that although mo#r all nets in 18 IBM circuits are reported in Table VIII.
nets are of degree two or three, there are still a substantialTable VIII shows that the accuracy control scheme provides
proportion of higher degree nets and the contribution of thosevery effective way to achieve much less error in a moderate
nets to the wirelength is very significant. For example, netdintime increase. The runtime is increasing at a rate much
with degree 10 or more account for 8.13% of all nets angiower thanA™*2 because most nets have a low degree.
contribute 26.2% of total wirelength. Columns 4 to 9 reporiye notice that if RSMT is not constructed, the runtime
the percentage error in wirelength. As the table shows, g decreased by roughly 1.3-1 However, because the
six techniques have more error for nets with higher degregedundant edge removal and the local refinement techniques
FLUTE is exact for nets up to degree 9 and is still veryjescribed at the end of Section VI-B cannot be used, the
accurate for higher degree nets. Note that although RST-T d$ror is increased. For applications in which only wirelength
exact up to degree 5, it performs badly for high-degree netsstimation is required, such an implementation provides a
As a result, the overall accuracy is far worse than the othefiuch better tradeoff between accuracy and runtime unless
four RSMT algorithms. extremely accurate solutions are desired. For extremely ac-
The runtime comparison is listed in Table VII. Note thatcurate solutions, the implementation with RSMT construction
FLUTE is much faster than all the other Steiner tree algds more efficient even if the RSMT returned is not used.
rithms although it is the most accurate. FLUTE is only 7% Even with RSMT construction and a relatively high accu-
slower than RMST. racy of A = 3, FLUTE is only 5.88 slower than HPWL
Second, we show the effect of the accuracy paramdter while much more accu_ra_te. If RSMT.is not required and an
to the tradeoff between wirelength error and runtimieis ~ accuracy ofd = 1is sufficient, FLUTE is less than-3slower
varying from 1 to 12. A potential application of FLUTE is than HPWL.
wirelength estimation. So an implementation of FLUTE with Third, we investigate the accuracy and runtime of different
RSMT construction disabled and the widely-used HPWL aralgorithms for nets with degree ranging from 10 to 100. We
also compared. The average percentage error and total runtimaice that out of 1.57 millions nets in 18 IBM circuits, only
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Wirelength error (%)
FLUTE
Degree| RMST RST-T SPAN BGA BIlIS| A=1 A=2 A=3 A=4 A=6 A=8 A=10 A=12

10 11.982 5.091 0.949 0.443 0.349 0.684 0.236 0.112 0.072 0.027 0.020 0.020 0.020
20 12.168 14.370 1.019 0.518 0.421 2.181 1.265 0.961 0.590 0.281 0.150 0.119 0.098
30 12551 21.896 1.136 0.619 0.552 2.992 2171 1.846 1.161 0.642 0.430 0.357 0.292
40 12.727 28,987 1.121 0.624 0.556 3.516 2.718 2.388 1.709 1.096 0.751 0.670 0.554
50 12.684 35.346 1.143 0.628 0.567 3.955 3.214 2.867 2.193 1.475 1.044 0.931 0.766
60 12.729 42110 1.192 0.647 0.580 4.288 3.571 3.252 2.557 1.839 1.280 1.160 0.971
70 12.848 47.984 1.148 0.630 0.557 4.553 3.865 3.558 2.912 2.136 1.578 1.442 1.185
80 12.862 53.404 1.195 0.639 0.573 4.762 4.168 3.813 3.149 2.344 1.712 1.587 1.361
90 12.889 59.007 1.201 0.669 0.590 4.896 4.339 4.027 3.411 2.582 1.926 1.809 1.563
100 12.867 64.770 1.210 0.678 0.599 5.098 4523 4.270 3.658 2.790 2.126 2.000 1.721

TABLE IX

PERCENTAGE ERROR IN WIRELENGTH FOR NETS OF DIFFERENT DEGREE
Runtime (s)
FLUTE
Degree| RMST RST-T SPAN BGA BI1S| A=1 A=2 A=3 A=4 A=6 A=8 A=10 A=12

10 0.00 0.01 0.19 0.28 0.18 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01
20 0.01 0.02 0.51 0.81 0.93 0.01 0.02 0.02 0.04 0.11 0.21 0.32 0.53
30 0.02 0.03 0.85 1.44 2.81 0.02 0.03 0.04 0.07 0.23 0.52 0.82 1.60
40 0.03 0.04 1.19 2.14 6.48 0.02 0.04 0.06 0.12 0.38 0.92 143 2.77
50 0.05 0.04 1.55 291 12.43 0.04 0.06 0.08 0.16 0.53 1.37 2.12 4.19
60 0.07 0.04 1.92 3.74 21.27 0.04 0.07 0.11 0.21 0.70 1.86 2.87 5.67
70 0.09 0.06 2.29 4.67 33.29 0.06 0.10 0.12 0.25 0.88 2.39 3.67 7.32
80 0.11 0.06 2.69 5,59 49.12 0.07 0.10 0.15 0.30 1.05 2.94 4,51 9.08
90 0.13 0.07 3.24 6.54 70.9¢ 0.08 0.12 0.17 0.35 1.22 3.47 5.38 10.88
100 0.16 0.08 3.85 7.65 97.64 0.10 0.15 0.19 0.41 1.41 4.07 6.28 12.76

TABLE X

TOTAL RUNTIME FOR 1000NETS OF DIFFERENT DEGREE

1212 (0.077%) have a degree of more than 30, and ongach POWV. We proposed an algorithm based on boundary
80 (0.005%) have a degree of more than 60. So for VLSlompaction to generate the sets of POWVs up to degree 9.
applications, it should be enough to observe the behavior We designed a MST-based approach to determine the most
algorithms for degree up to 100. 1000 nets are randomly geefficient way to evaluate each set of POWVs. We presented
erated for each degree. The average wirelength error and tadahet breaking technique to divide a high degree net into
runtime are reported in Table IX and Table X, respectively. low-degree nets so that the table lookup estimation can be
From Table IX and Table X, for nets with degree 10 toused. We also presented a scheme to allow users to control
30, FLUTE is clearly the best algorithm. It can be as fasthe tradepff l_Jetwee.n accuracy and runtime. The e_xperimental
as extremely fast algorithms (RMST and RST-T) yet muckesults Wlfth industrial nets showed that FLUTE wlth defau_lt_
more accurate. It can also be more accurate than very accur@f€uracy is more accurate than the Batched 1-Steiner heuristic
algorithms (SPAN, BGA and BI1S) yet much faster. (Noté2nd is almost as fast as RMST construction.
that the advantages of FLUTE over other algorithms in both

accuracy and runtime are even more significant for nets with APPENDIX |- PROOFS FORSECTION I
degree 9 or less as solutions can be obtained directly from the
lookup table.) This appendix contains the proofs of the lemmas regard-

For higher degree nets, FLUTE with a smallvalue can ing th_e op'gimality _of the lookup table genera_tion algorithm
generate reasonably accurate solutions in a very short runting€scribed in Section Ill. Lemmas 2-6 are directly used in
Other algorithms are either far less accurate or much slowetection Ill. However, in order to prove these lemmas, two
So FLUTE is still the most suitable algorithm for higheradditional lemmas (Lemmas 9 and 10) are required. They are
degree nets if moderate accuracy is enough. If very accurgtdded to the end of the appendix.
solutions (say<2% error) are desired for nets with degree 50 Lemma 2: A grid G is compactable if it has a boundary
or more, a larged value is required for FLUTE. In that case, with only one pin.

FLUTE may not be the fastest algorithm. Proof: Assume without loss of generality that the left
boundary of G has only one pin P. Let G’ be the reduced
VIIl. CONCLUSION grid obtained by compacting G at the left boundary. So the

first entry in the POWVs of G corresponds to the compacted
In this paper, we introduced a fast and accurate lookugdges. We show that every POWX/ of G must be in the form
table based RSMT algorithm called FLUTE. The table stored, V') whereV’ is a POWV of G'. Consider any POST
for low-degree nets the set of POWVs associated with eaassociated with. We can prove that it has exactly one branch
position sequence and an RSMT topology associated wiffom P to other pins. If there are multiple branches from P
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WL error Runtime - .
Algorithm %) 5 Normalized the bottom boundaries, the two pins should pe c_onnected by
T=1 02313 | 127 065 a branch along the boundary as illustrated in Figure 14(b).
A=2 0.1092 | 1.60 0.82 If G has no other pins besides the three, G is obviously
A3 D08l | 1oa 0 compactable. Otherwise, these three pins should be connected
FLUTE A—5 | 00243 | 388 200 to the rest of the tree by a br_ar_1ch. Suppose without loss of
(return RSMT) A =6 0.0174 | 522 2.69 generality that the branch is originated from the left boundary
ﬁf; 8-81?;‘ g-?g 431'?12 as illustrated in Figure 14(c). Such a solution is not better than
A—9 | 0o10a | 963 4.96 those obtained by compacting the left boundary. It contradicts
A=10 | 0.0090 | 12.29 6.34 to the assumption. Hence, G must be compactable. &
A=11| 0.0086 | 13.39 6.90
A=12 | 00073 | 19.07 9.83
A=1 02721 | 0.98 051
A=2 | 01318 | 1.16 0.60
A=3 0.0917 | 1.37 0.71 °
A=4 | 00513 | 1.84 0.95 . .
FLUTE A=5 | 0.0430 | 2.08 1.07 p p
(NORSMT) A=6 | 0.0322 | 2.69 1.39 (@ ()
A=7 | 00292 | 3.02 1.56
A=28 0.0222 4.27 2.20 Fig. 14. lllustrations for the proof of Lemma 3.
A=9 | 0.0209 | 476 2.45
A=10| 0.0186 | 5.90 3.04 . . o .
A=11| 00178 | 6.42 3.31 Lemma 4: A grid G is compactable if it has up to 6 pins
A=12 | 0.0157 | 8.98 4.63 at the four boundaries.
HPWL 8.7710 | 0.33 0.17 . .
Proof: If G has a boundary with only one pin, then
TABLE VIl Lemma 2 shows that it is compactable. So we focus on G
WIRELENGTH ERROR AND RUNTIME OFFLUTE FOR DIFFERENT with at least 2 pins on each boundary. As G has at most 6
ACCURACY A. THE ROW IN BOLD IS THE DEFAULT, pins on the boundaries and each boundary has at least 2 pins,

at least two corners should have a pin so that it can be shared

by two boundaries. All cases that satisfy the conditions above
to other pins (as in Figure 13(a)), another Steiner tree witR'® shown in Figure 15. Note that only pins on the bound_arles
a single branch can be constructed as follows. Lbe the &€ conS|dere_d. A_Iso note that cases which are symmetrical to
second Hanan grid line from the left boundary. The edges @€ of those in Figure 15 are not shown.
T on the left of | can be replaced with a vertical segment Lemma 3 can be applied to show that all cases except (f)
along! connecting the subtrees @f on the right ofl and a are compactable. (The pin P can be the one at the lower left
horizontal edge fromP to the segment (as in Figure 13(b)).corner.) Lemma 10 can be applied to show that case (f) is
The POWV of this tree is better thdn in the first entry and also compactable. Therefore, a grid with 6 or less pins at the
is at least as good in all other entries, contrary to the fatfoundaries is always compactable. ]

that V' is potentially optimal. Hence, any POST must have | emma 5: Boundary compaction together with the near-

a single branch from P, which implies the first entry 16f  ing structures can generate all POWVs for a grid with 7 pins.
should be 1. Moreover, if the branch does not go horizontally Proof: Consider a grid G with 7 pins that is not

from P (as shown in Figure 13(c)), it can be “flipped” (as in )
Figure 13(d)) to obtain a tree with the same wirelength Vect(ﬁompactable. By Lemma 4, all 7 pins should be on the

b4 - : oundaries. By Lemma 2, there should be at least 2 pins on
asV. By shifting P along the horizontal branch until the nex ’ : )
Hanan grid line, the grid becomes G'. Hence the remainin‘éaCh boundary. As G has 7 pins at the boundaries and each

entries ofV should form a POWV of G - ou_ndary has .at least 2 pins, at least one corner should have
a pin so that it can be shared by two boundaries. All cases
T _T that satisfy the conditions above are shown in Figure 16. Note
P Po— PT Po— that cases which are symmetrical to one of those in Figure 16
o L . o are not shown.
® ® Lemma 3 can be applied to show that cases (a), (b), (e), (h),
@ (b) © @ @, (), (k), (m), (n) and (o) are compactable. Lemma 10 can

be applied to show that cases (c), (g) and (l) are compactable.

It is not hard to see that cases (d) and (f) are not com-

Lemma 3: A grid G is compactable if it has a corner with Pactable. However, we can prove that the POWVs missed
one pin P and both boundaries adjacent to P have exactly o boundary compaction are all covered by the near-ring
other pin. structures. Assume it is not the case. In other words, there
is a POWV missed by boundary compaction such that the

Fig. 13. lllustrations for the proof of Lemma 2.

Proof: Assume without loss of generality that P is at . ;
. L2 associated Steiner tree has some branches not along the

the lower left corner as illustrated in Figure 14(a). Assum%oundaries We consider two cases:

on the contrary that there is a POWV of G such that its ' '

entries associated with all four boundaries are better than those Case 1) Those branches only connect adjacent bound-

obtained by boundary compaction. Consider any Steiner tree aries. Then those branches can be “flipped” such that all

associated with this POWV. By Lemma 9, for both the leftand  branches of the Steiner tree are along the boundaries.
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4 pins on 3 pins on 2 pins on 4 pins on 3 pins on 2 pins on 1 pin on
corners corners corners corners corners corners corners
000 -0 0@ o0 {2 ]
° [ ] [ ]
4 pins on b ° b °
boundaries o o o o o o
P P P P
(a) (@ (©) (9] (0)
@ [ EEE o @@ [ B
[ ] [ ) [ ] [ ]
5 pins on ° °
boundaries ° o o o o o
(b) © 0! M o @
LA 4 { 2 ] Pll L) OQ {2 ]
[ [ [ [ ] [ ]
[ ] [ ] ® ° [ ]
[ ] o o L ] [ e B J (] ®
@ ® 6 "o e T m
L L ® ° o [ ] L R o 00
6 pins on [ ) [ ) ° [ ) o Y : 1 °
boundaries ° o o e o o
(e (h) Q) (d) (h) (n)
P Fe °
° [ ] °
[ ]
Q o o0
® )
Fig. 15. lllustrations for the proof of Lemma 4. Fo *
H
[ ]
. . o @
Moreover, the resulting POWV is the same or better. o)
Hence, the POWV can be generated by the near-ring
structures. Fig. 16. lllustrations for the proof of Lemma 5.

« Case 2) Those branches also connect two non-adjacent
(i.e., opposite) boundarieConsider case (f). Assume
without loss of generality that the left and right boundintroduced by Connect-adj-pins(). The reason is that after
aries are connected by branches not along the boundari€gnnect-adj-pins() connects several pins on a boundary by
By Lemma 9, the two pins at the bottom boundary shoul@ branch B, those pins are replaced by a single pseudo-pin.
be connected by a branch along the boundary. Also, Ht there are more than one branches connecting B to the
least two of the three pins at the top boundary should b@&maining pins in a POST, compacting that boundary will not
connected by a branch along the boundary. If the left twgenerate this POST. (See Figure 17(a) for an illustration.)
pins are connected, such a solution is not better than thosewe show in the following that if a net has 10 pins or less,
obtained by compacting the grid at the left boundarythere always exists a boundary such that boundary compaction
If the right two pins are connected, such a solution igan be applied. For any branch B introduced by Connect-adj-
not better than those obtained by compacting the grid gins() in a boundary that cannot be compacted, the number
the right boundary. Similar arguments can be applied tgf pins on B should be more than the number of branches
handle case (d). connecting B to the remaining pins. Otherwise, this boundary
can be compacted directly without even applying Connect-
. ) adj-pins(). So there should be at least 3 pins on B. As there
Lemma 6: For a net withn pins where7 < n < 10, e 5t most 10 pins in the grid, it is impossible to have at least
boundary compaction together with Connect-adj-pins() With nins on each boundary unless some corner pins are shared.
distanced = n — 3 can generate all POWVs. It is impossible to share all 4 corners because a ring (i.e.,
Proof: A net with n pins corresponds toa x n Hanan non-tree) structure will be formed. Consider the case that 3
grid such that each grid line has one pin. By Lemma 2, all 4orner pins are shared as shown in Figure 17(b). There should
boundaries can be compacted once so that-a2) x (n—2) be at least 9 pins on boundaries. Besides, there should be at
grid G is formed. Any two pins on the same boundary ofeast two others pins (P and Q) not on boundaries. This case
G are at a distance at most— 3 grid lines apart. Hence, is impossible as the total number of pins is at least 11. It is
Connect-adj-pins(Gn — 3) can generate any branch alongnot hard to see that if less than 3 corner pins are shared, even
any boundary of G. more pins are required to make the grid not compactame.

The only remaining issue is that boundary compaction may The following lemma is used in the proof of Lemma 3,
not be able to generate the branches originating from a branckmma 5 and Lemma 10.
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At least 2 branches subtree consisting of the five pins should be connected to the

{t ! other pins by a branch. If the branch is originated from the
B P

Q ¢ left/bottom/right boundary, such a solution is not better than
those obtained by compacting the left/bottom/right boundary.
j | -
(a) W)
Fig. 17. lllustrations for the proof of Lemma 6. *Z rZ z
Xe X XI
o { L] I—‘ o
. . P Y Q P Y Q P Y Q
Lemma 9:If a grid G is not compactable, then for any (a) (b) (©

POST associated with any POWV missed by boundary com- _
paction, there should be a branch connecting at least two pifi§- 19. lllustrations for the proof of Lemma 10.
along each of the four boundaries.

Proof: By Lemma 2, there should be at least two pins on
each boundary. Without loss of generality, consider the pins APPENDIXII: PROOFS FORSECTION IV

h £ th b b h h in Fi 19 Section IV. Lemma 11 at the end of the appendix is required
the rest of the tree by a separate branch as shown in |ng§ the other lemmas.

18(b). Such a solution is not better than those generated

compacting the left boundary. - Lemma 7: Group index is an one-to-one mapping from the

groups of degree to an integral value between 0 antl— 1.

o Proof: As p; > 0 for all 4, it is obvious that any group
— index £ > 0. In addition, by the fact that; < j —1 for all j

I and Lemma 11 withi = 1, it is easy to prove that < n!—1.
o

@) ®) For any two different groups, assume the corresponding
modified position sequences to bg, ... p, andp)p, ... p,
Fig. 18. lllustrations for the proof of Lemma 9. and the corresponding group indexeskend’, respectively.
Since the groups and hence the position sequences are dif-
The following lemma is used in the proof of Lemma 4 anderent, the modified sequences should also be different. Let
Lemma 5. i be the smallest index such that # p.. Without loss of

Lemma 10:A grid G is compactable if it has two adjacentgenerality, assumg; > p;.

corners with pins P and Q, and each of the three boundaries ol o

involving P and Q has exactly one other pin. k—kK = FiRe (pi — pi) + H il x (pj — 1)
Proof: Assume without loss of generality that P is at J=itl

the lower left corner and Q is at the lower right corner as S n! ﬁ n! < (p; — ')

illustrated in Figure 19(a). Assume on the contrary that there - 4l L Pi = Pj

is a POWV of G such that its entries associated with all four Jf:’l

boundaries are better than those obtained by boundary com- nl H n! x (j—1)

paction. Consider any Steiner tree associated with this POWV. - il i 4!

By Lemma 9, for both the left and the right boundaries, the ! ];,

two pins should be connected by a branch along the boundary = — —(=-1) byLemma1ll

as illustrated in Figure 14(b). Moreover, pin Y should be -1

connected to at least one of the corner pins P and Q by a

branch along the bottom boundary. Without loss of generalitgok + k’. In other words, different groups will have different
assume Y is connect to P as shown in Figure 19(b). group indexes.

The subtree consisting of P, X and Y should be connected Since there are:! groups and each group is mapped to a
to the rest of the tree by a branch. If the branch is originatedifferent integer betweefi andn! — 1, the lemma is proved.
from the left boundary, such a solution is not better than [ |
those obtained by compacting the left boundary. If the branch | ayma s: Any group of degree: is equivalent to a group
is originated from the bottom boundary and it is not alongiis group index between 0 and /4 — 1.
the bottom boundary, such a solution is not better than those ] S . .
obtained by compacting the bottom boundary. If the branc Proof. For simplicity, we ca!l a grouplwnh group index
is originated from the bottom boundary and it is along th as_groupk. For any groupk with & > n./4,_§ssume.t_he
bottom boundary (i.e., the branch connects Y and Q as sholgsition sequence 18,5, .. . sn and the moqmed position
in Figure 19(c)), we consider two cases based on whether thefeduence 1®1pz .- pn. Consider three cases:
are other pins besides the five. If there is no other pin, G is « Case 1) 3n!/4 < k < nl.
obviously compactable from the top boundary. Otherwise, the For the grougk’ that is horizontally symmetrical to group
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” ! !
k, assume the position sequencesis)...s/, and the - L' x (i —2) + L' 1
modified position sequence j§p5 ... p.,. It is clear that (i =1t (i —1)!
si =n+1—s;for 1 < j < n. So it follows from _ n! K (i—1)—1
the definition of modified position sequence thgt= (i—1)!
j—1—p;for1l<j<n.Thus, B n! 1
T -2
, n n' ,
K= H = XD Hence, the lemma is proved. ]
j=17
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=17’

ﬁ! —1—%k byLemma 11

So0 <k <nl/4-—1.

Case 2) n!/2 < k < 3n!/4.

As k > nl!/2, ps should be 1, which implies; < s, as
shown in Figure 20(a). Consider the grokpin Figure
20(b) which is the same as grokpn Figure 20(a) except
the relative position of the bottom two pins. Groép
and groupk’ are equivalent due to boundary compaction.
For groupk’, assume the position sequence’is,, . .. s/,
and the modified position sequencepig) . ..p!,. Then

s1 > s5, which impliesp; = 0. p; = pj; for all j # 2.
Therefore k' = k —nl/2. S00 < k' <nl/4—1.

Case 3) n!l/4 < k < nl/2. 7]
We can use the same argument as Case 1 to prove that
groupk is equivalent to groug” = n!—1—k. Therefore, i8]
n!/2 < k" < 3n!/4. Then we can use the same argument
as Case 2 to prove that groug’ (i.e., groupk) is
equivalent to group’ = k"’ —n!/2. So0 < k¥’ < n!/4—1.

(1]
(2]
(3]
(4]

(5]
(6]

(9]

Group k' is between 0 and!/4 — 1 in all cases. Hence, the [10]

lemma is proved.

[
[11]

(12]

(23]

() (b)

Fig. 20. Relative position of the bottom boundary pins for two equivalenE14]
groups.
[15]
Lemma 11:For any: such thatl <i <n,
n
n! . n! [16]
HTXU_ ) =3 o !
i ! (i —1)! [17]
Proof: The lemma can be proved by induction anlf  [18]
i :'n, both sides equa’z — 1. Assume[[;_; 57 x (j — 1) =
ﬁ — 1 for some:. [19]
n !
I 5xG-1 [20]
AL 4
Jj=i=1
n! . “onl ) (21]

j=i
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