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FLUTE: Fast Lookup Table Based Rectilinear
Steiner Minimal Tree Algorithm for VLSI Design

Chris Chu and Yiu-Chung Wong

Abstract— In this paper, we present a very fast and accu-
rate rectilinear Steiner minimal tree (RSMT) algorithm called
FLUTE. FLUTE is based on pre-computed lookup table to make
RSMT construction very fast and very accurate for low-degree1

nets. For high-degree nets, a net breaking technique is proposed
to reduce the net size until the table can be used. A scheme
is also presented to allow users to control the tradeoff between
accuracy and runtime.

FLUTE is optimal for low-degree nets (up to degree 9 in our
current implementation) and is still very accurate for nets up to
degree 100. So it is particularly suitable for VLSI applications in
which most nets have a degree 30 or less. We show experimentally
that over 18 industrial circuits in the ISPD98 benchmark suite,
FLUTE with default accuracy is more accurate than the Batched
1-Steiner heuristic and is almost as fast as a very efficient
implementation of Prim’s rectilinear minimum spanning tree
(RMST) algorithm.

Index Terms— Rectilinear Steiner Minimal Tree Algorithm,
Wirelength Estimation, Wirelength Minimization, Routing, In-
terconnect Optimization

I. I NTRODUCTION

A rectilinear Steiner minimal tree (RSMT) is a tree with
minimum total edge length in Manhattan distance to connect
a given set of nodes possibly through some extra (i.e., Steiner)
nodes. RSMT construction is a fundamental problem that has
many applications in VLSI design. In early design stages
like physical synthesis, floorplanning, interconnect planning
and placement, it can be used to estimate wireload, routing
congestion and interconnect delay. In global and detailed
routing stages, it is used to generate the routing topology of
each net.

RSMT problem is NP-complete [1]. So, in practice, rectilin-
ear minimum spanning tree (RMST) is often used instead of
RSMT. This approach is particularly common in early design
stages in which the design space is being explored and hence
a fast tree construction algorithm is crucial. The disadvantage
of this approach is that the length of RMST may be much
longer than that of RSMT since Steiner node is not allowed.
Hwang [2] showed that length of RMST can be as much as
1.5 times that of RSMT. However, the difference is typically
far less than 50% in practice. So this inaccuracy is tolerable
in early design stages.
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1The degreeof a net is the number of pins in the net.
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At later stages in which better wirelength is required, RSMT
construction is necessary. Hwang et al. [3] provided a compre-
hensive discussion of various RSMT algorithms. For optimal
RSMT algorithm, the fastest implementation is currently the
GeoSteiner package [4], [5]. Griffith et al. [6] (Batched 1-
Steiner heuristic) and Mandoiu et al. [7] are two well-known
near-optimal algorithms. However, these optimal and near-
optimal algorithms are computationally too expensive to be
used in VLSI design applications.

Many attempts have been made to design RSMT algorithms
with lower runtime complexity. Borah et al. [8] presented an
O(n2) time algorithm in which a spanning tree is iteratively
improved by connecting a point to a nearby edge and deleting
the longest edge on the created cycle. AnO(n log n) time
but very complicated alternative implementation was also
proposed. Zhou [9] used spanning graph [10] to help both gen-
erating the initial spanning tree and finding good candidates
for the edge substitution idea in [8]. The resulting algorithm
runs in O(n log n) time, and produces better solution in
slightly less runtime than the one in [8]. Kahng et al. [11]
gave a practicalO(n log2 n) heuristic called BGA based on
a batched version of the greedy triple contraction algorithm.
This algorithm produces a better solution quality and requires
a slightly shorter runtime than [8] and [9] in practice.

Most signal nets in VLSI circuits have a low degree.
So in VLSI applications, rather than having a low runtime
complexity, it is more important for RSMT algorithms to be
simple so that it can be efficient for small nets. An example
of such an approach is the single trunk Steiner tree (STST),
which is constructed by connecting each pin to a trunk that
goes either horizontally or vertically through the median
position of all pins [12]. However, the length of STST is far
from optimal even for medium size nets (e.g., degree 10–15).
Hence its application is limited. Chen et al. [13] proposed an
algorithm called Refined Single Trunk Tree (RST-T) to reduce
the length of STST by a refining procedure. RST-T is proved
to be optimal for nets up to degree 4 and is experimentally
shown to be optimal for degree 5 nets. It is reasonably accurate
for medium size nets too. RST-T runs inO(n log n) time with
a fairly small constant.

In this paper, we present a very fast and accurate lookup
table based RSMT algorithm called FLUTE. We show that
the set of all degree-n nets can be partitioned inton! groups
according to the relative positions of their pins. For each
group, the optimal wirelength of any net can be found based
on a few vectors calledpotentially optimal wirelength vectors
(POWVs). Each POWV corresponds to a linear combination
of distances between adjacent pins. We pre-compute the few
POWVs for each group and store them into a table. Associated
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with each POWV, we also store one corresponding Steiner
tree, which we calledpotentially optimal Steiner tree(POST).
To find the optimal RSMT of a net, we just need to compute
the wirelengths corresponding to the POWVs for the group the
net belongs to, and then return the POST associated with the
POWV with minimum wirelength. This lookup table idea can
optimally and efficiently handle low-degree nets (up to degree
9 in our implementation). For high-degree nets, we proposed
a net breaking technique to recursively break a net until the
table can be used. A scheme is also presented to allow users
to control the tradeoff between accuracy and runtime during
net breaking. The runtime complexity of FLUTE with fixed
accuracy isO(n log n) for a net of degreen.

Since FLUTE is extremely fast and accurate for low-degree
nets, it is especially suitable for VLSI applications. We show
experimentally that over 18 industrial circuits in the ISPD98
benchmark suite [14], FLUTE with default accuracy is more
accurate than the Batched 1-Steiner heuristic [6] and is almost
as fast as a very efficient implementation of Prim’s RMST
algorithm [15]. By adjusting the accuracy parameter, the error
can be further reduced with only a small increase in runtime
(e.g., 3.1× error reduction with2.0× runtime increase). In
addition, we show that even for high-degree nets (up to degree
100), it is still very fast and accurate.

The remainder of the paper is organized as follows. In
Section II, we present the lookup table idea to find RSMTs for
low-degree nets. In Section III, we describe the algorithm to
generate the POWVs and the POSTs. In Section IV, we show
how the lookup table size can be reduced. In Section V, we
derive a very efficient technique to evaluate all the POWVs
for a given net. In Section VI, we present the net breaking
technique for high-degree nets. In Section VII, we show the
experimental results. The paper is concluded in Section VIII.

II. L OOKUP TABLE APPROACH FORLOW-DEGREENETS

We define anet of degreen to be a set ofn pins. In this
paper, we only consider Steiner trees along the Hanan grid as
Hanan [16] pointed out that an optimal RSMT can always
be constructed based on the Hanan grid. Given a net, the
Hanan grid is formed by drawing one horizontal line and one
vertical line through each pin. Letxi be the x-coordinate of
i-th vertical Hanan grid line such thatx1 ≤ x2 ≤ · · · ≤ xn.
Similarly, let yj be the y-coordinate ofj-th horizontal Hanan
grid line such thaty1 ≤ y2 ≤ · · · ≤ yn. Assume the
pins are indexed in ascending order of y-coordinate. Letsi

be the rank of pini if all pins are sorted in ascending
order of x-coordinate. (Ties are broken arbitrarily for both
x-coordinate and y-coordinate.) Therefore, the coordinates of
pin i is (xsi

, yi). The notations are illustrated in Figure 1.
s1s2 . . . sn is called theposition sequenceof the net. For the
net in Figure 1, its position sequence is 3142. The position
sequence completely specifies the relative positions of the
pins.

Note that the length of a horizontal (respectively, vertical)
edge in the Hanan grid is equal to the distance between two
adjacent vertical (respectively, horizontal) Hanan grid lines.
We denotehorizontal edge lengthas hi = xi+1 − xi and
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Fig. 1. Illustration of some notations.
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Fig. 2. An illustration of horizontal and vertical edge lengths.

vertical edge lengthas vi = yi+1 − yi for 1 ≤ i ≤ n − 1.
These definitions are illustrated in Figure 2.

A Steiner tree on the Hanan grid can be decomposed into
a collection of Hanan grid edges. So the wirelength of any
Steiner tree can always be written as a linear combination of
edge lengths such that all coefficients are positive integers.
For example, for the net in Figure 1, the wirelength of the
three possible Steiner trees shown in Figure 3(a), (b), and
(c) can be written ash1 + 2h2 + h3 + v1 + v2 + 2v3,
h1 + h2 + h3 + v1 + 2v2 + 3v3, and h1 + 2h2 + h3 +
v1 + v2 + v3, respectively. For simplicity, we will express
a wirelength as a vector of the coefficients, and call it a
wirelength vector. For the Steiner trees in Figure 3(a), (b), and
(c), the wirelength vectors are(1, 2, 1, 1, 1, 2), (1, 1, 1, 1, 2, 3),
and (1, 2, 1, 1, 1, 1), respectively.

(a) (b) (c)

Fig. 3. Three possible Steiner trees for the net in Figure 1.

In order to find the optimal wirelength for a given net,
we can enumerate all possible wirelength vectors. Note that
although the number of possible Steiner trees is huge, the
number of possible wirelength vectors is much less. More
importantly, we notice that not all wirelength vectors have
the potential to produce the optimal wirelength. Most vectors
are redundant because they have a larger or equal value than
another vector in all coefficients. For example, we can ignore
the wirelength vector(1, 2, 1, 1, 1, 2) because the wirelength
produced by the vector(1, 2, 1, 1, 1, 1) is always v3 less.
We called a vector that can potentially produce the optimal
wirelength (i.e., cannot be ignored) apotentially optimal
wirelength vector(POWV). We observe that for every low-
degree net, there are only a few POWVs. For example, for all
degree-3 nets, the only optimal wirelength vector is(1, 1, 1, 1),
which corresponds to the HPWL. For the net in Figure 1,
the only two POWVs are(1, 2, 1, 1, 1, 1) and(1, 1, 1, 1, 2, 1).



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, 2007 3

Which one is optimal depends on which ofh2 and v2 is
smaller. All possible Steiner trees corresponding to these two
wirelength vectors are given in Figure 4. Each of these trees
is called a potentially optimal Steiner tree(POST). Some
statistics on the number of POWVs will be given later in
Table I.

vector:

Wirelength

(1,2,1,1,1,1)

Wirelength

(1,1,1,1,2,1)
vector:

Fig. 4. All potentially optimal Steiner trees for the net in Figure 1.

If all the POWVs and the corresponding POSTs are pre-
computed and stored in a lookup table, the RSMT will be
easy to find. However, the number of different nets is infinite
as the pin coordinates can take infinite different values. To
handle this problem, we try to group together nets which can
share the same set of POWVs. To see which nets can be
grouped together, we first introduce the following definition.
Two Steiner trees for two different nets are said to betopo-
logically equivalentif they can be transformed to each other
by changing the edge lengths (or equivalently, the distance
between adjacent Hanan grid lines), with the restriction that
their values remain positive. This concept is illustrated in
Figure 5.

Fig. 5. Topologically equivalent Steiner trees for two different nets.

Lemma 1: If two nets have the same position sequence,
then every Steiner tree of one net is topologically equivalent
to a Steiner tree of the other net.

Proof: Suppose we shift the grid lines of the two Hanan
grids for two nets so that they become identical. Since they
have the same position sequence, the pins of the two nets are
in the same locations in the Hanan grid. So every Steiner tree
of one net will also be a Steiner tree of the other.

Theorem 1:The set of all degree-n nets can be divided into
n! groups according to the position sequence such that all nets
in each group share the same set of POWVs.

Proof: Observe that the wirelengths of topologically
equivalent Steiner trees can be expressed by the same wire-
length vector. For example, the wirelength of the two trees in
Figure 5 can both be represented by(1, 2, 1, 1, 1, 2), although
the values ofhi’s andvi’s are different for the two nets. Based
on this observation and Lemma 1, nets with the same position
sequence can be grouped together to share the set of POWVs.
Since the position sequence of a degree-n net is a permutation
of 12 . . . n, there should ben! groups.

Our RSMT approach pre-computes the set of POWVs
associated with each group and one2 POST associated with
each POWV. The POWVs and POSTs are stored in a lookup
table. To compute the RSMT for a given net, we find out the
position sequence of the net and then obtain the vectors for
the corresponding group from the table. Each vector generates
a wirelength by summing up the product of the vector entries
with hi’s andvi’s. The minimum value over all vectors gives
the optimal wirelength. The POST corresponding to the vector
with minimum wirelength gives the RSMT.

III. G ENERATION OFLOOKUP TABLE

In this section, we discuss the generation of the sets
of POWVs and the associated POSTs. For each small net
degree and for each group (i.e., position sequence), we may
generate all possible Steiner trees on the Hanan grid, find
the corresponding wirelength vectors, and prune away the
redundant ones. The set of remaining vectors and trees are
the POWVs and POSTs for the group. A trivial approach to
generate all possible Steiner trees is to enumerate all possible
combinations of using and not using each edge in the Hanan
grid and check if the resulting sub-graph is a Steiner tree
covering all the pins. However, this approach is extremely
expensive. Even for degree 5, we need to enumerate a Hanan
grid consisting of 40 edges for each of the 120 groups.

We propose a much more efficient algorithm based on
a boundary compactiontechnique. For a given group, the
boundary compaction technique reduces the grid size by
compacting one of the four boundaries, i.e., shifting all pins
on a boundary to the grid line adjacent to that boundary. The
set of Steiner trees of the original problem can be generated
by expanding the Steiner trees of the reduced grid back to the
original grid. Figure 6 uses the compaction of left boundary
as an example to illustrate the idea. Note that in Section II,
we assume each Hanan grid line is associated with only 1 pin
so that the concept of position sequence is well-defined. This
assumption is not necessary unless we consider the grouping
problem of a net. In this section, we assume a grid line may
contain more than 1 pins so that grid lines can be combined
and grid size can be reduced by boundary compaction.

Left
Boundary
Compaction

Left
Boundary
Expansion

Steiner tree
One possible

Fig. 6. An illustration of left boundary compaction.

2In general, more than one POSTs can be stored. Then different RSMTs of
the same wirelength can be constructed. Routers may explore the alternatives
to optimize some other objectives like congestion or timing.
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We can route a net by performing boundary compaction and
expansion recursively. By compacting the four boundaries in
different order, a set of different Steiner trees with different
wirelength vectors can be generated. Since we are performing
the routing in a restricted way, it is possible that some Steiner
trees and hence some wirelength vectors will not be generated.
We define a grid G to becompactableif for each POWV
V of G, there exists a boundaryb such thatV can be
generated by expanding some POWV of the reduced grid
obtained by compacting G atb. In other words, we can always
reduce the size of a compactable grid without worrying about
missing some POWVs. Lemmas 2, 3, and 4 below give several
situations that a grid is compactable. The proofs of the lemmas
are in Appendix I. An example of non-compactable grid is
given in Figure 7(a). Figure 7(b) shows the optimal Steiner
tree, which cannot be generated by boundary compaction.

(b)(a)

Fig. 7. An example of non-compactable grid.

Lemma 2:A grid G is compactable if it has a boundary
with only one pin.

Lemma 3:A grid G is compactable if it has a corner with
one pin P and both boundaries adjacent to P have exactly one
other pin.

Lemma 4:A grid G is compactable if it has up to 6 pins
at the four boundaries.

The algorithm to generate one POST for each POWV in
a given group is presented in Figure 8. With the POSTs, the
corresponding POWVs can be easily computed. Instead of
enumerating all Steiner trees first and pruning the redundant
ones (i.e., those not correspond to POWVs) at the end, we
prune the redundant trees for each sub-problem. By perform-
ing pruning as early as possible, the efficiency of the algorithm
can be significantly improved.

In Steps 1–2, we directly generate the POSTs when G
consists of a single (horizontal or vertical) grid line or is a
2× 2 grid. Steps 3–4 are based on Lemma 2, and Steps 5–8
are based on Lemma 3. Note that the proofs of these lemmas
actually identify which boundaries to compact without missing
any POWV. Since one or two (instead of four) recursive calls
are made and these cases occur frequently for low-degree nets,
the runtime of the algorithm can be dramatically reduced. If
Lemmas 2 and 3 cannot be applied, we try compacting all
four boundaries in Steps 14–17. Lemma 4 guarantees that for
nets with up to 6 pins, all POWVs will be generated.

For grids with 7 or more pins, some POWVs may be missed
by boundary compaction. So some extra Steiner trees are
included in Steps 10–13. In Step 11, there are 7 trees in S.
Each tree is a near-ring structure, which is the bounding box
that surrounds the grid with edges connecting one of the 7
pairs of adjacent pins removed. Lemma 5 below proves that
boundary compaction together with the near-ring structures
are sufficient to generate all POWVs for degree-7 nets. The
proof of Lemma 5 is in Appendix I.

Algorithm Gen-LUT(G)
Input: A grid G with some pins at grid nodes
Output: One POST for each POWV of the group associated with G
begin
1. If G is simple enough,
2. generate and return the set of POSTs for G
3. else if any boundaryb contains only one pin,
4. return Expand-b(Gen-LUT(Compact-b(G)))
5. else if there is a corner with one pin such that
6. both its adjacent boundariesb1 andb2 have one other pin,
7. return Prune(Expand-b1(Gen-LUT(Compact-b1(G)))
8. ∪ Expand-b2(Gen-LUT(Compact-b2(G))))
9. else
10. if there are7 pins with all 7 pins on boundaries,
11. S= {Trees with near-ring structure connecting all pins}
12. else if there are≥ 8 pins with≥ 7 pins on boundaries,
13. S= Connect-adj-pins(G,d) whered = # of pins− 3
14. return Prune(S∪ Expand-left(Gen-LUT(Compact-left(G)))
15. ∪ Expand-right(Gen-LUT(Compact-right(G)))
16. ∪ Expand-top(Gen-LUT(Compact-top(G)))
17. ∪ Expand-bot(Gen-LUT(Compact-bot(G))))
end

Fig. 8. The POST generation algorithm for a given group. Forb ∈
{left, right, top, bottom}, Expand-b() and Compact-b() perform compaction
and expansion of boundaryb, respectively. Prune() performs pruning of
redundant trees not corresponding to POWVs. Connect-adj-pins() is used to
generate extra trees not producible by boundary compaction.

Lemma 5:For a grid with 7 pins, boundary compaction
together with the near-ring structures can generate all POWVs.

For nets with 8 or more pins, we used a function Connect-
adj-pins() to generate some extra trees. Connect-adj-pins(G,d)
connects two or more adjacent pins on the same boundary by
introducing a branch along the boundary. Those pins can be
at a distance at mostd grid lines away from each other. (See
Figure 9(a) for an illustration.) Then those pins are replaced
by a pseudo-pin located somewhere on the branch. For each
possible location of the pseudo-pin, Gen-LUT() is recursively
called to generate the POSTs of the reduced grid (as illustrated
in Figure 9(b)). The POSTs of G can be constructed by
combining the branch with the POSTs of all reduced grids.
(See Figure 9(c).)

(a)

distance=5

(b) (c)

POST by
Gen−LUT()

Fig. 9. An illustration for Connect-adj-pins(G,d) with d ≥ 5.

Note that this technique is complementary to boundary
compaction. It produces tree branches along a boundary that
cannot be produced by boundary compaction. Lemma 6 below
proves that boundary compaction together with Connect-adj-
pins() are sufficient to generate all POWVs for nets with
degree up to 10. The proof of Lemma 6 is in Appendix I.

Lemma 6:For a net withn pins where7 ≤ n ≤ 10,
boundary compaction together with Connect-adj-pins() with
distanced = n− 3 can generate all POWVs.

Note that Connect-adj-pins() can also be used to handle nets
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Degree # of groups # of POWVs in a group
n n! Min. Ave. Max.
2 2 1 1 1
3 6 1 1 1
4 24 1 1.667 2
5 120 1 2.467 3
6 720 1 4.433 8
7 5040 1 7.932 15
8 40320 1 15.251 33
9 362880 1 30.039 79

TABLE I

NUMBER OF POWVS IN A GROUP FOR NETS OF A GIVEN DEGREE.

with 7 pins. However, Connect-adj-pins() is very slow because
one recursive call to Gen-LUT() is made for each possible
location of the pseudo-pin. Thus, the near-ring structure is
used instead.

The completeness of the algorithm Gen-LUT() is summa-
rized in the following theorem.

Theorem 2:The algorithm Gen-LUT() generates one POST
for each POWV for nets with degree 10 or less.

Proof: This theorem follows directly from Lemma 4,
Lemma 5 and Lemma 6.

The number of POWVs in a group is listed in Table I.
We only generate the lookup table up to degree 9. The
computation time for lookup table generation will be discussed
at the end of Section IV as it is affected by the table size
reduction techniques presented in Section IV.

IV. REDUCTION OFLOOKUP TABLE SIZE

According to Table I, for degree 9 alone, there are 10.9
million POWVs. If one byte is used to store each of the 16
entries in a POWV, the POWV storage requirement for degree
9 will be 166.3 MB. The POST associated with each POWV
should have up to 7 Steiner nodes and9+7−1 = 15 branches.
If one byte is used to store each branch in a POST, the POST
storage requirement for degree 9 will be 155.9 MB. The total
storage requirement for both POWVs and POSTs and for all
degree up to 9 will be prohibitively large.

A smaller table will reduce the usage of hard disk, main
memory and cache. It will also reduce the time of loading the
lookup table from hard disk to memory. So it is desirable to
reduce the size of the lookup table.

One technique to reduce the POWV storage requirement is
to explore the similarity among POWVs in a group and store
the differences between the POWVs according to the MST
computed in Section V below. For this method, instead of
using2× (d− 1) bytes for each POWV of degreed, we only
need 2.5 bytes or less as shown in Table III. However, this
method does not reduce the number of POWVs or the POST
storage requirement.

Another technique is to explore the equivalence of different
groups and show that the POWVs and POSTs of only a small
fraction of all groups need to be generated and stored. Note
that the table generation time will also be reduced by this
technique.

Groups are equivalent for two reasons. First, observe that
even though the nets in Figures 10(a) and 10(b) belong to two

different groups, both will become the grid in Figure 10(c) if
the top boundary is compacted. Note that by Lemma 2, both
grids are compactable at the top boundary. Hence, the two
groups for these nets have the same set of POWVs. Moreover,
even the POSTs can be shared between the groups. For exam-
ple, POSTs corresponding to the POWV (1,2,1,1,1,1) for the
nets in Figures 10(a) and 10(b) are shown in Figures 10(d) and
10(e), respectively. It is clear that both POSTs have the same
topology (consisting of branches AE, BE, EC and CD). The
same argument can be applied to all 4 boundaries. Therefore,
up to24 = 16 different groups can share a set of POWVs and
POSTs. (The number of equivalent groups may be less than 16
because pins can be shared by adjacent boundaries and so not
all combinations exist.) Second, if two nets are symmetrical
horizontally, vertically or diagonally, the POWVs and POSTs
of one group can be transformed to those of the other. Due
to the overhead in solution transformation, only horizontal
symmetry is considered in our implementation. This allows
two groups to share the POWVs and POSTs.

A

B

C C

A B

C

A

B

C

A

B

C

A

B

D D D D D(a) (b) (c) (d)

E

(e)

E

Fig. 10. Equivalence of different groups due to boundary compaction.

Some implementation details are described below. For any
group of degreen such that the corresponding position se-
quence iss1s2 . . . sn, we define a modified position sequence
p1p2 . . . pn as follows:

pi = |{sj : 1 ≤ j < i andsj < si}| for 1 ≤ i ≤ n

For the example in Figure 1,p1p2p3p4 = 0021. According
to the definition above, it is not hard to see thatpi can take
any integral value between 0 andi − 1. We define a group
index for the group as:

k =
n∏

j=1

n!
j!

× pj

We prove in Lemma 7 below that group index can be used
as the array index for the lookup table organized as an array of
n! groups. Then we prove in Lemma 8 that it is sufficient for
the lookup table to be an array for only the firstn!/4 groups.
The proofs of both lemmas are in Appendix II.

Lemma 7:Group index is an one-to-one mapping from the
groups of degreen to an integral value between 0 andn!−1.

Lemma 8:Any group of degreen is equivalent to a group
with group index between 0 andn!/4− 1.

Some statistics of the lookup table are listed in Table II.
We generate the lookup table up to degree 9. By exploring the
equivalence of groups, we can reduce the number of groups
generated and stored by a factor of 25.8. (The table generation
time should also be reduced by a similar factor.) The total table
size is only 9.00 MB, which can be easily handled by today’s
computers.
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Degree # of groups Table size (MB) Gen.
n n! generated n!/gen. POWV POST time
2 2 1 2 0.00 0.00 0.0 s
3 6 1 6 0.00 0.00 0.0 s
4 24 2 12 0.00 0.00 0.0 s
5 120 8 15 0.00 0.00 0.0 s
6 720 36 20 0.00 0.00 0.0 s
7 5040 222 22.70 0.01 0.02 0.0 s
8 40320 1638 24.62 0.17 0.31 50.7 s
9 362880 13950 26.01 2.56 5.93 58.2 hr

Total 409112 15858 25.80 2.75 6.26 58.2 hr

TABLE II

SOME STATISTICS OF THE LOOKUP TABLE.

The last column of Table II is the lookup table generation
time in a PC with a 3.4 GHz Pentium 4 processor. It is
extremely fast to generate the table up to degree 7 because of
the boundary compaction technique and the near-ring structure
presented in Section III. For degrees 8 and 9, the generation
time is much longer because of the function Connect-adj-
pins(). Note that we have several ideas to significantly reduce
the table generation time (e.g., storing the solutions of a grid
instead of recomputing them so that they can be reused in
different recursive calls). However, as the lookup table only
needs to be generated once, we did not implement those ideas.

V. SPEEDUP OFM INIMUM WIRELENGTH COMPUTATION

To find the optimal RSMT of a given net, we need to
consider the set of POWVs in the corresponding group. A
straightforward approach is to evaluate the POWVs indepen-
dently. For each POWV(α1, α2, . . . , αn−1, β1, β2, . . . , βn−1),
we compute the expressionWL =

∑n−1
i=1 αihi +

∑n−1
i=1 βivi.

Since entries in POWVs are typically small integers, and
addition is computationally much less expensive than mul-
tiplication, it is more efficient to add the edge length several
times instead of using multiplication. In addition, each of the
edge length should be used at least once. So it is better to
evaluate the expression asWL = HPWL +

∑n−1
i=1 (αi −

1)hi +
∑n−1

i=1 (βi − 1)vi. Then we have2(n− 1) less terms to
add.

However, we observe that most POWVs shared by a group
of nets are very similar to one another. Many of them differ
from other in only one or two entries. Hence, some POWVs
can be efficiently evaluated by adding or subtracting some
terms from some other previously computed POWVs. By
exploring the dependency among the POWVs, the evaluation
of all POWVs for a net can be made more efficient than the
independent approach.

The problem of determining the best dependency among
POWVs for a given group can be transformed into a minimum
spanning tree problem. Consider a group associated with a
set of q POWVs. We construct a complete graph withq + 1
nodes.q of these nodes correspond to theq POWVs in the
set and one more node corresponds to the wirelength vector
(1, . . . , 1, 1, . . . , 1) (i.e., HPWL). The weight of each edge is
set to the 1-norm of the difference of the two corresponding
wirelength vectors. In other words, the edge weight is equal to
the number of addition/subtraction required to convert from

Average # of ADD/SUB
Degree per group per POWV

n Independent MST Independent MST
2 0 0 0 0
3 0 0 0 0
4 1.333 1.333 0.8 0.8
5 4.267 4.267 1.73 1.73
6 14.422 10.333 3.253 2.331
7 39.651 20.025 4.999 2.525
8 109.136 38.561 7.156 2.528
9 288.060 74.155 9.590 2.469

TABLE III

AVERAGE NUMBER OF ADDITION/SUBTRACTION REQUIRED.

the wirelength of one vector to that of the other. Given a
minimum spanning tree of the graph, we can evaluate the
POWVs in an order defined by a breath-first traversal of
the tree starting from the node corresponding to the HPWL.
The total edge weight of the minimum spanning tree gives
the number of addition/subtraction required to compute allq
POWVs.

The average number of addition/subtraction required for the
independent approach and the MST-based approach are listed
in Table III. Columns two and three give the average number
per group, which is proportional to the average runtime to
evaluate a net. It is clear that the MST-based approach can
significantly speed up the evaluation of high-degree nets. The
last two columns give the average number per POWV, which
is proportional to the average runtime to compute a POWV.
It shows that for the independent approach, a lot more entries
need to be added for POWVs of high-degree nets, while for the
MST-based approach, the number of entries to be add/subtract
first increases slowly with net degree and then remains around
2.5.

VI. N ET BREAKING FOR HIGH-DEGREENETS

For high-degree nets, both the table size and the number of
operations to evaluate a net will be impractically large. So the
table lookup approach is practical only for low-degree nets.

In FLUTE, we have a user-defined parameterD. A lookup
table is constructed up to degreeD (D = 9 in current
implementation). Nets with degree higher thanD are broken
into several sub-nets with degree ranging from 2 toD to which
the table lookup estimation can be applied.

In this section, we present a technique to recursively break
high-degree nets. In this technique, if a net satisfies certain
conditions, it will be broken optimally. Otherwise, four heuris-
tics are applied to collectively determine a score for each way
of breaking. Then several ways corresponding to the highest
scores are tried by making recursive calls. In this technique, a
scheme is also introduced to allow users to control the tradeoff
between accuracy and runtime.

A. Optimal Net Breaking Algorithm

Theorem 3:For any net, if the set of pins can be partitioned
into two sub-setsL = {Pin 1, . . . , Pin r} andR = {Pin r +
1, . . . , Pin n} such that the x-coordinate of any pin inL is
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less than or equal to that of any pin inR (see Figure 11(a)
for an example withr = 3), then an optimal RSMT can be
constructed by merging the optimal RSMTs ofL∪{(xr, yr)}
and{(xr, yr)} ∪R.

Proof: In any optimal RSMT, there should be at least
one3 “bridge” connecting the two sub-sets (Figure 11(b)). An
optimal RSMTT ∗ that passes through the node(xr, yr) can
be constructed by shifting the segments of each bridge without
changing the wirelength (Figure 11(c)). Another RSMTT
with the same or less wirelength toT ∗ can be obtained by
merging the optimal RSMTs for the two sub-sets with the node
(xr, yr) added to both. Hence,T should also be optimal.

(b)(a) (c)

r r

bridge

(x  , y )

L

R

Fig. 11. Illustration of the optimal net breaking algorithm.

Theorem 4:For any net, if there existsr such thatsi ≥
n − r + 1 for all i ∈ {1, . . . , r}, then an optimal RSMT
can be constructed by merging the optimal RSMTs of
{Pin 1, . . . , Pin r, (xn−r+1, yr)} and {(xn−r+1, yr), Pin r +
1, . . . , Pin n}.

Proof: Similar to Theorem 3.

The optimal net breaking algorithm will break a net accord-
ing to Theorems 3 and 4 if there existsr ∈ {2, . . . , n − 2}
satisfying either one of the two conditions. Note the the size
of the two sub-nets arer + 1 andn− r + 1. So it will not be
useful to break the net ifr = 1 or n− 1.

B. Net Breaking Heuristics

Without loss of generality, consider breaking the net ac-
cording to y-coordinate. If the net is broken at pinr, then
pin 1 to pin r will form one sub-net, and pinr to pin n
will form another sub-net. To ensure that both sub-nets are at
least a constant factor smaller than the original net, we require
δn ≤ r ≤ n−δn+1 for some positive constantδ. We compute
a score which is a weighted sum of four components:

Score S(r) = S1(r)− αS2(r)− βS3(r)− γS4(r).

A larger score means a more desirable way of breaking. So it
is better forS1(r) to be large, and forS2(r), S3(r) andS4(r)
to be small.

The first component is:

S1(r) = yr+1 − yr−1

If we break the net at pinr, pin r will become the only
pin at the bottom (respectively, top) boundary of the upper
(respectively, lower) sub-net. According to Lemma 2, the edge

3It can be proved that there is always exactly one bridge.

lengthyr+1−yr (respectively,yr−yr−1) will be counted once
in the wirelength of the upper (respectively, lower) sub-net.
Otherwise, bothyr+1 − yr and yr − yr−1 are likely to be
counted more than once in the total wirelength. So it is better
to break the net at pinr if yr+1 − yr−1 is large.

The second component is:

S2(r) =

 2(x3 − x2) if sr = 1 or 2
xsr+1 − xsr−1 if 3 ≤ sr ≤ n− 2
2(xn−1 − xn−2) if sr = n− 1 or n

When3 ≤ sr ≤ n−2, xsr+1 andxsr−1 are the x-coordinates
of the pins just right and just left of pinr, respectively. If we
break the net at pinr, in both the lower sub-net and the upper
sub-net, the pins on the left of pinr needs to be connected to
those on the right (unless for the rare cases that there is no
pin either on the left or on the right of pinr in a sub-net). So
the edge lengthsxsr+1−xsr

andxsr
−xsr−1 will be counted

in both the upper and the lower sub-nets. Therefore, it is less
desirable to break the net at a pin with a largexsr+1−xsr−1.
Whensr = 1 (respectively,n), pin r is at the left (respectively,
right) boundary andxsr−1 (respectively,xsr+1) is not defined.
Whensr = 2 (respectively,n−1), as the edge lengthx2−x1

(respectively,xn−xn−1) will always be counted once for any
way of breaking according to Lemma 2, it is less effective to
usexsr+1−xsr−1 as a prediction. For these cases, we observe
that it is good in practice to set the second component to either
2(x3 − x2) or 2(xn−1 − xn−2).

The third component is:

S3(r) =
∣∣∣∣sr −

n + 1
2

∣∣∣∣× h +
∣∣∣∣r − n + 1

2

∣∣∣∣× v

whereh =
xn−1 − x2

n− 3
and v =

yn−1 − y2

n− 3
. In general, it is

better to have the breaking pin closer to the center of the net. If
pin r is close to center vertically (i.e.,r is close to(n+1)/2),
the net will be evenly divided and hence less recursive calls
are likely to be made later. Both accuracy and runtime will be
improved as a result. If pinr is close to center horizontally
(i.e.,sr is close to(n+1)/2), other pins are closer to pinr on
average in both upper and lower sub-nets. In here, we use the
distance of pinr from the center (in terms of number of edges
in Hanan grid) to predict how many extra edges need to be
used.h andv are the average edge lengths in the Hanan grid.
Becausexn−xn−1, x2−x1, yn−yn−1, andy2−y1 are always
counted once for any solutions, they are not included in the
computation of average length of extra edges. In principle,
we can use different weights for the horizontal part and the
vertical part ofS3 to form the score. However, we observe
that a single weightβ works just as well.

The fourth componentS4(r) is the total half-perimeter
wirelength (HPWL) of the two sub-nets. This is a direct way
to predict the resulting wirelength.

We experimentally determined that it is good to setα to
0.3, β to 7.4/(n + 10), andγ to 4.8/(n− 1). S1 is the most
important of the four components. It produces significantly
better results with the single termS1 than with any one of the
other three. The result is even better by combining all four.

After sub-trees for the two sub-nets are constructed, they are
combined to form a Steiner tree for the original net. Note that
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the two sub-trees may share some edges as shown in Figure
12(a). These redundant edges can be detected in constant time
and will be removed by introducing an extra Steiner node as
shown in Figure 12(b). To further reduce wirelength, a local
refinement technique can be applied to improve the subtree in
the neighborhood of the breaking pin. This technique uses
FLUTE to reconstruct the subtree connecting all pins that
are directly reachable from the breaking pin without passing
through other pins (as illustrated in Figure 12(c)). To minimize
the runtime overhead, the local refinement technique is applied
only if the subtree around the breaking pin has up toD pins.

node
Steiner
Extra

(a) (c)(b)

Refined
subtree

pin r

Fig. 12. Merging two Steiner sub-trees.

C. Accuracy Control Scheme

We can control the accuracy of FLUTE by changing the
number of ways of breaking each net. However, we observe
that it is not as good if all sub-nets generated by recursive
calls are handled with the same accuracy. A better tradeoff
between accuracy and runtime can be obtained if lower-level
sub-nets are handled with less accuracy. We introduce a user-
defined accuracy parameterA. The original net is handled
with accuracyA. That meansA different ways of breaking
are tried. Then for each recursive call, the accuracy is set to
max{bA/2c, 1}. We notice that a smallA is already enough
to obtain very accurate solutions. We set the default value of
A to 3.

D. Time Complexity of FLUTE

The time complexity is analyzed as follows. ConsiderA =
1. We first need to sort all pins according to x- and y-
coordinates. Then we recursively break the net into two sub-
nets in a roughly even manner. In each recursive call, it takes
linear time to check the optimal breaking conditions and to
compute the scores. So the total runtime isO(n log n). Note
that the optimal net breaking algorithm may not break the net
in a even manner. However, we can implement the algorithm
to search for clusters simultaneously starting from all four
corners (instead of only lower-left and lower-right corners as
suggested by Theorem 3 and 4, respectively). Then, if the
net is not broken evenly (i.e., a small cluster exists), the
checking time will also be small. So the total runtime will
still be O(n log n). For accuracyA, it is not hard to show
by mathematical induction onA that the time complexity of
FLUTE is O(A

log A+1
2 n log n).

Circuit # of nets Ave. degree Max. degree
ibm01 14111 3.58 42
ibm02 19584 4.15 134
ibm03 27401 3.41 55
ibm04 31970 3.31 46
ibm05 28446 4.44 17
ibm06 34826 3.68 35
ibm07 48117 3.65 25
ibm08 50513 4.06 75
ibm09 60902 3.65 39
ibm10 75196 3.96 41
ibm11 81454 3.45 24
ibm12 77240 4.11 28
ibm13 99666 3.58 24
ibm14 152772 3.58 33
ibm15 186608 3.84 36
ibm16 190048 4.10 40
ibm17 189581 4.54 36
ibm18 201920 4.06 66

All 1570355 3.92 134

TABLE IV

BENCHMARK INFORMATION.

VII. E XPERIMENTAL RESULTS

The FLUTE algorithm described in this paper is imple-
mented in C in the software package FLUTE-2.5. For our
implementation, the runtime complexity isO(n2) because a
simpleO(n2) sorting algorithm is used, and the net breaking
pin is searched in the range3 ≤ r ≤ n − 2. To minimize
runtime, the local refinement technique introduced in Section
VI-B is not applied for low accuracy (i.e., whenA ≤ 4). The
source code of FLUTE is posted in the “Rectilinear Spanning
and Steiner Trees” slot of the GSRC bookshelf [17].

We perform all experiments in a 3.4-GHz Intel Pentium
4 machine4. Three sets of experiments are conducted. First,
we compare the following six algorithms on nets from in-
dustrial circuits: an efficientO(n2) implementation of Prim’s
algorithm (RMST) [15], Refined Single Trunk Tree (RST-T)
[13], the spanning graph based RSMT algorithm (SPAN) [9],
the batched greedy triple contraction algorithm (BGA) [11],
the near-optimal Batched Iterated 1-Steiner (BI1S) heuristic
[6], and FLUTE with default accuracyA = 3. The exact
RSMT software GeoSteiner 3.1 [5] is used to generate the
optimal solutions. Source codes of RMST, BGA, BI1S, and
GeoSteiner are downloaded from the GSRC Bookshelf [20].
Source codes of SPAN and RST-T are obtained from the
authors. The 18 IBM circuits in the ISPD98 benchmark suite
are used. Some information of the benchmark circuits are
given in Table IV. There are totally 1.57 million nets. The
placement is generated by FastPlace [21].

The wirelength comparison is shown in Table V. FLUTE
is the best among the six algorithms. The average wirelength
error over all nets is only 0.075%. FLUTE produces the best
wirelength for all 15 circuits in which all nets have degree
55 or less. BI1S is the best for the remaining three circuits
(ibm02, ibm08 and ibm18).

The breakdown of the wirelength estimation for nets with
different degree is shown in Table VI. A summary of all 18

4In earlier versions of this paper [18], [19], experiments are performed in
a Sun Sparc-2 machine. For unknown reasons, BI1S is significantly slower
in Sun machines.
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Net breakdown Wirelength error (%)
Degree # WL RMST RST-T SPAN BGA BI1S FLUTE

2 54.92% 27.98% 0.00 0.00 0.00 0.00 0.00 0.00
3 14.40% 10.26% 2.50 0.00 0.03 0.00 0.00 0.00
4 7.68% 7.84% 3.89 0.00 0.11 0.00 0.00 0.00
5 5.61% 8.18% 4.74 0.00 0.21 0.07 0.05 0.00
6 3.20% 5.65% 5.40 0.49 0.29 0.12 0.07 0.00
7 2.28% 4.82% 5.91 1.02 0.37 0.13 0.09 0.00
8 1.98% 4.61% 6.25 1.91 0.42 0.16 0.12 0.00
9 1.81% 4.46% 6.79 2.65 0.48 0.21 0.15 0.00

10–17 6.98% 21.72% 7.81 6.21 0.60 0.29 0.22 0.16
≥18 1.15% 4.48% 9.04 14.05 0.75 0.40 0.32 0.87

TABLE VI

BREAKDOWN OF THE WIRELENGTH ESTIMATION ACCORDING TO DEGREE FOR NETS OF ALL18 CIRCUITS.

Wirelength error (%)
Circuit RMST RST-T SPAN BGA BI1S FLUTE
ibm01 4.092 1.933 0.251 0.129 0.106 0.074
ibm02 5.849 3.780 0.331 0.143 0.115 0.209
ibm03 4.637 1.919 0.271 0.125 0.095 0.062
ibm04 4.048 1.255 0.203 0.084 0.060 0.051
ibm05 4.489 3.134 0.329 0.153 0.112 0.106
ibm06 5.964 2.822 0.381 0.182 0.134 0.084
ibm07 4.720 1.704 0.268 0.116 0.084 0.046
ibm08 4.784 4.445 0.328 0.162 0.123 0.261
ibm09 4.331 1.804 0.235 0.105 0.075 0.042
ibm10 4.104 1.790 0.252 0.104 0.080 0.051
ibm11 4.018 1.227 0.219 0.087 0.062 0.024
ibm12 3.783 1.908 0.248 0.106 0.077 0.054
ibm13 4.782 2.002 0.292 0.135 0.102 0.053
ibm14 3.908 1.540 0.221 0.095 0.068 0.040
ibm15 4.201 1.941 0.266 0.106 0.077 0.062
ibm16 4.231 2.421 0.279 0.124 0.090 0.068
ibm17 3.905 2.188 0.263 0.110 0.082 0.056
ibm18 4.432 3.353 0.300 0.134 0.100 0.147

All 4.232 2.261 0.269 0.117 0.086 0.075

TABLE V

PERCENTAGE ERROR IN WIRELENGTH.

circuits is given. Columns 2 and 3 provide a breakdown on the
number of nets and the wirelength. Notice that although most
nets are of degree two or three, there are still a substantial
proportion of higher degree nets and the contribution of those
nets to the wirelength is very significant. For example, nets
with degree 10 or more account for 8.13% of all nets and
contribute 26.2% of total wirelength. Columns 4 to 9 report
the percentage error in wirelength. As the table shows, all
six techniques have more error for nets with higher degree.
FLUTE is exact for nets up to degree 9 and is still very
accurate for higher degree nets. Note that although RST-T is
exact up to degree 5, it performs badly for high-degree nets.
As a result, the overall accuracy is far worse than the other
four RSMT algorithms.

The runtime comparison is listed in Table VII. Note that
FLUTE is much faster than all the other Steiner tree algo-
rithms although it is the most accurate. FLUTE is only 7%
slower than RMST.

Second, we show the effect of the accuracy parameterA
to the tradeoff between wirelength error and runtime.A is
varying from 1 to 12. A potential application of FLUTE is
wirelength estimation. So an implementation of FLUTE with
RSMT construction disabled and the widely-used HPWL are
also compared. The average percentage error and total runtime

Runtime (s)
Circuit RMST RST-T SPAN BGA BI1S FLUTE
ibm01 0.02 0.09 0.55 0.75 1.01 0.02
ibm02 0.02 0.14 1.05 1.50 4.32 0.03
ibm03 0.02 0.18 1.02 1.38 1.95 0.03
ibm04 0.04 0.20 1.07 1.44 2.24 0.02
ibm05 0.03 0.20 1.71 2.40 2.69 0.05
ibm06 0.03 0.23 1.45 1.95 2.53 0.04
ibm07 0.05 0.32 1.96 2.59 3.26 0.04
ibm08 0.06 0.35 2.63 3.74 6.60 0.09
ibm09 0.07 0.40 2.42 3.19 4.13 0.06
ibm10 0.08 0.53 3.59 4.77 5.85 0.09
ibm11 0.06 0.53 2.87 3.76 5.16 0.05
ibm12 0.10 0.54 3.94 5.33 6.25 0.10
ibm13 0.10 0.66 3.89 5.18 6.68 0.09
ibm14 0.15 1.02 5.91 7.84 10.11 0.14
ibm15 0.21 1.27 8.18 10.86 13.96 0.22
ibm16 0.23 1.33 9.33 12.47 14.75 0.26
ibm17 0.28 1.39 11.06 15.06 16.63 0.31
ibm18 0.26 1.40 9.81 13.28 17.82 0.30

All 0.93 5.56 37.34 50.25 64.92 1.0

TABLE VII

RUNTIME COMPARISON. THE OVERALL RUNTIMES IN THE LAST ROW ARE

NORMALIZED WITH RESPECT TOFLUTE RUNTIME.

for all nets in 18 IBM circuits are reported in Table VIII.

Table VIII shows that the accuracy control scheme provides
a very effective way to achieve much less error in a moderate
runtime increase. The runtime is increasing at a rate much
slower thanA

log A+1
2 because most nets have a low degree.

We notice that if RSMT is not constructed, the runtime
is decreased by roughly 1.3–2.1×. However, because the
redundant edge removal and the local refinement techniques
described at the end of Section VI-B cannot be used, the
error is increased. For applications in which only wirelength
estimation is required, such an implementation provides a
much better tradeoff between accuracy and runtime unless
extremely accurate solutions are desired. For extremely ac-
curate solutions, the implementation with RSMT construction
is more efficient even if the RSMT returned is not used.

Even with RSMT construction and a relatively high accu-
racy of A = 3, FLUTE is only 5.88× slower than HPWL
while much more accurate. If RSMT is not required and an
accuracy ofA = 1 is sufficient, FLUTE is less than 3× slower
than HPWL.

Third, we investigate the accuracy and runtime of different
algorithms for nets with degree ranging from 10 to 100. We
notice that out of 1.57 millions nets in 18 IBM circuits, only
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Wirelength error (%)
FLUTE

Degree RMST RST-T SPAN BGA BI1S A = 1 A = 2 A = 3 A = 4 A = 6 A = 8 A = 10 A = 12

10 11.982 5.091 0.949 0.443 0.349 0.684 0.236 0.112 0.072 0.027 0.020 0.020 0.020
20 12.168 14.370 1.019 0.518 0.421 2.181 1.265 0.961 0.590 0.281 0.150 0.119 0.098
30 12.551 21.896 1.136 0.619 0.552 2.992 2.171 1.846 1.161 0.642 0.430 0.357 0.292
40 12.727 28.987 1.121 0.624 0.556 3.516 2.718 2.388 1.709 1.096 0.751 0.670 0.554
50 12.684 35.346 1.143 0.628 0.567 3.955 3.214 2.867 2.193 1.475 1.044 0.931 0.766
60 12.729 42.110 1.192 0.647 0.580 4.288 3.571 3.252 2.557 1.839 1.280 1.160 0.971
70 12.848 47.984 1.148 0.630 0.557 4.553 3.865 3.558 2.912 2.136 1.578 1.442 1.185
80 12.862 53.404 1.195 0.639 0.573 4.762 4.168 3.813 3.149 2.344 1.712 1.587 1.361
90 12.889 59.007 1.201 0.669 0.590 4.896 4.339 4.027 3.411 2.582 1.926 1.809 1.563
100 12.867 64.770 1.210 0.678 0.599 5.098 4.523 4.270 3.658 2.790 2.126 2.000 1.721

TABLE IX

PERCENTAGE ERROR IN WIRELENGTH FOR NETS OF DIFFERENT DEGREE.

Runtime (s)
FLUTE

Degree RMST RST-T SPAN BGA BI1S A = 1 A = 2 A = 3 A = 4 A = 6 A = 8 A = 10 A = 12

10 0.00 0.01 0.19 0.28 0.18 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01
20 0.01 0.02 0.51 0.81 0.93 0.01 0.02 0.02 0.04 0.11 0.21 0.32 0.53
30 0.02 0.03 0.85 1.44 2.81 0.02 0.03 0.04 0.07 0.23 0.52 0.82 1.60
40 0.03 0.04 1.19 2.14 6.48 0.02 0.04 0.06 0.12 0.38 0.92 1.43 2.77
50 0.05 0.04 1.55 2.91 12.43 0.04 0.06 0.08 0.16 0.53 1.37 2.12 4.16
60 0.07 0.04 1.92 3.74 21.27 0.04 0.07 0.11 0.21 0.70 1.86 2.87 5.67
70 0.09 0.06 2.29 4.67 33.29 0.06 0.10 0.12 0.25 0.88 2.39 3.67 7.32
80 0.11 0.06 2.69 5.59 49.12 0.07 0.10 0.15 0.30 1.05 2.94 4.51 9.08
90 0.13 0.07 3.24 6.54 70.96 0.08 0.12 0.17 0.35 1.22 3.47 5.38 10.83
100 0.16 0.08 3.85 7.65 97.64 0.10 0.15 0.19 0.41 1.41 4.07 6.28 12.76

TABLE X

TOTAL RUNTIME FOR 1000NETS OF DIFFERENT DEGREE.

1212 (0.077%) have a degree of more than 30, and only
80 (0.005%) have a degree of more than 60. So for VLSI
applications, it should be enough to observe the behavior of
algorithms for degree up to 100. 1000 nets are randomly gen-
erated for each degree. The average wirelength error and total
runtime are reported in Table IX and Table X, respectively.

From Table IX and Table X, for nets with degree 10 to
30, FLUTE is clearly the best algorithm. It can be as fast
as extremely fast algorithms (RMST and RST-T) yet much
more accurate. It can also be more accurate than very accurate
algorithms (SPAN, BGA and BI1S) yet much faster. (Note
that the advantages of FLUTE over other algorithms in both
accuracy and runtime are even more significant for nets with
degree 9 or less as solutions can be obtained directly from the
lookup table.)

For higher degree nets, FLUTE with a smallA value can
generate reasonably accurate solutions in a very short runtime.
Other algorithms are either far less accurate or much slower.
So FLUTE is still the most suitable algorithm for higher
degree nets if moderate accuracy is enough. If very accurate
solutions (say<2% error) are desired for nets with degree 50
or more, a largeA value is required for FLUTE. In that case,
FLUTE may not be the fastest algorithm.

VIII. C ONCLUSION

In this paper, we introduced a fast and accurate lookup
table based RSMT algorithm called FLUTE. The table stores
for low-degree nets the set of POWVs associated with each
position sequence and an RSMT topology associated with

each POWV. We proposed an algorithm based on boundary
compaction to generate the sets of POWVs up to degree 9.
We designed a MST-based approach to determine the most
efficient way to evaluate each set of POWVs. We presented
a net breaking technique to divide a high degree net into
low-degree nets so that the table lookup estimation can be
used. We also presented a scheme to allow users to control
the tradeoff between accuracy and runtime. The experimental
results with industrial nets showed that FLUTE with default
accuracy is more accurate than the Batched 1-Steiner heuristic
and is almost as fast as RMST construction.

APPENDIX I: PROOFS FORSECTION III

This appendix contains the proofs of the lemmas regard-
ing the optimality of the lookup table generation algorithm
described in Section III. Lemmas 2–6 are directly used in
Section III. However, in order to prove these lemmas, two
additional lemmas (Lemmas 9 and 10) are required. They are
added to the end of the appendix.

Lemma 2: A grid G is compactable if it has a boundary
with only one pin.

Proof: Assume without loss of generality that the left
boundary of G has only one pin P. Let G’ be the reduced
grid obtained by compacting G at the left boundary. So the
first entry in the POWVs of G corresponds to the compacted
edges. We show that every POWVV of G must be in the form
(1, V ′) whereV ′ is a POWV of G’. Consider any POSTT
associated withV . We can prove that it has exactly one branch
from P to other pins. If there are multiple branches from P
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WL error Runtime
Algorithm (%) (s) Normalized

A = 1 0.2313 1.27 0.65
A = 2 0.1092 1.60 0.82
A = 3 0.0747 1.94 1.00
A = 4 0.0396 2.65 1.37

FLUTE A = 5 0.0243 3.88 2.00
(return RSMT) A = 6 0.0174 5.22 2.69

A = 7 0.0154 5.93 3.06
A = 8 0.0113 8.70 4.48
A = 9 0.0104 9.63 4.96
A = 10 0.0090 12.29 6.34
A = 11 0.0086 13.39 6.90
A = 12 0.0073 19.07 9.83
A = 1 0.2721 0.98 0.51
A = 2 0.1318 1.16 0.60
A = 3 0.0917 1.37 0.71
A = 4 0.0513 1.84 0.95

FLUTE A = 5 0.0430 2.08 1.07
(no RSMT) A = 6 0.0322 2.69 1.39

A = 7 0.0292 3.02 1.56
A = 8 0.0222 4.27 2.20
A = 9 0.0209 4.76 2.45
A = 10 0.0186 5.90 3.04
A = 11 0.0178 6.42 3.31
A = 12 0.0157 8.98 4.63

HPWL -8.7710 0.33 0.17

TABLE VIII

WIRELENGTH ERROR AND RUNTIME OFFLUTE FOR DIFFERENT

ACCURACY A. THE ROW IN BOLD IS THE DEFAULT.

to other pins (as in Figure 13(a)), another Steiner tree with
a single branch can be constructed as follows. Letl be the
second Hanan grid line from the left boundary. The edges of
T on the left of l can be replaced with a vertical segment
along l connecting the subtrees ofT on the right ofl and a
horizontal edge fromP to the segment (as in Figure 13(b)).
The POWV of this tree is better thanV in the first entry and
is at least as good in all other entries, contrary to the fact
that V is potentially optimal. Hence, any POST must have
a single branch from P, which implies the first entry ofV
should be 1. Moreover, if the branch does not go horizontally
from P (as shown in Figure 13(c)), it can be “flipped” (as in
Figure 13(d)) to obtain a tree with the same wirelength vector
asV . By shifting P along the horizontal branch until the next
Hanan grid line, the grid becomes G’. Hence the remaining
entries ofV should form a POWV of G’.

P

(a)

P

(b)

P

(c)

P

(d)

Fig. 13. Illustrations for the proof of Lemma 2.

Lemma 3: A grid G is compactable if it has a corner with
one pin P and both boundaries adjacent to P have exactly one
other pin.

Proof: Assume without loss of generality that P is at
the lower left corner as illustrated in Figure 14(a). Assume
on the contrary that there is a POWV of G such that its
entries associated with all four boundaries are better than those
obtained by boundary compaction. Consider any Steiner tree
associated with this POWV. By Lemma 9, for both the left and

the bottom boundaries, the two pins should be connected by
a branch along the boundary as illustrated in Figure 14(b).
If G has no other pins besides the three, G is obviously
compactable. Otherwise, these three pins should be connected
to the rest of the tree by a branch. Suppose without loss of
generality that the branch is originated from the left boundary
as illustrated in Figure 14(c). Such a solution is not better than
those obtained by compacting the left boundary. It contradicts
to the assumption. Hence, G must be compactable.

(a)P (b)P P (c)

Fig. 14. Illustrations for the proof of Lemma 3.

Lemma 4: A grid G is compactable if it has up to 6 pins
at the four boundaries.

Proof: If G has a boundary with only one pin, then
Lemma 2 shows that it is compactable. So we focus on G
with at least 2 pins on each boundary. As G has at most 6
pins on the boundaries and each boundary has at least 2 pins,
at least two corners should have a pin so that it can be shared
by two boundaries. All cases that satisfy the conditions above
are shown in Figure 15. Note that only pins on the boundaries
are considered. Also note that cases which are symmetrical to
one of those in Figure 15 are not shown.

Lemma 3 can be applied to show that all cases except (f)
are compactable. (The pin P can be the one at the lower left
corner.) Lemma 10 can be applied to show that case (f) is
also compactable. Therefore, a grid with 6 or less pins at the
boundaries is always compactable.

Lemma 5: Boundary compaction together with the near-
ring structures can generate all POWVs for a grid with 7 pins.

Proof: Consider a grid G with 7 pins that is not
compactable. By Lemma 4, all 7 pins should be on the
boundaries. By Lemma 2, there should be at least 2 pins on
each boundary. As G has 7 pins at the boundaries and each
boundary has at least 2 pins, at least one corner should have
a pin so that it can be shared by two boundaries. All cases
that satisfy the conditions above are shown in Figure 16. Note
that cases which are symmetrical to one of those in Figure 16
are not shown.

Lemma 3 can be applied to show that cases (a), (b), (e), (h),
(i), (j), (k), (m), (n) and (o) are compactable. Lemma 10 can
be applied to show that cases (c), (g) and (l) are compactable.

It is not hard to see that cases (d) and (f) are not com-
pactable. However, we can prove that the POWVs missed
by boundary compaction are all covered by the near-ring
structures. Assume it is not the case. In other words, there
is a POWV missed by boundary compaction such that the
associated Steiner tree has some branches not along the
boundaries. We consider two cases:

• Case 1) Those branches only connect adjacent bound-
aries.Then those branches can be “flipped” such that all
branches of the Steiner tree are along the boundaries.
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(j)(e) (h)

(f)

4 pins on

5 pins on

6 pins on

boundaries

boundaries

boundaries

4 pins on
corners

3 pins on
corners corners

2 pins on

(a)

(d) (i)(g)

(b) (c)

P

Q

Fig. 15. Illustrations for the proof of Lemma 4.

Moreover, the resulting POWV is the same or better.
Hence, the POWV can be generated by the near-ring
structures.

• Case 2) Those branches also connect two non-adjacent
(i.e., opposite) boundaries.Consider case (f). Assume
without loss of generality that the left and right bound-
aries are connected by branches not along the boundaries.
By Lemma 9, the two pins at the bottom boundary should
be connected by a branch along the boundary. Also, at
least two of the three pins at the top boundary should be
connected by a branch along the boundary. If the left two
pins are connected, such a solution is not better than those
obtained by compacting the grid at the left boundary.
If the right two pins are connected, such a solution is
not better than those obtained by compacting the grid at
the right boundary. Similar arguments can be applied to
handle case (d).

Lemma 6: For a net withn pins where7 ≤ n ≤ 10,
boundary compaction together with Connect-adj-pins() with
distanced = n− 3 can generate all POWVs.

Proof: A net with n pins corresponds to an×n Hanan
grid such that each grid line has one pin. By Lemma 2, all 4
boundaries can be compacted once so that a(n−2)× (n−2)
grid G is formed. Any two pins on the same boundary of
G are at a distance at mostn − 3 grid lines apart. Hence,
Connect-adj-pins(G,n − 3) can generate any branch along
any boundary of G.

The only remaining issue is that boundary compaction may
not be able to generate the branches originating from a branch

corners
2 pins on

P P P P

P

P P

PP

P Q

P Q

P

P

Q

(a)

(g)

(b)

4 pins on
corners

3 pins on
corners corners

1 pin on

(h)

(c)

(e)

(d)

(f)

(i)

(j)

(k)

(l)

(m)

(n)

(o)

Fig. 16. Illustrations for the proof of Lemma 5.

introduced by Connect-adj-pins(). The reason is that after
Connect-adj-pins() connects several pins on a boundary by
a branch B, those pins are replaced by a single pseudo-pin.
If there are more than one branches connecting B to the
remaining pins in a POST, compacting that boundary will not
generate this POST. (See Figure 17(a) for an illustration.)

We show in the following that if a net has 10 pins or less,
there always exists a boundary such that boundary compaction
can be applied. For any branch B introduced by Connect-adj-
pins() in a boundary that cannot be compacted, the number
of pins on B should be more than the number of branches
connecting B to the remaining pins. Otherwise, this boundary
can be compacted directly without even applying Connect-
adj-pins(). So there should be at least 3 pins on B. As there
are at most 10 pins in the grid, it is impossible to have at least
3 pins on each boundary unless some corner pins are shared.
It is impossible to share all 4 corners because a ring (i.e.,
non-tree) structure will be formed. Consider the case that 3
corner pins are shared as shown in Figure 17(b). There should
be at least 9 pins on boundaries. Besides, there should be at
least two others pins (P and Q) not on boundaries. This case
is impossible as the total number of pins is at least 11. It is
not hard to see that if less than 3 corner pins are shared, even
more pins are required to make the grid not compactable.

The following lemma is used in the proof of Lemma 3,
Lemma 5 and Lemma 10.
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(b)

At least 2 branches

(a)

B P Q

Fig. 17. Illustrations for the proof of Lemma 6.

Lemma 9: If a grid G is not compactable, then for any
POST associated with any POWV missed by boundary com-
paction, there should be a branch connecting at least two pins
along each of the four boundaries.

Proof: By Lemma 2, there should be at least two pins on
each boundary. Without loss of generality, consider the pins
on the left boundary. The lemma claims that at least two pins
are connected by a branch along the left boundary as shown
in Figure 18(a). Otherwise, each pin should be connected to
the rest of the tree by a separate branch as shown in Figure
18(b). Such a solution is not better than those generated by
compacting the left boundary.

(a) (b)

Fig. 18. Illustrations for the proof of Lemma 9.

The following lemma is used in the proof of Lemma 4 and
Lemma 5.

Lemma 10:A grid G is compactable if it has two adjacent
corners with pins P and Q, and each of the three boundaries
involving P and Q has exactly one other pin.

Proof: Assume without loss of generality that P is at
the lower left corner and Q is at the lower right corner as
illustrated in Figure 19(a). Assume on the contrary that there
is a POWV of G such that its entries associated with all four
boundaries are better than those obtained by boundary com-
paction. Consider any Steiner tree associated with this POWV.
By Lemma 9, for both the left and the right boundaries, the
two pins should be connected by a branch along the boundary
as illustrated in Figure 14(b). Moreover, pin Y should be
connected to at least one of the corner pins P and Q by a
branch along the bottom boundary. Without loss of generality,
assume Y is connect to P as shown in Figure 19(b).

The subtree consisting of P, X and Y should be connected
to the rest of the tree by a branch. If the branch is originated
from the left boundary, such a solution is not better than
those obtained by compacting the left boundary. If the branch
is originated from the bottom boundary and it is not along
the bottom boundary, such a solution is not better than those
obtained by compacting the bottom boundary. If the branch
is originated from the bottom boundary and it is along the
bottom boundary (i.e., the branch connects Y and Q as shown
in Figure 19(c)), we consider two cases based on whether there
are other pins besides the five. If there is no other pin, G is
obviously compactable from the top boundary. Otherwise, the

subtree consisting of the five pins should be connected to the
other pins by a branch. If the branch is originated from the
left/bottom/right boundary, such a solution is not better than
those obtained by compacting the left/bottom/right boundary.

X
Z

P Y Q
(a)

X
Z

P Y Q
(b)

X
Z

P Y Q
(c)

Fig. 19. Illustrations for the proof of Lemma 10.

APPENDIX II: PROOFS FORSECTION IV

This appendix contains the proofs of the Lemmas 7 and 8
regarding the lookup table size reduction techniques described
in Section IV. Lemma 11 at the end of the appendix is required
by the other lemmas.

Lemma 7: Group index is an one-to-one mapping from the
groups of degreen to an integral value between 0 andn!−1.

Proof: As pj ≥ 0 for all j, it is obvious that any group
index k ≥ 0. In addition, by the fact thatpj ≤ j − 1 for all j
and Lemma 11 withi = 1, it is easy to prove thatk ≤ n!−1.

For any two different groups, assume the corresponding
modified position sequences to bep1p2 . . . pn andp′1p

′
2 . . . p′n,

and the corresponding group indexes bek andk′, respectively.
Since the groups and hence the position sequences are dif-
ferent, the modified sequences should also be different. Let
i be the smallest index such thatpi 6= p′i. Without loss of
generality, assumepi > p′i.

k − k′ =
n!
i!
× (pi − p′i) +

n∏
j=i+1

n!
j!

× (pj − p′j)

≥ n!
i!

+
n∏

j=i+1

n!
j!

× (pj − p′j)

≥ n!
i!
−

n∏
j=i+1

n!
j!

× (j − 1)

=
n!
i!
− (

n!
i!
− 1) by Lemma 11

= 1

Sok 6= k′. In other words, different groups will have different
group indexes.

Since there aren! groups and each group is mapped to a
different integer between0 andn!− 1, the lemma is proved.

Lemma 8: Any group of degreen is equivalent to a group
with group index between 0 andn!/4− 1.

Proof: For simplicity, we call a group with group index
k as groupk. For any groupk with k ≥ n!/4, assume the
position sequence iss1s2 . . . sn and the modified position
sequence isp1p2 . . . pn. Consider three cases:

• Case 1) 3n!/4 ≤ k < n!.
For the groupk′ that is horizontally symmetrical to group
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k, assume the position sequence iss′1s
′
2 . . . s′n and the

modified position sequence isp′1p
′
2 . . . p′n. It is clear that

s′j = n + 1 − sj for 1 ≤ j ≤ n. So it follows from
the definition of modified position sequence thatp′j =
j − 1− pj for 1 ≤ j ≤ n. Thus,

k′ =
n∏

j=1

n!
j!

× p′j

=
n∏

j=1

n!
j!

× (j − 1− pj)

=
n∏

j=1

n!
j!

× (j − 1)− k

= n!− 1− k by Lemma 11

So 0 ≤ k′ ≤ n!/4− 1.
• Case 2) n!/2 ≤ k < 3n!/4.

As k ≥ n!/2, p2 should be 1, which impliess1 < s2 as
shown in Figure 20(a). Consider the groupk′ in Figure
20(b) which is the same as groupk in Figure 20(a) except
the relative position of the bottom two pins. Groupk
and groupk′ are equivalent due to boundary compaction.
For groupk′, assume the position sequence iss′1s

′
2 . . . s′n

and the modified position sequence isp′1p
′
2 . . . p′n. Then

s′1 > s′2, which impliesp′2 = 0. pj = p′j for all j 6= 2.
Therefore,k′ = k − n!/2. So 0 ≤ k′ ≤ n!/4− 1.

• Case 3) n!/4 ≤ k < n!/2.
We can use the same argument as Case 1 to prove that
groupk is equivalent to groupk′′ = n!−1−k. Therefore,
n!/2 ≤ k′′ < 3n!/4. Then we can use the same argument
as Case 2 to prove that groupk′′ (i.e., group k) is
equivalent to groupk′ = k′′−n!/2. So0 ≤ k′ ≤ n!/4−1.

Groupk′ is between 0 andn!/4 − 1 in all cases. Hence, the
lemma is proved.

(b)(a)

Fig. 20. Relative position of the bottom boundary pins for two equivalent
groups.

Lemma 11:For anyi such that1 ≤ i ≤ n,
n∏

j=i

n!
j!

× (j − 1) =
n!

(i− 1)!
− 1

Proof: The lemma can be proved by induction oni. If
i = n, both sides equaln− 1. Assume

∏n
j=i

n!
j! × (j − 1) =

n!
(i−1)! − 1 for somei.

n∏
j=i−1

n!
j!

× (j − 1)

=
n!

(i− 1)!
× (i− 2) +

n∏
j=i

n!
j!

× (j − 1)

=
n!

(i− 1)!
× (i− 2) +

n!
(i− 1)!

− 1

=
n!

(i− 1)!
× (i− 1)− 1

=
n!

(i− 2)!
− 1

Hence, the lemma is proved.
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