
Author's personal copy

Handling routability in floorplan design with twin binary trees$

Steve T.W. Lai a, Evangeline F.Y. Young a,�, Chris C.N. Chu b

a Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
b Department of Electrical and Computer Engineering, Iowa State University, IA 50011-3060, USA

a r t i c l e i n f o

Article history:

Received 20 June 2008

Received in revised form

27 February 2009

Accepted 4 March 2009

Keywords:

Floorplanning

Routability

Buffer planning

Simulated annealing

a b s t r a c t

As technology moves into the deep-submicron era, the complexities of VLSI circuits grow rapidly.

Interconnect optimization has become an important concern. Most routability-driven floorplanners

[H.M. Chen, H. Zhou, F.Y. Young, D.F. Wong, H.H. Yang, N. Sherwani, Integrated floorplanning and

interconnect planning, in: Proceedings of IEEE International Conference on Computer-Aided Design,

1999, pp. 354–357; S. Krishnamoorthy, J. Lou, H.S. Sheng, Estimating routing congestion using

probabilistic analysis, in: Proceedings of International Symposium on Physical Design, 2001, pp.

112–117; M. Wang, M. Sarrafzadeh, Modeling and minimization of routing congestion, in: IEEE Asia and

South Pacific Design Automation Conference, 2000, pp. 185–190] use grid-based approach that divides a

floorplan into grids as in global routing to estimate congestion by the expected number of nets passing

through each grid. This approach is direct and accurate, but not efficient enough when dealing with

complex circuits containing many nets. In this paper, an efficient and innovative interconnect-driven

floorplanner using twin binary trees (TBT) representation [B. Yao, H. Chen, C.K. Cheng, R. Graham,

Revisiting floorplan representations, in: Proceedings of International Symposium on Physical Design,

2001, pp. 138–143; E.F.Y. Young, C.C.N. Chu, Z.C. Shen, Twin binary sequences: a non-redundant

representation for general non-slicing floorplan, in: Proceedings of International Symposium on

Physical Design, 2002, pp. 196–201] is proposed. The estimations are based on the wire densities

(number of wires passing through per unit length) on the half-perimeter boundaries of different regions

in a floorplan. These regions are defined naturally by the TBT representation. Buffer planning is also

considered by deciding if buffers can be inserted successfully for each net. In order to increase the

efficiency of our floorplanner, a fast algorithm for the least common ancestor (LCA) problem in Bender

and Farach-Colton [The LCA problem revisited, in: Latin American Theoretical INformatics, 2000, pp.

88–94] is used to compute wire density, and a table look-up approach is used to obtain the buffer

insertion information. Experimental results show that our floorplanner can reduce the number of

unroutable wires. The performance is comparable with other interconnect-driven floorplanners that

perform global routing-like operations directly to estimate routability, but our estimation method is

much faster and is scalable for large complex circuits.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

In the deep-submicron era, the complexities of VLSI circuits are
growing rapidly. Interconnections between modules become
longer and denser. As floorplanning is an early step in the VLSI
design cycle, an interconnect-optimized floorplan is important for
the applicability and performance of the later designing stages
and, most importantly, will allow timing closure to be achieved
earlier. Interconnect optimization in floorplan design has become
ever more important than before.

Some routability-driven floorplanners [3,12,7] were proposed.
Most of them used the grid-based approach to measure conges-
tion. In this approach, a floorplan is divided into grids as in global
routing. At each grid, the expected number of nets passing
through is recorded as a weight to measure congestion. In paper
[3], a floorplan is divided into grids and congestion is estimated at
each grid assuming that all the wires are routed in either L-shape
or Z-shape. They use simple-geometry routing to plan the wires in
a reasonable amount of time. In paper [12], a realistic global
router is used to evaluate congestion of a placement solution. In
paper [7], a probabilistic method is proposed to estimate
routability. These grid-based approaches have been shown to be
effective in reducing interconnect cost but their computational
complexities are usually high. A fast and accurate congestion
evaluation method will be very useful for interconnect-driven
floorplanning.

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/vlsi

INTEGRATION, the VLSI journal

0167-9260/$ - see front matter & 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.vlsi.2009.03.001

$ The work described in this paper was partially supported by a grant from the

Research Grants Council of the Hong Kong Special Administrative Region, China

(Project No. 4181/06).
� Corresponding author.

E-mail address: fyyoung@cse.cuhk.edu.hk (E.F.Y. Young).

INTEGRATION, the VLSI journal 42 (2009) 449–456

Author's personal copy

Buffer insertion is one of the most popular and effective
techniques [4] to achieve timing closure in circuit design. In
current practices, buffers are inserted after routing. However,
buffers also take up silicon resources and cannot be inserted
wherever we want. A good planning of the module positions
during the floorplanning stage so that buffers can be inserted
wherever needed in the later routing stages will be useful. Cong
et al. [5] defined in their paper the term feasible region of a net.
The locations of these regions can be computed and buffers are
clustered into blocks in these regions along the channel areas.
Sarkar et al. [8] added into the notion of independence to feasible
regions so that the feasible regions of different buffers on a net
can be computed independently. They also tried to improve
routability by considering congestion in their objective function.
Tang and Wong [11] proposed an optimal algorithm to assign
buffers to buffer blocks. Dragan et al. [6] used a multi-commodity
flow-based approach to allocate buffers to some pre-existing
buffer blocks such that the required upper and lower bound on
intervals between buffers can be satisfied as much as possible.
Alpert et al. [1] made use of tile graph and dynamic programming
to perform buffer block planning. The papers [9,13]considered
congestion and buffer positions simultaneously. They assumed
the variable interval buffer insertion constraint which is firstly
introduced in [9], i.e., buffers are constrained to be inserted for
long enough wires such that the distance between adjacent
buffers is lying within a range of [L, U] given by the user. This
constraint in buffer locations provides flexibilities for the later
routing stages and allows the users to specify their requirements
accordingly. The paper [9] uses probabilistic approach while the
paper [13] computes the best possible buffer locations for each
net and estimates congestion based on those buffer locations.

1.1. Our contributions

In order to provide a simple and efficient method to estimate
congestion, an indirect measurement, wire density, is proposed.
Instead of estimating congestion by counting the number of wires
passing through each grid using a global routing-like approach,
we measure congestion by wire density, i.e., the average number
of wires passing per unit length of the boundaries of different
regions in the floorplan. A floorplan with a higher wire density on
average will have a higher chance of having congestion problem.
An example is shown in Fig. 1. We use twin binary trees as the
floorplan representation because the regions to be considered can
be naturally defined by the corresponding twin binary trees (TBT).
For a floorplan with n modules, n� 1 regions are defined by each
tree. In order to provide more regions for evaluation, we construct
an additional pair of trees, which is the mirror of the original pair
of trees. For buffer planning, we adopted the variable interval
buffer insertion constraint and buffer planning is considered by
deciding if buffers can be inserted successfully for each net. In
order to increase the efficiency of our floorplanner, a fast
algorithm [2] for the least common ancestor (LCA) problem is

used to compute wire densities, and a table look-up approach is
used to obtain the buffer insertion information. Experimental
results show that our floorplanner can reduce the number of
unroutable wires. The performance is comparable with other
interconnect-driven floorplanners that perform global routing-
like operations directly to estimate routability, but our estimation
method is much faster and is scalable for large complex circuits.

This paper is divided into seven sections. In Section 2, a brief
review of the TBT floorplan representation will be given. Section 3
will give an overview of our floorplanner. In Sections 4 and 5, the
ideas and implementation details of the congestion evaluation
method and the buffer planning method will be described and
explained. Experimental results will be shown at the end.

2. Twin binary trees

In our floorplanner, we use twin binary trees as our floorplan
representation. The TBT floorplan representation was first pro-
posed in paper [14]. The one-to-one mapping between TBT and
mosaic floorplan is shown in [14]. Recall that the definitions of
mosaic floorplans and twin binary trees are as follows:

Definition 1. Mosaic floorplan is a floorplan satisfying the
following three properties:

1. There is no empty room in the floorplan and each room is
assigned to one and only one block. In the floorplan, except the
four corners of the chip, the segment intersection forms a
T-junction. A T-junction is composed of a non-crossing segment
and a crossing segment. The non-crossing segment has one end
touching the crossing segment.

2. The topology is equivalent before and after the non-crossing
segment of a T-junction slides to adjust the room size.

3. There is no degenerate case where two distinct T-junctions
meet at the same point.

Definition 2. The set of twin binary trees TBTn � Treen � Treen is
the set:

TBTn ¼ fðt1; t2Þjt1; t2 2 Treen and yðt1Þ ¼ ycðt2Þg

where Treen is the set of all binary trees with n nodes, and yðtÞ is
the labelling of the binary tree t.

The labelling of a binary tree t can be obtained by performing an
in-order traversal on t. When the traversed node has no left (right)
child, a bit 0 (1) is added to the sequence. The first 0 and the last 1
in the sequence are then omitted. If a pair of trees ðt1; t2Þ are twin
binary to each other, their labellings will be complement to each
other, i.e., yðt1Þ ¼ ycðt2Þ. Given a mosaic floorplan F, we can
construct a pair of trees ðt1; t2Þ by travelling along the slicelines of
F. The root of t1 is the module at the upper right corner of the
packing. By connecting the upper right corners of all the modules
with the slicelines, t1 can be constructed by representing the
horizontal slicelines by tree edges connecting a parent to its left
child, and the vertical slicelines by tree edges connecting a parent
to its right child. The construction of t2 can be done similarly by
connecting the lower left corners of all the modules. It has been
shown that the pair of trees constructed in this way must be twin
binary to each other. It is also observed that the in-order traversal
of this pair of trees is the same [15]. An example is shown in Fig. 2.
In this example, yðt1Þ ¼ 10010 and yðt2Þ ¼ 01101, so yðt1Þ ¼ ycðt2Þ,
and their in-order traversals are both ABCFDE.

ARTICLE IN PRESS

B

A

C

A B C

Boundary of
high wire density

Fig. 1. Higher wire density in floorplan A.

S.T.W. Lai et al. / INTEGRATION, the VLSI journal 42 (2009) 449–456450

Author's personal copy

3. Overview of our floorplanner

Our floorplanner is based on simulated annealing using the
TBT floorplan representation. Given a candidate floorplan solu-
tion, the total wire length of the nets is either estimated by the
half-perimeter bounding box approach or the minimum spanning
tree approach. The congestion cost is then estimated from the
wire densities which are computed as the number of nets passing
per unit length of the boundaries of different regions in the
floorplan. These regions are defined by the TBT naturally and
hierarchically. The computations of the wire densities will start
from the leaf nodes and follow the post-order traversal of the tree.
Each tree can provide n� 1 samples, i.e., n� 1 regions, for wire
density computation. In order to obtain more samples, two
additional trees are constructed from the original pair of TBT to
provide a total of 4ðn� 1Þwire density values. For buffer planning,
a table is constructed that records whether a net connecting one
location to another can have all its buffers inserted successfully.
We only need to construct such a table once for each candidate
floorplan solution and it can be used repeatedly for all the nets.
The buffer insertion cost is then estimated according to the
number of nets with unsuccessful buffer insertion.

4. Congestion estimation

In order to estimate the wiring congestion of a floorplan
solution efficiently, an indirect but effective evaluation method is
used. This approach aims at measuring congestion by the wire
densities (number of nets passing per unit length) on the
boundaries of different regions in a floorplan.

Definition 3. Given a TBT (t1, t2), the region RðiÞ covered by
module i in t 2 ft1; t2g is the rooms occupied by module i and the
modules in the subtree rooted at i in t.

For the packing shown in Fig. 3, the region RðDÞ covered by
module D in t1 includes all the rooms occupied by module D, C, F
and E. We can obtain n� 1 wire density values for a tree with n

nodes. It is because RðrÞ where r is the root represents the whole
packing and there will be no nets passing through the boundary to
outside. We calculate the wire density of RðiÞ as follows:

Ci ¼
Ni

Pi
(1)

where Ci is the wire density of RðiÞ, Ni is the total number of nets
passing through the boundary of RðiÞ to outside and Pi is the
normalized half-perimeter of RðiÞ. The details of the computations
of Ni and Pi will be given in the following sections.

We choose TBT as the floorplan representation in our floor-
planner because the regions for evaluation can be defined

naturally by TBT. Besides, a lot of fast and simple tree algorithms
can be used in our congestion evaluation process. The computa-
tions of Ni and Pi will start from the leaf nodes and follow the
post-order traversal of the tree to compute the terms at each node
i. By dynamic programming, the information computed at the
child nodes can be used to compute the Ni and Pi at the parent
node very efficiently.

4.1. Computation of Ni

The term Ni, which is the total number of nets passing through
the boundary of RðiÞ to outside, can be computed as

Ni ¼ N0
i þ NlðiÞ þ NrðiÞ �M0

i (2)

where lðiÞ is the left child of i, rðiÞ is the right child of i, N0
i is the

number of nets connected to module i (given by the netlist
specification) and M0

i is an offset for adjustments due to net
sharing between module i, region RðlðiÞÞ and region RðrðiÞÞ. There
are two kinds of net sharing, called net completion and net
merging. A net is completed at i if it connects module i with some
modules in RðlðiÞÞ [RðrðiÞÞ or it connects some modules in RðlðiÞÞ
with some modules in RðrðiÞÞ, and it is not connected to any
module outside RðiÞ. Net merging is defined similarly except that
the net will continue to go outside RðiÞÞ to connect some modules
there. M0

i can be computed as

M0
i ¼

X3

j¼2

ðj� 1Þmi
j þ

X3

j¼2

j � cij (3)

where mi
j and cij are the numbers of net merging and completion

at i, respectively, due to net sharing between j out of the three
locations: module i, region RðlðiÞÞ and region RðrðiÞÞ. Note that the
value of j can be 2 or 3 only because a net merged or completed at
i can either come from module i, region RðlðiÞÞ or region RðrðiÞÞ. In
the following, we call a portion of a net connection a subnet.

The adjustment for net merging mi
j is needed because the

repeated countings of one single net in N0
i, NlðiÞ and NrðiÞ will over-

estimate the term Ni. For j ¼ 2, two subnets of a single net coming
from module i, RðlðiÞÞ or RðrðiÞÞ are merged. For j ¼ 3, three subnets
of a single net coming from module i RðlðiÞÞ and RðrðiÞÞ are merged.

ARTICLE IN PRESS

B

A

E

F

D

C

0 0

1

0 1

B

A E

F

DC

0

0

11

1

A

F

B

C D

E

t1 t2

Fig. 2. Construction of TBT.

E

F

D

C

B

A A

F

B

C D

E

Fig. 3. Region RðDÞ.

S.T.W. Lai et al. / INTEGRATION, the VLSI journal 42 (2009) 449–456 451

Author's personal copy

The term mi
j is multiplied by j� 1 because we need to keep one

counting in Ni. An example is shown in Fig. 4. In Fig. 4, we
consider the situation when module D is reached during the post-
order traversal. We use thick solid lines to represent merged nets.
There is one net merged between module D and RðCÞ, one net
between module D and RðEÞ and one net between RðCÞ and RðEÞ, so
mD

2 ¼ 3. There is also one net merged between module D, RðCÞ and
RðEÞ, so mD

3 ¼ 1.
Similarly, the adjustment for net completion cij is needed

because the repeated countings of one single net in N0
i, NlðiÞ and

NrðiÞ will over-estimate the term Ni. The value j in cij has the same
meaning as that in mi

j. The term cij is multiplied by j because the
net has completed and all the countings should be eliminated. In
Fig. 4, we use thick dotted lines to represent completed nets.
There is one net completed between module D and RðCÞ, two nets
completed between module D and RðEÞ, three nets completed
between RðCÞ and RðEÞ, so cD2 ¼ 1þ 2þ 3 ¼ 6. There is also one net
completed between module D, RðCÞ and RðEÞ, so cD3 ¼ 1. Finally,
M0

D ¼ mD
2 þ 2mD

3 þ 2cD2 þ 3cD3 ¼ 3þ 2ð1Þ þ 2ð6Þ þ 3ð1Þ ¼ 20.
In Fig. 4, ND is computed as N0

D þ NC þ NE �M0
D, where N0

D ¼ 10
(by counting the number of nets connected to module D in the
netlist specification), NC ¼ 13, NE ¼ 11 and M0

D ¼ 20. As a result,
ND ¼ 10þ 13þ 11� 20 ¼ 14. There are 14 nets passing through
the boundary of RðDÞ to outside. However, the term M0

i will vary
for different packings, a naive method to compute M0

i will impose
an OðmnÞ run time complexity wherem is the total number of nets
and n is the total number of modules. It is impractical for complex
circuits. Therefore, we have made use of an efficient algorithm for
the least common ancestor problem to compute M0

i. Details of the
implementation will be given in Section 4.4.

4.2. Computation of Pi

The term Pi, the normalized half-perimeter of RðiÞ, can also be
computed easily by following the post-order traversal of the tree.
As the tree edges of a TBT represent the widths and the heights of
the rooms occupied by the modules, we will also separate the
half-perimeter Pi of region RðiÞ into a horizontal portion Ph

i and a
vertical portion Pv

i to make the operation simple. The pseudo-code
is given as follows:

ComputeP (tree t)

Assume that ðpð1Þ;pð2Þ; . . . ;pðnÞÞ is the post-order traversal of t

1. For j ¼ 1 to n

2. i ¼ pðjÞ
3. If i is a leaf node

4. Ph
i ¼ wi

5. Pv
i ¼ hi

6. If i has left child lðiÞ only
7. Ph

i ¼ wi þ Ph
lðiÞ

8. Pv
i ¼ maxfhi; P

v
lðiÞg

9. If i has right child rðiÞ only
10. Ph

i ¼ maxfwi ;P
h
rðiÞg

11. Pv
i ¼ hi þ Pv

rðiÞ
12. If i has both left and right child, lðiÞ and rðiÞ
13. Ph

i ¼ maxfwi þ Ph
lðiÞ; P

h
rðiÞg

14. Pv
i ¼ maxfhi þ Pv

rðiÞ;P
v
lðiÞg

15. Pi ¼ Ph
i

chip_width þ
Pv
i

chip_height

In the pseudo-code, wi and hi are the width and height of the
room occupied by module i, respectively. The computation of PðiÞ
is divided into four cases. Lines 3–5 is the case in which module i

is a leaf node as shown in Fig. 5(a). Fig. 5(b) shows the case when
module i has a left child lðiÞ only (lines 6–8). Fig. 5(c) shows the
case when module i has a right child rðiÞ only (lines 9–11). Lines
12–14 is the last case in which module i has both left child and

right child, lðiÞ and rðiÞ, as in Fig. 5(d). Finally, Ph
i and Pv

i are
normalized by the chip width and the chip height, respectively, on
line 15 to maintain a uniform order of magnitude. As dynamic
programming is applied in the computation, the time complexity
of ComputeP(t) to compute the normalized half-perimeters of all
the n� 1 regions is only OðnÞ.

4.3. Mirror TBT

According to the definition of the TBT representation, the Ci

computed from t1 represent the wire densities of the boundaries
facing the lower left direction, while those computed from t2
represent the wire densities of the boundaries facing the upper
right direction. Each tree can provide n� 1 statistical samples for
wire density evaluation where n is the number of modules. In
order to increase the effectiveness of our evaluation method, a
pair of mirror TBT, which are constructed from the original pair of
TBT, are considered. The mirror TBT is the TBT constructed from a
packing which is rotated by 90� counterclockwise. Together with
the mirror TBT, our evaluation method computes 4ðn� 1Þ wire
density values considering all four routing directions. As sufficient
statistical samples are considered, the routability of a packing can
be estimated correctly.

4.4. Efficient calculation of Ni

In this section, a detailed explanation of how the LCA
algorithm can be used to compute the term Ni efficiently will be
given. Recall from Section 4.1 that the major difficulty of
computing Ni is the high computational cost of computing the
term M0

i. In our approach, instead of computing M0
i for each

module i separately, we are going to compute all the M0
is

ARTICLE IN PRESS

R (E)

D

R (C)

Net Merging
Net Completion

Fig. 4. An example of computing ND .

Fig. 5. Cases in the computation of Pi .

S.T.W. Lai et al. / INTEGRATION, the VLSI journal 42 (2009) 449–456452

Author's personal copy

simultaneously by visiting each net one by one. The M0
is are all

initialized to zero at the beginning. For each net visit, we will
update the values of some M0

is. To consider the effect of a net on
the Mi values, we can look at an example shown in Fig. 6. In this
example, the net p will affect the values of M0

B, M
0
C and M0

D at
nodes B, C and D, respectively, since p will merge and complete at
those nodes (so adjustments are needed). Net p will merge
at nodes B, C and D, and finally complete at B. In general, the nodes
where adjustments are needed are LCAðu;vÞ, where u and v are
some modules connected by the net, e.g., LCAðC; FÞ ¼ C, LCAðE; FÞ ¼
D and LCAðA; EÞ ¼ B. However, we cannot get the correct LCAs
where adjustments are needed by picking the module pairs
arbitrarily. For example, the LCAs obtained by simply selecting the
three adjacent module pairs from the original net specification of
p shown in Fig. 6 are LCAðA;CÞ ¼ B, LCAðC; EÞ ¼ D and LCAðE; FÞ ¼ D,
which are not correct. The following lemma is useful for finding
the correct set of LCAs where adjustments are needed due to a net.

Lemma 1. Given a tree t with n nodes representing n modules and a

net p connecting k modules m1;m2; . . . ;mk in the tree t. The set of

nodes Lp in t where two or more subnets of p meet (so adjustment is

needed) is

Lp ¼
[k�1

i¼1

fLCAðmpðiÞ;mpðiþ1ÞÞg

where mpð1Þ;mpð2Þ; . . . ;mpðkÞ is a permutation of the k modules

obtained by following the in-order traversal of t. (For example, in
Fig. 6, the permutation of the modules connected by p following the

in-order traversal of the tree is ACFE and Lp ¼ fB;C;Dg since

LCAðA;CÞ ¼ B, LCAðC; FÞ ¼ C and LCAðF; EÞ ¼ D.)

Proof. The proof can be done by induction on the number of pins
of net p. The proof for the base case that the net has only two pins
is obvious. Assume that the statement is true for all nets with k or
less pins. Consider a net p connecting kþ 1 modules permuted as
mpð1Þ;mpð2Þ; . . . ;mpðkþ1Þ by following the in-order traversal of the
tree t. Consider a net p0 that connects the k modules
mpð1Þ;mpð2Þ; . . . ;mpðkÞ. According to the inductive hypothesis,
Lp0 ¼

Sk�1
i¼1 fLCAðmpðiÞ;mpðiþ1ÞÞg. It is obvious that Lp0 � Lp. There is

one more subnet in p that is not in p0, which is the subnet
connecting to module mpðkþ1Þ. Consider the positions of module
mpðkþ1Þ and module mpðkÞ in t. There are only two cases as mpðkþ1Þ
follows mpðkÞ in the in-order traversal. In the first case, node mpðkÞ
is an ancestor of node mpðkþ1Þ. In this case, the subnet from mpðkþ1Þ
will merge with the subnet from mpðkÞ at node mpðkÞ. The claim is
correct since LCAðmpðkÞ;mpðkþ1ÞÞ ¼ mpðkÞ.
In the second case, node mpðkÞ is not an ancestor of node mpðkþ1Þ.

Let x ¼ LCAðmpðkÞ;mpðkþ1ÞÞ. Consider the subtree t1 rooted at lðxÞ
and the subtree t2 rooted at rðxÞ. Notice thatmpðkÞ is in t1,mpðkþ1Þ is
in t2 and there is no other modules in t2 except mpðkþ1Þ that is

connected by p. In this case, the subnet from mpðkþ1Þ will merge

with the subnet connecting the modules in t1 at node x. The claim

is also correct since LCAðmpðkÞ;mpðkþ1ÞÞ ¼ x &

After obtaining the set Lp for each net p, we can update the
values of the corresponding M0

is. As shown in Fig. 6, M0
B, M

0
C and

M0
D will be incremented by 1 because net p will be merged at

those nodes. Finally, the value of M0
j for the shallowest module j

(in terms of its depth in the tree) among all the modules in the set
Lp will be further incremented by 1 because the net will be
completed there. For the example shown in Fig. 6, the shallowest
module in Lp is B, so M0

B is further increased by 1. We repeat this
process of finding LCAs and updating M0

is for each net. Finally, we
can apply Eq. (2) to compute all the Ni values for wire density
computation.

In paper [2], an efficient and simple LCA algorithm is proposed.
It reduces the LCA problem to the range minimum query (RMQ)
problem. By applying the sparse table (ST) technique for the RMQ
problem, the LCA problem can be solved in constant time after a
preprocessing time of Oðn log nÞ using dynamic programming.

5. Buffer planning

Our floorplanner tries to plan the module positions such that
the variable interval buffer insertion constraint is satisfied, i.e.,
buffers are constrained to be inserted for long enough wires such
that the distance x between adjacent buffers (or between the
source or sink node and an adjacent buffer) is bounded, i.e.,
x 2 ½L;U�, where L and U are given by the users. We divide a
candidate floorplan solution into a two-dimensional grid struc-
ture and two look-up tables are constructed to store the
routability information between every pair of grids that has a
net connection between them. We will then count the number of
blocked nets, i.e., a net that cannot have all its buffer inserted
successfully, by looking up the two tables and this counting will
be optimized in the objective function of the annealing process.

5.1. Look-up table and feasible grids

In order to perform buffer planning efficiently, we will not
compute the exact buffer locations for each net. Instead, we are
only interested in knowing whether a net has a good chance of
having all its required buffers inserted successfully. Two look-up
tables are constructed using dynamic programming that stores
this routability information between every pair of grids that has a
net connection between them. One table considers the nets
running from (to) upper left to (from) lower right, while the other
one considers those nets running from (to) lower left to (from)
upper right. We define a list F of feasible grids as follows:

Definition 4. A grid G is a feasible grid if

1. G contains a terminal of a net, or
2. G has sufficient empty space to hold a buffers,

where a is a user specified constant.

Therefore, a grid is feasible if it is the starting or the ending
point of a wire connection or it has sufficient space to hold at least
a certain number of buffers. Since we will not compute the exact
buffer locations nor count the number of buffer insertions in order
to achieve a fast evaluation, the parameter a is used to control the
estimation process so that the routability of a floorplan solution
can be predicted more accurately.

ARTICLE IN PRESS

B

A

C

D

E

F

LCA (A, C)

LCA (F, E)

LCA (C, F)

Net merging

Net completion

- In-order tree traversal:

- Permuted netlist in in-order:

- Netlist:
p = {A, C, E, F}

A B C F D E

A C F E

Net p = {A, C, E, F}

Fig. 6. Using LCA to compute Ni .

S.T.W. Lai et al. / INTEGRATION, the VLSI journal 42 (2009) 449–456 453

Author's personal copy

Definition 5. Given a floorplan with a set F of feasible grids, a
routability look-up table L is a two-dimensional table:

L½i; j� ¼ f0 or 1ji; j 2 Fg
such that L½i; j� ¼ 0 if a net or subnet connecting grids i and j is
blocked, and L½i; j� ¼ 1 otherwise.

Recall that a grid containing a terminal of a net is also a feasible
grid, we can thus determine if a net is blocked instantly by
checking with the look-up tables. Two look-up tables L1 and L2 are
used to consider two different routing directions. L1 considers the
nets routing from (to) upper left to (from) lower right while L2
considers the nets routing from (to) lower left to (from) upper
right.

5.2. Construction of the look-up tables

We can construct a look-up table by scanning each feasible grid
once by dynamic programming. In the following, we will explain
the construction based on table L1. L2 can be constructed similarly.
L1 is a q� q table of bit 0 or 1 where q is the size of the set F of
feasible grids. Now we assume that the grids in F are totally
ordered in a non-descending order of their shortest Manhattan
distances from the lower left corner of the floorplan and then in a
non-descending order of their shortest distances from the lower
boundary when two or more grids have the distance from the
lower left corner. We denote this ordered list as Fð1Þ; Fð2Þ; . . . ; FðqÞ.
L1 can be constructed by visiting these feasible grids in the above
order.

Each grid FðiÞ keeps a reachable list RðiÞ which is empty at the
beginning. When we visit a grid FðiÞ, two steps are performed, the
forward step and the backward step. In the forward step, we will
find all the grids FðjÞs which are on the upper left of FðiÞ and at a
distance x from FðiÞ where x 2 ½L;U�. We will put FðiÞ in the
reachable lists of all those FðjÞs. In the backward step, we will
update the look-up table L1 according to the reachable list of FðiÞ.
For each grid FðkÞ in the reachable list of FðiÞ, L1 will be updated as
follows:

L1½i� ¼ L1½i�
[

~uk

if FðkÞ does not have sufficient space to hold a buffers

L1½i� ¼ L1½i�
[

~uk

[
L1½k�

otherwise

where L1½i� denotes the entries on row i of table L1 and ~uk is a unit
vector of q bits with the kth bit set to 1 and the other q� 1 bits set
to 0. This is because if grid FðkÞ has sufficient empty space, it can
act as an intermediate buffer location for a net or subnet
connecting FðiÞ and a grid reachable from FðkÞ, then we need to
update L1½i� according to L1½k�. Notice that L1½k� is already found
when FðiÞ is visited since FðkÞ is on the lower right of FðiÞ. After
visiting all the grids in F, the construction of L1 will be completed.

6. Cost function of the annealing process

The simulated annealing process is divided into two phases. In
the first phase, the candidate solutions are still very far away from
the final solution, so detailed and complicated evaluations are not
needed. The cost function in phase one is

cost ¼ Aþ b1W þ b2D

where A is the area of the smallest bounding rectangle of the
floorplan, W is the total wirelength estimated by the half-
perimeter estimation method, D is the sum of all the wire density
values in the floorplan and b1 and b2 are the weights. The weights

b1 and b2 are set in such a way that the ratio of importance of the
terms A, W and D are 2:2:1. This ratio of importance is obtained
from experiments.

The second phase starts after 40% of the total number of
iterations. In the second phase, more accurate estimations are
performed and buffer planning is considered. The cost function in
this phrase is

cost ¼ Aþ g1W
0 þ g2Dþ g3B

where W 0 is the total wirelength estimated by the minimum
spanning tree approach, B is the total number of blocked nets and
g1, g2 and g3 are the weights. These weights are set such that the
ratio of importance of the terms A, W 0, D and C is 2:2:1:1. Again,
this ratio of importance is found from experiments.

7. Run time complexity

Efficiency is one of the major advantages of our interconnect-
driven floorplanner. In the following, we will analyze the run time
complexity of the congestion estimation process and the buffer
planning process. Recall from Eq. (1) that the computation of a
wire density Wi is divided into two parts, the computation of Ni

and the computation of Pi. The operations needed to compute Ni

for all i include (i) the construction of the LCA sparse table which
takes Oðn log nÞ time where n is the number of modules, (ii) the
computation of M0

i for all i by looking up the LCA sparse table
which takes OðkÞ time where k is the total number of terminals in
the netlists, and (iii) the computation of Eq. (2) for all the modules
which takes OðnÞ time, so the total run time of computing all Ni

will be Oðn log nþ kÞ. On the other hand, the run time complexity
of computing Pi for all i is OðnÞ. As a result, the total time taken of
the whole congestion estimation process is Oðn log nþ kÞ.

For buffer planning, we need to visit each feasible grid once to
construct the two routability look-up tables. In each visit, we need
to perform a forward step and a backward step, the run times of
which are both dependent on the maximum size of a reachable
list. The size of a reachable list is a linear function of L, U and g

where g � g is the size of the grid structure into which the
floorplan is divided. Since L and U are small constants specified by
the users, the run time of each visit can be written as OðgÞ. The run
time to construct the two look-up tables is thus OðgjFjÞ where F is
the set of feasible grids. After constructing the look-up tables, we
need to check all the nets to count the number of blocked nets and
this will take another OðkÞ time. Therefore the total run time for
the whole buffer planning process is OðgjFj þ kÞ.

8. Experimental results

We have implemented our floorplanner and compared its
performance with a traditional floorplanner and two related
previous works, [9,13], since they also assumed the variable
interval buffer insertion constraint. The traditional floorplanner is
a simulated annealing-based floorplanner that considers area and
total wirelength (using half-perimeter estimation) only in the cost
function. In order to evaluate the performance of the floor-
planners, a simple global router is implemented to route the final
floorplan solutions. In this simple global router, each multi-pin
net is first decomposed into a set of 2-pin nets. These 2-pin nets
are then routed one after another by maze routing. Rip-up and re-
route will be done to route as many nets as possible. A wire is
unroutable if it cannot be routed successfully due to congestion
(each grid has a wiring capacity constraint) or buffer insertion
failure. Three MCNC benchmarks, ami32, ami49 and playout, are
used. (There are totally six MCNC benchmarks but the other three

ARTICLE IN PRESS

S.T.W. Lai et al. / INTEGRATION, the VLSI journal 42 (2009) 449–456454

Author's personal copy

are very simple and they will not have any routability problem.) In
additions, we have generated three heavily connected data sets,
n2000, n2500 and n3000, to demonstrate the performance of the
floorplanners. The detailed specifications of these data sets are
shown in Table 1.

Table 2 compares our floorplanner with the traditional
floorplanners and those in paper [9] and [13]. We used the data
in paper [10] to compute the parameters for the router. For ami33

and ami49, feature values of the 0:18mm technology were used,
while for the other data sets, feature values of the 0:13mm

technology were used. Notice that the numbers of unroutable
wires reported in Table 2 are not integers because they are the
average obtained by performing the experiments several times.
Results show that the number of unroutable wires can be reduced
significantly by applying our fast congestion estimation and buffer
planning method. In terms of reduction in the number of
unroutable wires, our floorplanner is better than the
floorplanner in [9] but not as good as the one in [13]. However,
if we compare the run times, our floorplanner is found to be the
most suitable one for large complex circuits because our run time
grows very slowly. We did not compare with the floorplanner in
[9] for the three complicated data sets because their results
cannot be obtained in a reasonable amount of time.

9. Conclusion

In this paper, we presented an interconnect-driven floor-
planner that considers both wire congestion and buffer planning.
The major advantages of our floorplanner are its accuracy and its
scalability to large complex circuits. We measure congestion as
the average number of wires passing through the boundaries of
different regions of the floorplan. Buffer planning is performed by
constructing routability look-up tables from which we can
determine approximately the number of blocked nets due to
unsuccessful buffer insertions. Experimental results have shown
that the performance of our floorplanner is comparable with other
interconnect-driven floorplanners that perform global routing-
like operations directly to estimate routability. However, our
method is good for large complex circuits since the run time of our
floorplanner will grow much slower than that of the other
floorplanners when the complexity of the circuit increases.

References

[1] C.J. Alpert, J. Hu, S.S. Sapatnekar, P.G. Villarrubia, A practical methodology for
early buffer and wire resource allocation, in: Proceedings of the 38th ACM/
IEEE Design Automation Conference, 2001, pp. 189–194.

[2] M.A. Bender, M. Farach-Colton, The LCA problem revisited, in: Latin American
Theoretical INformatics, 2000, pp. 88–94.

[3] H.M. Chen, H. Zhou, F.Y. Young, D.F. Wong, H.H. Yang, N. Sherwani, Integrated
floorplanning and interconnect planning, in: Proceedings of IEEE Interna-
tional Conference on Computer-Aided Design, 1999, pp. 354–357.

[4] J. Cong, Challenges and opportunities for design innovation in nanometer
technologies, SRC Working Papers, 1997.

[5] J. Cong, T. Kong, D.Z. Pan, Buffer block planning for interconnect-driven
floorplanning, in: Proceedings of IEEE International Conference on Computer-
Aided Design, 1999, pp. 358–363.

[6] F.F. Dragan, A.B. Kahng, S. Muddu, A. Zelikovsky, Provably good global
buffering using an available buffer block plan, in: Proceedings of the
International Conference on Computer-Aided Design, 2000, pp. 104–109.

[7] S. Krishnamoorthy, J. Lou, H.S. Sheng, Estimating routing congestion using
probabilistic analysis, in: Proceedings of International Symposium on Physical
Design, 2001, pp. 112–117.

[8] P. Sarkar, V. Sundararaman, C.K. Koh, Routability-driven repeater block
planning for interconnect-centric floorplanning, in: International Symposium
on Physical Design, 2000, pp. 186–191.

[9] C.W. Sham, E.F.Y. Young, Routability driven floorplanner with buffer block
planning, in: Proceedings of International Symposium on Physical Design,
2002, pp. 50–55.

[10] D. Sylvester, K. Keutzer, Getting to the bottom of deep submicron, in:
Proceedings of the International Conference on Computer-Aided Design, 1998,
pp. 203–211.

[11] X. Tang, D.F. Wong, Planning buffer locations by network flows, in:
International Symposium on Physical Design, 2000, pp. 180–185.

[12] M. Wang, M. Sarrafzadeh, Modeling and minimization of routing congestion,
in: IEEE Asia and South Pacific Design Automation Conference, 2000,
pp. 185–190.

[13] K.K.C. Wong, E.F.Y. Young, Fast buffer planning and congestion optimization in
interconnect-driven floorplanning, in: Proceedings of 8th Asia and South
Pacific Design Automation Conference, 2003, pp. 411–416.

[14] B. Yao, H. Chen, C.K. Cheng, R. Graham, Revisiting floorplan representations,
in: Proceedings of International Symposium on Physical Design, 2001,
pp. 138–143.

ARTICLE IN PRESS

Table 1
Data set specifications.

Data Number of modules Number of terminals Number of nets

ami33 33 42 123

ami49 49 22 408

playout 62 192 1611

n2000 60 200 2000

n2500 75 200 2500

n3000 90 200 3000

Table 2
Comparisons between different floorplanners.

Data Dead space

(%)

Wire Length

(103 mm)

Number of unroutable

wires

Run time

(s)

ami33

Traditionala 10.31 21.25 15.03 21.05

[9]b 11.80 20.59 9.63 678.45

[13]c 12.39 23.21 3.88 290.69

Our

floorplannera
11.63 22.18 6.88 653.75

ami49

Traditional 10.87 386.45 14.53 25.54

[9] 10.80 379.80 10.00 789.46

[13] 11.24 384.55 6.75 369.18

Our

floorplanner

18.67 398.39 8.72 688.73

playout

Traditional 10.25 284.78 170.54 30.64

[9] 10.38 290.56 115.88 3498.23

[13] 11.74 274.74 94.50 912.21

Our

floorplanner

16.83 298.90 107.60 720.44

n2000

Traditional 11.56 102.60 581.75 35.41

[13] 15.35 114.65 416.47 1316.81

Our

floorplanner

17.72 114.42 430.17 761.50

n2500

Traditional 14.08 141.09 887.35 37.54

[13] 16.51 155.37 675.61 1701.46

Our

floorplanner

20.26 173.21 694.46 774.83

n3000

Traditional 16.37 177.77 1299.75 46.95

[13] 18.45 194.47 970.45 1916.85

Our

floorplanner

20.88 208.80 988.40 832.05

a Pentium IV 1.4GHz processor and 512MB memory.
b Pentium IV 1.2GHz processor and 512MB memory.
c Pentium IV 1.4GHz processor and 256MB memory.

S.T.W. Lai et al. / INTEGRATION, the VLSI journal 42 (2009) 449–456 455

Author's personal copy

[15] E.F.Y. Young, C.C.N. Chu, Z.C. Shen, Twin binary sequences: a non-redundant
representation for general non-slicing floorplan, in: Proceedings of Interna-
tional Symposium on Physical Design, 2002, pp. 196–201.

Steve T.W. Lai: Steve T.W. Lai received his B.Sc. and M.Phil. degrees in Computer
Science and Engineering, in 2001 and 2003, respectively, from the Chinese
University of Hong Kong, Shatin, N.T., Hong Kong. His research interests include
floorplanning and algorithms.

Evangeline F.Y. Young: Evangeline Young received her
B.Sc. degree and M.Phil. degree in Computer Science
from The Chinese University of Hong Kong (CUHK). She
received her Ph.D. degree from The University of Texas
at Austin in 1999. Currently, she is an associate
professor in the Department of Computer Science and
Engineering in CUHK. Her research interests include
algorithms and CAD of VLSI circuits. She is now
working actively on floorplanning, placement and
routing. Dr. Young has served on the technical program

committees of several major conferences including
ICCAD, ASP-DAC, ISPD and GLSVLSI.

Chris C.N. Chu: Chris Chu received the B.S. degree in
Computer Science from the University of Hong Kong,
Hong Kong, in 1993. He received the M.S. degree and
the Ph.D. degree in Computer Science from the
University of Texas at Austin in 1994 and 1999,
respectively. Dr. Chu is currently an Associate Professor
in the Electrical and Computer Engineering Depart-
ment at Iowa State University. His area of expertises
include CAD of VLSI physical design, and design and
analysis of algorithms. His recent research interests are
performance-driven interconnect optimization and
fast circuit floorplanning, placement, and routing
algorithms. He received the IEEE TCAD best paper

award in 1999 for his work in performance-driven interconnect optimization. He
received the ISPD best paper award in 2004 for his work in efficient placement
algorithm. He received the Bert Kay Best Dissertation Award for 1998-1999 from
the Department of Computer Sciences in the University of Texas at Austin. Dr. Chu
has served on the technical program committees of several major conferences
including ICCAD, ISPD, ISCAS, DATE, ASP-DAC, and SLIP. He has also served as an
organizer for the ACM SIGDA Ph.D. Forum.

ARTICLE IN PRESS

S.T.W. Lai et al. / INTEGRATION, the VLSI journal 42 (2009) 449–456456

