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Abstract

To achieve timing closure in a placed design, buffer insertion and driver sizing are two of the most effective transforms
that can be applied. Since the driver sizing solution and the buffer insertion solution affect each other, sub-optimal
solutions may result if these techniques are applied sequentially instead of simultaneously. We show how to simply
extend van Ginneken’s buffer insertion algorithm to simultaneously incorporate driver sizing and introduce the idea of
a delay penalty to encapsulate the effect of driver sizing on the previous stage. The delay penalty can be pre-computed
efficiently via dynamic programming. Experimental results show that using driver sizing with a delay penalty function
obtains designs with superior timing and area characteristics.

1 Introduction

Of all the techniques that can be applied in a physical synthesis optimization, driver sizing and buffer insertion are perhaps
the two most effective. Typically these operations are performed sequentially, perhaps even iteratively alternating between
the two optimizations. The problem is that the two optimizations affect each other which means optimizing them in
sequence can yield to a solution that is sub-optimal relative to optimizing them simultaneously.

Consider the example in Figure 1(a) of a woefully underpowered AND gate driving a long interconnect to a single sink.
Left alone, a net like this will likely have both prohibitively large delay and poor signal integrity. By applying driver
sizing first as in (b), the algorithm will invariably choose an extremely large driver to handle the large capacitive load.
Although this will improve the delay characteristics somewhat, the net still will likely need buffers to deal with the
resistive interconnect. If one applies buffer insertion first, a solution like that in (c) will result. In this case, buffers are
added immediately after the driver, which has the effect of artificially “powering up” the driver before propagating the
signal down any significant length of interconnect. The solution in (d) resulting from a simultaneous optimization contains
a more reasonably sized driver than that in (b) and uses fewer buffers than in (c). Applying buffer insertion and driver
sizing sequentially cannot obtain this solution.
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Figure 1: Example single-sink net with long interconnect and (a) an underpowered driver. If one applies (b) driver sizing,
then an oversized driver results, but applying (c) buffer insertion leads to additional powering up buffers near the source.
The best solution (d) results from simultaneous buffer insertion and driver sizing.

The fundamental approach in buffer insertion is van Ginneken’s dynamic programming algorithm [15] which finds the
optimal solution for a given Steiner tree and a single buffer type. The reason that this algorithm has become a classic in
the field is that its basic approach can be extended to handle many formulations. For example, Lillis et al. [9] extends
the algorithm to trade off solution quality with buffering resources and use a buffer library with inverters and repeaters.
Alpert et al. [2] extends the algorithm to simultaneously avoid noise and later in [3] to use higher-order delay models.

If one does not accept the restriction that the Steiner tree is fixed before buffer insertion is performed, then a suite of other
heuristics emerge [8] [12] [13] [14] [16]. These heuristics all in some way exploit the dynamic programming paradigm but
in a manner that allows multiple tree topologies to be considered. Several works have also proposed simultaneous buffer
insertion and wire sizing optimization. The works of [1] and [9] incorporate wire sizing into the van Ginneken framework
though several other types of techniques have been proposed (e.g., [5][11]).

One extension that has not yet been proposed (until now) is simultaneous driver sizing. Perhaps this is not surprising
since all the previous discussed buffer insertion, Steiner topology, and wire sizing optimizations can be applied to nets
independently, while driver sizing cannot. Cong and Koh [4] did propose simultaneous driver and wire sizing, where the
driver is modeled as a chain of cascaded drivers.

If one improves the timing characteristics of a given net with these optimizations, then the overall timing is guaranteed not
to degrade. However, if one sizes the driver during buffer insertion, the choice of the driver can affect the paths upstream
in the timing graph. A local decision to improve the timing for a particular net can result in increased input capacitance
on the previous logic stage, thereby degrading the overall timing.

We propose to extend van Ginneken’s algorithm to handle driver sizing by treating the source node as a “driver library”.
We make no assumptions about the relationship between the driver size and key parasitics; rather, we simply assume the
existence of functions which can make queries on the delay, slew and input capacitance of a particular gate. This allows
one to consider driver sizing on gates with different “footprints” as opposed to the typical assumption of a single scaled
footprint.

To try to mitigate the effect of the driver choice upstream without having to query the timing graph, we propose a method
for adding a “delay penalty” depending on the choice of the driver. We show that this technique yields better area and
timing characteristics than either buffer insertion alone or buffer insertion and driver sizing without a delay penalty.
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The remainder of the paper is as follows. Section 2 explains how to extend van Ginneken’s algorithm to incorporate
driver sizing. Section 3 explains the idea behind our delay penalty calculation, while Section 4 presents the algorithm and
extensions. We present experimental results in Section 5 and conclude in Section 6.

2 Simultaneous Driver Sizing and Buffer Insertion

Van Ginneken’s algorithm starts from the sinks and recursively builds a set of buffer insertion “candidate” solutions until
a single set of candidates is built for the source of the given Steiner tree. This set of candidates is completely independent
of the driver strength. After the candidates for the source node are computed, the driver delay is taken into account for
each candidate, then the candidate which maximizes the minimum slack to each sink is returned as the solution. This
procedure is optimal for a given Steiner tree and the Elmore delay model.

Extending van Ginneken’s algorithm to handle driver sizing is fairly straightforward. Assume we have a driver library
containing various implementations and/or sizings of the same logic function as the original driver. If � is a particular
driver type, let �������	��
������� be the delay through this gate type driving capacitance � , and let ��� be the input capacitance
of the driver.

Figure 2 shows pseudocode of this extension. Step 1 computes the set � of all candidates at the source. Step 2 initializes
the new set of candidates ��� to the empty set. Step 3 iterates through the candidates in � . For each such candidate, Step
4 generates a new candidate for each driver type � and adds it to ��� . Assume for now that ��
�������� � . Finally, Step 5
returns the solution in ��� with maximum slack.

Van Ginneken’s algorithm with Driver Sizing
1. Set � to list of all candidate solutions at source.
2. Set �!�"�$# .
3. For each candidate 
��%'&(�*)+� do
4. For each driver type � in driver library

Let &%�"�,&.-/����������
0��'�1�2-3��
4�!�5� .
Set �6�7�,�6��8:9;
��%�&%�<�>= .

5. Return candidate 
��%'&(�?� such that
&%�@�BADC%E@9�&GF�
��%'&(��):�6��= .

Figure 2: Van Ginneken’s algorithm with simultaneous driver sizing.

The complexity of the algorithm is now HI
�J�KMLNK*OPJ�QR� where J is the number of possible buffer insertion locations, L
is the size of the buffer library, and Q is the size of the driver library. If Q is less than HI
SJTL K � (which should be the case
most often), the complexity is HI
�J K L K � which is the same as the extension of the van Ginneken algorithm in [9].

The obvious problem with this implementation is that it ignores the impact on the previous stage. In practice, we have
observed that the largest (i.e., strongest) driver is almost always chosen which has the most detrimental effect on the
previous stage and may worsen the overall delay. In addition, using unnecessarily large drivers waste area and power
resources.

One could consider actually temporarily committing the buffer insertion candidate solution to the design, trying various
power levels, and timing the design in Step 5. Not surprisingly, it becomes prohibitively expensive to make HI
SJ�QR�
critical path queries. We somehow need to capture the effect on increasing capacitance upstream without actually making
queries to the timing analyzer.
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We propose to add a delay penalty ��
�� �	� that is a function of the input capacitance of � . The larger the input capacitance,
the larger the penalty there should be upstream. We now discuss our proposed delay penalty function.

3 Delay Penalty Function

Recall that for a driver � , ��� is the capacitive load of the input pin along the most critical path. The associated delay
penalty ��
����5� is defined as the minimum delay to drive the capacitance � � by a cascaded buffer chain starting with a
buffer with smallest input capacitance.

The reason for this definition is that buffer insertion can always be applied to the preceding net in the critical path. Indeed,
one possibility is to insert a series of buffers directly in front of � to isolate the potentially large capacitance � � on the
driver of the previous logic stage. We use the minimum delay needed to isolate the capacitance as our estimation of the
delay penalty. This estimation is pessimistic because better ways to insert buffers may be possible. However, this should
not be a problem since the estimation is used only as a relative measure to compare different driver sizes.

There are several previous results on calculating the minimum delay of a cascaded buffer chain [6] [7] [10]. However, these
results assume that a library of buffers of continuous and unbounded size is used and that all buffers can be characterized
by a single linear equation. In reality, cell libraries contains a finite number of buffers of discrete size. Also, buffers of
different architectures are used. They may have very different characteristic and hence cannot be characterized by a single
equation.

Figure 3 graphs delay penalties for a real library of discrete buffers and a library constructed by continuous scaling of the
minimum-sized buffers. The two functions are significantly different. In our experiments, we have observed that when the
delay penalty for continuous library is used, drivers tend to be undersized and the slacks of the resulting circuits are not
as good. Hence, the delay penalty for discrete library is preferred. The following section presents an efficient algorithm
to compute the delay penalty for any discrete buffer library.

4 Delay Penalty Computation

For now, assume all buffers are non-inverting and that buffer delays are independent of input slew. We consider extensions
for input slew and inverting buffers later. Suppose a buffer library L consisting of J buffers L � ��������L�� is given. Let
�������	��
�L��  �
	T� be the delay for buffer L�� to drive a given load ��	 , and let �
�� be the input capacitance of buffer L�� .
Assume that the buffers are ordered such that ����� � �
��� ��������� �
��� .

We define the delay penalty ��
4� 	 � to be the minimum delay over all possible chains of buffers from L to drive � 	 such
that the first buffer is L � . If � 	 � � � � , then adding a buffer chain only increases the capacitance seen by the previous
driver, so ��
4� 	 � is defined as zero.

The following lemma allows us to use a simple dynamic programming technique to construct optimal buffer chains.
Assume that for each L � ) L , �������	��
�L �  � 	 � is monotone non-decreasing in � 	 .

Lemma 1 In any optimal buffer chain, the load ��	 driven by any buffer L�� must be greater than ����� .

Proof: Assume that the load � 	 driven by L � is less than or equal to � � � . Assume L � directly precedes L � in
the buffer chain. Since � 	 � � � � and delay is monotone decreasing, �������	��
�L � �� 	 � � �������	��
�L � �� � ��� . Since
�������	��
�L � �� 	 �
�B� , removing L � from the buffer chain reduces the overall delay, which means the chain is not optimal.
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Figure 3: Delay penalty functions for a library of discrete buffers and a library constructed by continuous scaling of the
minimum-sized buffer.

The contradiction implies that we must have ��	 �B� ��� . �

We first discuss how to compute delay penalties to drive the input capacitances of buffers (i.e., ��
4���� � for all � ). For the
optimal buffer chain to drive capacitance ���� , if L � is the last buffer in the chain, then according to Lemma 1, � �����B�
�� ,
which implies ����� . That means the optimal buffer chain to drive ���� can be constructed by appending some buffer L��
to the optimal buffer chain to drive capacitance � � � , where ��) 9	�������� 
��-��%= . The idea is illustrated in Figure 4. To be
more specific, � 
�� � '� can be calculated by dynamic programming as follows:

��
�� � �1� � �
��
�� � �� � A������ � � ��� ��� ��
4� � �M��O � �M���	�@
�L �  � � '��� for �2��� 
� ������> J

For any load with capacitance � 	 other than � � �% ������%� � � , the delay penalty is given by finding the buffer L � such that
the delay of the optimal chain through L � plus the delay of L � driving � 	 is minimized. This is given as:

��
�� 	 � � A������ � � � � � 
�� � �1��O �������	��
�L � �� 	 ���

Assume each delay query � �M���	�@
�L �  � � takes constant time. Then the time to compute the delay penalty for each buffer
in L is HI
'F L�F K � . To compute the delay penalty for a load capacitance for any additional value takes HI
�F L F � time. Note
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Figure 4: Illustration of the dynamic programming technique to construct optimal buffer chains.

that we only need to compute the delay penalties for driving input capacitances of buffers once for each buffer library.
Then the delay penalty and the corresponding optimal buffer chain can be stored for each buffer.

4.1 Slew Consideration

Previously, we had assumed that buffer delay is independent of input slew. We can modify the algorithm to include signal
slew in the calculation of delay penalty as follows. First, the buffer chain can be constructed as in Section 4. Then, the slew
can be propagated along the buffer chain. Finally, the delay penalty can be computed according to the slew-dependent
buffer delay model.

Although this simple extension works well in practice, the buffer chain obtained in Section 4 may not be optimal if slew
is considered. The optimal buffer chains with slew consideration can be found by a more elaborate dynamic programming
technique. The idea is to propagate both delays and output slews of buffer chains in the dynamic programming algorithm.
For each load value, many pairs of delay and output slew, each corresponds to a different buffer chain, are kept as solutions.
All the solution pairs are considered when solution pairs for larger load values are constructed.

For buffer L�� , let �������	��
��>'L�� ��
	T� be the delay and �6����� ( � , L�� , �
	 ) be the output slew of L�� , where � is the input slew
and �
	 is the load capacitance. Let ��� be the input slew to the buffer chain. Let ��� 
��>���	T� be the pairs of delay and
output slew for a buffer chain to drive � 	 if the input slew is � . Then for ��� �  � ������>'J , �	��
�� � �� �  � can be calculated
by dynamic programming as follows:

�	� 
��
�	��
�� � � �7
�� O �������	��
��>�L��( � �� � ��6����N
��>�L��5 � ��'� ��� 
�� �� ��) ����
��
�	��
���1�  � � � � ��-����

Note that for any fixed � � and � �  , if there are two pairs in ��� 
�� �  � � '� such that one is less than the other in both delay
and output slew, then the second pair can be pruned without affecting the optimality of the algorithm.

For any load with capacitance � 	 other than � � �� ������(� � � , ��� 
�� �  � 	 � is given by:

����
��
�� �
	T� � �"
���O ����������
��>'L �% �
	T�>��!����N
��>�L��5 �
	@�'��� 
�� �� �*) �	� 
��
�	��
�����  � � � � J��

The delay penalty for a load with capacitance � 	 is given by the minimum delay over all the pairs in ����
�� � �� 	 � .

4.2 Handling Inverters

Inverters in the buffer library can be handled by a similar idea as in [9]. In additional to ��
�� � '� , we can define � �4
�� � ��
similarly for solutions with an inverted output signal. Then ��
4� � �� and � ��
4� � '� for all � can still be calculated by
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dynamic programming in HI
'F L�F K � time as follows:

��
�� � �1� � � � if L � is non-inverting� if L � is inverting

� � 
�� � ��� � � � if L � is non-inverting
� if L � is inverting

��
�� � �� � A������ � � ��� ��� � ��
��
���M�TO �������	��
�L �(��
�� � if L � is non-inverting
� � 
��
���1��O �������	��
�L �(��
�� � if L�� is inverting � for �2� �  � ������>'J

� � 
4� � '� � A������ � � ��� � � � ��
�� � �M�TO � � �5
�� �  � if L � is inverting
� � 
�� � �1��O � � �(
4� � '� if L � is non-inverting � for �2� � 
� ������ 'J

The delay penalty ��
4� 	 � for each other � 	 value can be calculated in HI
�F L F � time:

��
��
	�� � A���� � � � � � � ��
�� � �1� O ����������
�L � �� 	 � if L � is non-inverting
� �4
�� � �1��O �������	��
�L � �� 	 � if L � is inverting �

4.3 Driver and Buffer Area Consideration

Besides causing more delay in preceding stage, a larger driver also occupies more area and potentially induces more
buffers in preceding stage. These extra costs associated with driver sizing can be modeled as follows:

Total penalty � Delay penalty O���� Driver area �

The user-defined constant � converts the driver area into units of time so that it can be added to the delay penalty and to
specify the relative importance of delay and area.

4.4 Runtime Reduction by Table-Lookup

For the delay penalty computation technique described in Section 4, each query of delay penalty takes HI
�F L F � time. A
query needs to be made for each candidate buffer insertion solution generated and for each driver size. Hence, the delay
penalty computation can be expensive. For example, for the ckt4 in our experiments, buffer insertion and driver sizing
are considered for 3000 nets. The library used consists of 48 buffers which requires a total of 6.2 millions queries. As a
result, the algorithm is slowed down by about 35%.

To reduce the time spent on delay penalty computation, a table can be constructed to store delay penalty values for a large
range of capacitance values before van Ginneken’s algorithm is ever called. Since the delay penalty �:
���	�� increases
faster when ��	 is small and slower when ��	 is large, a non-uniform interpolation for the lookup table is more efficient.
The following function to convert the capacitive load � 	 into the index of the table works well in practice:

Index in table � Round-to-Integer 	�
��� 
�� 	�� ��� � � �
��� 
4������� � ��� � � � Q��
where Q is the number of entries in the table, and ��� � � and ������� are a lower bound and an upper bound on � 	 ,
respectively. When Q �����5�5� and �������N� �(�5���5�	��� � � , we observe that this table-lookup method causes less than 0.1%
error in delay penalty values and introduces virtually no extra runtime.

7



5 Experimental Results

Four different driver sizing techniques are incorporated into the van Ginneken style buffer insertion algorithm. They are
called ’No’, ’Max’, ’DP’, ’DAP’ below:

� ’No’ – No sizing is done, just like in the original van Ginneken algorithm.

� ’Max’ – The driver size is chosen to optimize the buffered net locally, i.e., the delay penalty is set to zero. This
typically leads to choosing one of the strongest available drivers, hence the ’Max’ name.

� ’DP’ – The delay penalty approach is used.

� ’DAP’ – The driver area penalty is added to ’DP’ as explained in Section 4.3. The area constant � is set to �'��� ����� K .
These four algorithms are applied to five industry circuit designs. For each circuit, we first determine a subset of nets to
optimize based on net capacitances and criticalities. Then the integrated buffer insertion and driver sizing algorithms are
applied to each net in the list sequentially. The results are summarized by the following measurements in Table 1:

� Nets seen is the number of nets for which buffer insertion and driver sizing is considered. The number varies
slightly between the algorithms due to newly created nets. For example, one might try to optimize a net created by
a previous buffer insertion solution.

� Buffering presents the total number of buffers inserted and the total area occupied by the buffers.

� Driver Sizing presents the number of drivers that were sized up to large size, the number down to a
smaller size, and the total change in area from the sizing.

� Area � gives both the total and percentage change in area resulting from applying the optimization algorithm.

� Negative Slack gives the slack of the most timing critical path and the total number of nets remaining with negative
slack values.

We make the following observations:

� The ’No’ algorithm, corresponding to no driver sizing inserts more buffers than the other three schemes. It also
yields the most negative paths remaining for four of the five circuits, though the worst slack path is often competitive
with the other approaches.

� The ’Max’ algorithm sizes up the most drivers by far (though it also sizes down several) and also consumes the
most area. This is especially prevalent for ckt4 where its sizing consumes 25.7% of the total circuit area. Using this
much area will certainly cause both problems for power and the placement legalization program.

� ’DP’ uses significantly less total area than ’Max’ and slightly less than ’No’ overall. It also generates better perfor-
mance in terms of the most critical path and the number of negative slack nets.

� The ’DAP’ algorithm obtains similar results to ’DP’ (though arguably not quite as strong), but with significant area
savings.

Overall, the delay penalty function appears to work as intended. It prevents the significant gross oversizing done when
there is no delay penalty while actually improving the overall timing of the design.

8



6 Conclusions

We have shown how to extend van Ginneken’s classic buffer insertion algorithm to simultaneously perform driver sizing
without increasing time complexity. A key component to our approach is our ability to handle the effect of increasing
the capacitance on the previous net without actually querying the timing graph. This is accomplished using an efficient
dynamic programming approach to build optimal discrete buffer chains. Our experiments show that the delay penalty
function effectively reduces total area and also obtains better overall timing. In future work, we plan to study the impact
of this approach within a physical synthesis environment.
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ckt1: 73K cells
Nets Buffering Driver Sizing Area � Negative Slack
seen insert area up down area � Total % worst nets

No 15607 2120 615037 0 0 0 615037 7.8 -2141.90 13104
Max 15331 866 210882 12288 150 2552278 2763159 34.9 -2167.97 12459
DP 14706 658 140522 2796 151 351624 492147 6.2 -1727.57 11567

DAP 14791 646 136629 2387 147 280629 417257 5.3 -1772.72 11738

ckt2: 93K cells
Nets Buffering Driver Sizing Area � Negative Slack
seen insert area up down area � Total % worst nets

No 491 349 143780 0 0 0 143780 1.1 -710.36 383
Max 484 137 57722 312 6 48245 105967 0.8 -431.43 170
DP 485 147 58212 236 5 34751 92963 0.7 -432.39 200

DAP 483 142 57551 216 7 30906 88457 0.7 -536.03 236

ckt3: 196K cells
Nets Buffering Driver Sizing Area � Negative Slack
seen insert area up down area � Total % worst nets

No 28395 3697 1226767 0 0 0 1226767 0.8 -6413.65 83726
Max 28225 2833 883004 19419 531 3742457 4625461 3.0 -7373.20 85861
DP 28204 2919 868776 3478 624 357624 1226400 0.8 -6756.68 82353

DAP 28220 2978 880873 2312 671 158253 1039127 0.7 -6335.87 82346

ckt4: 285K cells
Nets Buffering Driver Sizing Area � Negative Slack
seen insert area up down area � Total % worst nets

No 29907 1942 4645515 0 0 0 4645515 6.4 -2253.69 147632
Max 29199 1076 2749371 16670 431 15814341 18563712 25.7 -2539.32 144666
DP 29272 1059 2441902 5599 881 3341002 5782904 8.0 -2254.90 143162

DAP 29842 1243 3039484 1408 649 244240 3283723 4.5 -2353.36 146505

ckt5: 303K cells
Nets Buffering Driver Sizing Area � Negative Slack
seen insert area up down area � Total % Worst Nets

No 22033 9444 1820760 0 0 0 1820760 0.7 -4127.03 66484
Max 21172 8621 1550088 12576 946 898553 2448641 0.9 -4127.03 64837
DP 21448 7921 1435692 5741 628 207430 1643122 0.6 -4127.03 64613

DAP 21579 8149 1481136 4149 745 135158 1616294 0.6 -4127.03 65013

Table 1: Comparison of four different driver sizing techniques on five industry circuits.

10


