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Placement Constraints in Floorplan Design
Evangeline F.Y. Young, Chris C.N. Chu, and M.L. Ho

Abstract— In floorplan design, it is common that a designer
will want to control the positions of some modules in the final
packing for various purposes like data path alignment and I/O
connection. There are several previous works [3], [5], [7], [8],
[10], [12]–[14] focusing on some particular kinds of placement
constraints. In this paper, we will present a unified method to
handle all of them simultaneously, including preplace constraint,
range constraint, boundary constraint, alignment, abutment and
clustering, etc., in general non-slicing floorplans. We have used
incremental updates and an interesting idea of reduced graph to
improve the runtime of the method. We tested our method using
some benchmark data with about one eighth of the modules
having placement constraints and the results are very promising.
Good packings with all the constraints satisfied can be obtained
efficiently.

Index Terms— VLSI CAD, Physical design, Floorplanning,
Placement constraints, Optimization

I. INTRODUCTION

Floorplan design is an important step in physical design of
VLSI circuits to plan the positions of a set of circuit modules
on a chip in order to optimize the circuit performance. In this
floorplanning step, it is common that a designer will want to
control the positions of some modules in the final packing
for various reasons. For example, a designer may want to
restrict the separation between two modules if there are many
interconnections between them, or he may want to align them
vertically in the middle of the chip for bus-based routing. This
will also happen in design re-use in which a designer may want
to keep the positions of some modules unchanged in the new
floorplan. The analog designers will also be interested in a
particular kind of placement constraint called symmetry, and
some recent literature on this problem can be found from [1],
[2]. However, an effective method to control the absolute or
relative positions of the modules in floorplanning is non-trivial
and this inadequacy has limited the application and usefulness
of many floorplanning algorithms in practice.

Several previous works have been done to handle some
particular kinds of placement constraints. The floorplanners
in [3], [8], [12] can handle preplace constraint in which some
modules are fixed in position. The paper [5], [7], [14] work on
boundary constraint in which some modules are constrained
to be placed along one of the four sides of the chip for I/O
connection. The paper [13] generalizes the approach in [12] to
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handle range constraint in which some modules are restricted
to be placed within some rectangular ranges. The floorplanner
in [10] can handle alignment constraint which may arise in
bus-based routing. Different approaches are used to handle
different kinds of constraints and there is no unified method
that can handle all of them simultaneously.

In this paper, we will present a unified method that can
handle different kinds of placement constraints simultaneously,
including preplace constraint, range constraint, boundary con-
straint, alignment, abutment and clustering, etc., in general
non-slicing floorplans. Users can input a mixed set of con-
straints and our floorplanner will be able to address all of
them simultaneously. (It is reasonable to assume that the input
constraints are not contradictory to each other. However, we
can also handle inconsistent user requirements by generating
a packing that satisfies the requirements as much as possible.)
We make use of constraint graphs to handle the constraints and
can thus be used with any kind of floorplan representation
that computes the module positions by constraint graphs,
e.g., sequence pair, BSG, O-Tree, CBL, Q-seq, TBS, etc..
In a constraint graph, every module is represented by a
vertex and the weighted directed edges represent the minimum
displacement between two modules. We can find the � and �
positions of a module by computing the longest path from
a source to that module in the constraint graphs. In our
approach, we modify the constraint graphs to enforce the
required constraints in the resultant packing. This is done by
augmenting the graphs with positive, negative or zero weighted
edges. These augmented edges will restrict the modules to be
placed correctly according to the requirements. This technique
of adding edges to constraint graphs has been used before for
layout compaction [6] and packing of rectilinear blocks [4].
In this paper, we apply and generalize this method to handle
different kinds of placement constraints in floorplan design. In
addition, we have devised an interesting idea of reduced graph
to improve the runtime of the algorithm. A direct implemen-
tation of the method is very expensive computationally and is
thus impractical. It will take �������
	 time for each iteration of
the annealing process where � is the number of modules. We
improved this runtime by reducing the size of the constraint
graphs and by updating the constraint graphs incrementally.
The time complexity of our algorithm is now ���������	 on
average for each iteration of the annealing process where �
is the number of modules having placement constraints.

We tested our method with some MCNC benchmarks
(ami33, ami49 and playout) and a randomly generated data
set with 100 modules. Sequence pair representation [9] is
used in our implementation. The results are promising and a
tight packing with all the constraints satisfied can be obtained
efficiently. In the following sections, we will first describe
the problem and have a brief review of the sequence pair
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representation and constraint graph. Section 4 will give a
detailed explanation of our approach. Section 5 will explain
the techniques to reduce the size of the constraint graphs and to
update them incrementally. Experimental results will be shown
in Section 6.

II. PROBLEM DEFINITION

In floorplanning, we are given the information of a set of
modules, including their areas and interconnection and our
goal is to plan their positions on a chip to minimize the total
chip area and interconnect cost. In this paper, we address this
floorplanning problem with placement constraint, i.e., besides
the module information, we are also given some constraints in
placement between the modules and our goal is to plan their
positions on a chip such that all the placement constraints can
be satisfied and the area and interconnect cost are minimized.

We consider two general kinds of placement constraints,
absolute and relative. For relative placement constraint, users
can restrict the horizontal or vertical distance between two
modules to a certain value, or to a certain range of values. We
use the notation ��������� 	 to denote the horizontal displacement
from � ’s lower left corner to � ’s. Note that this value is
positive if � ’s lower left corner is on the right hand side
of � ’s and is negative otherwise. We use � �����	� 	 to denote
the vertical displacement from � ’s lower left corner to � ’s.
Similarly, this value is positive if � ’s lower left corner is
above � ’s and is negative otherwise. Figure 1 illustrates
these definitions. A relative placement constraint between two
modules � and � can be written as:

� �
���	� 	��  �����������
� �
���	� 	��  �������

where ��������� and ����� . When � �!� , we are restricting
the distance between the two modules to a single value and
we will write them simply as �������	� 	"�#� or � �
���	� 	$�%�
respectively.
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Absolute placement constraint is specified similarly except
that one of the two modules in the relationship is a boundary
of the chip. We use 4�4 , 5"5 , �6� and 787 to denote the
left, right, bottom and top boundary of the chip respectively.
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Therefore notations � �
4�48��� 	 and � �
���	5"5 	 denote the hor-
izontal distances of the lower left corner of � from the left
and the right boundary of the chip respectively. Similarly, we
use � ������7D7 	 and � ���6�E��� 	 to denote the vertical distances
of the lower left corner of � from the top and the bottom
boundary of the chip respectively. Figure 2 illustrates these
definitions. An absolute placement constraint of a module �
can be written as:

����4�4D�	� 	F�  �����G�����
��������5H5 	I�  �����G�����
� �����J��� 	��  �����G�����
� �
����7D7 	F�  �����G�

where �����K�L� and �M�N� . If �O�P� , we are restricting
the distance between the module and the boundary to a
certain value and we will simply write it as ����4�4D��� 	"�Q� ,
�������	5H5 	,�R� , � ���6�E��� 	��!� or � �
����7D7 	S�R� respectively.

These two types of specifications are general enough to
express all common types of placement constraints. For ex-
ample, if we want to restrict the placement of module � , �
and T such that they all align horizontally, we can specify the
following relative placement constraints:

� �
���	� 	�� U
� ���J�	T 	�� U

As another example, if we want to restrict the placement of
module � at the lower right corner of the chip, we can specify
the following absolute placement constraints:

�������	5H5 	I� VXW
� �
���E�	� 	�� U

where V W is the width of � . We can now define our floorplan-
ning problem with placement constraint, FP/PC, as follows:

Problem FP/PC: Given the information of a set of modules
including their areas and interconnection, a set YSZ of relative
placement constraints and a set Y � of absolute placement
constraints, the goal is to pack the modules in a rectangular
region such that all the given placement constraints are
satisfied and the area and interconnect costs are minimized.

We assume that the input set of placement constraints will
not be contradictory to each other, i.e., there exists a feasible
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Fig. 3. An example of sequence pair � abcd, bacd � .

packing in which all the constraints can be satisfied simul-
taneously. However if the input requirements are inherently
inconsistent, our floorplanner will still generate a packing that
satisfies the requirements as much as possible.

III. PRELIMINARIES

A. Sequence-Pair [9]

We use sequence-pair in our implementation to represent
a general non-slicing floorplan. A sequence-pair of a set of
modules is a pair of combinations of the module names. For
example, �E� �������
	 �������	 	 is a sequence-pair of the module
set ��� ���A���A��	�� . We can derive the relative positions between
the modules from a sequence-pair � by the following rules:
� If �$� �����������������2����������������� 	 , then module � is on the

right of module � .� If �$� ������� �����!���2�"�����������#��� 	 , then module � is below
module � .

Figure 3(a) shows a packing for the sequence pair
�������	:�������	�� .

B. Constraint Graph

We can use a pair of constraint graphs to represent the hori-
zontal and vertical relationships between the module positions
imposed by a sequence pair. A horizontal (vertical) constraint
graph $�% ( $"& ) for a set of � modules is a directed graph
with � vertices, and the vertices represent the modules and the
edges represent the horizontal (vertical) relationships between
the module positions. We will have an edge from � to � labeled
V(' in $�% where V)' is the width of � if and only if module �
is on the right hand side of module � . Similarly, we will have
an edge from � to � labeled �*' in $"& where ��' is the height
of � if and only if module � is above module � . We can build
these graphs directly from a sequence-pair representation � as
follows:
� Insert an edge from � to � in $ % labeled V ' if and only

if �$� �)�����+���*�,���2�������+���*�,��� 	 .� Insert an edge from � to � in $�& labeled ��- if and only
if �$� �)�����+���*�,���2�������,�����+��� 	 .

Figure 3(b) shows the constraint graphs without edge labels
for the sequence pair �.����	 �������	�� .

We can compute the minimum area packing corresponding
to a sequence pair efficiently by using the constraint graphs.
In a horizontal constraint graph, a weight � on an edge �/�:��� 	
means that “ � should be at least � units to the right of � ”.
Similarly, in a vertical constraint graph, a weight � on an
edge ��� ��� 	 means that “ � should be at least � units above � ”.

The minimum area packing can thus be obtained by putting
the � -coordinate and � -coordinate of a module 0 as the length
of the longest path from a source to 0 in the horizontal and
vertical constraint graph respectively.

IV. HANDLING PLACEMENT CONSTRAINTS IN

CONSTRAINT GRAPHS

There are two kinds of placement constraints, relative and
absolute. A relative placement constraint describes the rela-
tionship between two modules, while an absolute placement
constraint describes the relationship between a module and
the chip. We will first discuss the approach to handle relative
placement constraint and will later discuss how this approach
can be used to handle absolute placement constraint by making
a simple modification to the constraint graphs.

A. Relative Placement Constraint

In relative placement constraint, users can restrict the hor-
izontal or vertical distance between two modules to a certain
range of values. For example, users can specify that � �
����� 	,�
 �����G� (or � �
����� 	��  �����G� ) where ����� � � and � � �
meaning that � is at a distance of � to � on the right hand
side of � ( � is at a distance of � to � above � ). When � �R� ,
we are restricting the distance to a certain value. Notice that
both � and � can be zero, positive, negative, 1"2 or 342 . (It is
trivial to have � �5342 and � �61"2 , so we assume that this
will not happen.) In order to realize the required constraints in
the final packing, we will add a single edge or a pair of edges
to the corresponding constraint graph $ as described below.
We use V �/7 	 to denote the weight of an edge 7 .

Case 1) If �%�8342 , insert an edge 7 � �
�E��� 	 into $
with V ��7 	��93X� .

Case 2) If �%�:1"2 , insert an edge 7 � �
����� 	 into $
with V ��7 	��R� .

Case 3) Otherwise, insert two edges 7�ZX� ������� 	 and 7 � ��
�E�	� 	 into $ s.t. V ��7�Z 	��R� and V ��7 � 	,�;3X� .
The correctness of the above steps follows from Theorem 1
which is proved by making use of Lemma 1 and Lemma 2.

Lemma 1: If there is an edge from � to � labeled � in $ % ,� �
� 	B�  � ��� 	<1=� ��1"2 � .
Proof: According to the definition of horizontal con-

straint graph, if there is an edge from � to � labeled � in the
graph, the lower left corner of � is at a distance of at least �
from that of � horizontally to the right, i.e., � �
� 	(> � �
� 	?1@�
which is equivalent to � ��� 	X�  � �
� 	<1=� ��1"2 � .

Lemma 2: The conditions � ��� 	 �  � �
� 	�1A� ��1"2 � and� �
� 	B� �342 � � �
� 	B3C� � are equivalent.
Proof: The condition � �
� 	 �  � ��� 	D1E� ��1"2 � is

equivalent to � �
� 	�> � ��� 	F1G� . We can then write � �
� 	�>� �
� 	�1H� as � ��� 	K� � �
� 	I3J� , which is equivalent to� �
� 	B� �342 � � �
� 	B3C� � .
Theorem 1: The relative placement constraint � �
���	� 	 �
 �����G� (or � �
����� 	��# �����G� ) can be achieved in the final pack-
ing by inserting edges into the horizontal (vertical) constraint
graph as described in the above cases if the packing is feasible.

Proof: Without loss of generality, we only prove the
correctness for the horizontal direction. The proof for the
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vertical direction follows similarly. To prove the correctness
of these steps, we need to show that if the packing is feasible
after inserting these edges, the constraint �������	� 	,�# ������� will
be satisfied in the packing. In the following, $ % denotes the
horizontal constraint graph and � ��� 	 denotes the � -coordinate
of the lower left corner of module � . Assume that the packing
is feasible, i.e., both constraint graphs have no positive cycles
(a positive cycle in a weighted directed graph is a directed
cycle in the graph with positive total weight) and the position
of each module can be found by computing the longest path
from a source to its corresponding vertex in the two constraint
graphs.
Consider the three different cases for the constraint ��������� 	��
 �����G� :

Case 1) � �9342 , i.e., we want � �
� 	 to lie in �342 � � �
� 	�1
�G� . According to Lemma 2, this condition is equiva-
lent to � ��� 	"�� � ��� 	 3 �,��1"2 � , which, by Lemma
1, can be achieved by inserting an edge from � to
� labeled 3X� .

Case 2) � � 1"2 , i.e., we want � to lie in  � ��� 	1�����1"2 � .
According to Lemma 1, this can be achieved by
inserting an edge from � to � labeled � .

Case 3) 342 � �F�I� � 1"2 , i.e., we want � to
lie in the range  � ��� 	 1!��� � ��� 	 1R�G� . Notice that
the range  � ��� 	 1���� � ��� 	B1 �G� is equivalent to the
range  � ��� 	 1�����1"2 ��� �342R� � �
� 	 1��G� . The first
condition can be achieved by inserting an edge from
� to � labeled � . The second condition � �
� 	 �
�342 � � ��� 	 1!�G� is equivalent to � �
� 	 �  � ��� 	)3
�,��1"2 � according to Lemma 2 and can be achieved
by inserting an edge from � to � labeled 3X� .
Therefore we need to insert a pair of edges, one from
� to � labeled � and the other one from � to �
labeled 3X� .

B. Absolute Placement Constraint

Absolute placement constraint restricts the absolute place-
ment of a module with respect to the whole chip. Users can
restrict the placement of a module such that its distance from
the boundary of the chip is within a certain range of values. We
can handle these kinds of constraints using a method similar
to that for relative placement constraints, i.e., by inserting a
single edge or a pair of edges to the constraint graphs. To
achieve this, we augment the horizontal and vertical constraint
graphs each with two extra nodes. For the horizontal constraint
graph, we add two nodes: one is a source with zero weighted
out-going edges to all the other nodes, and the other one is
a sink with zero weighted in-coming edges from all the other
nodes. The source represents the left boundary and the sink
represents the right boundary of the final packing. Similarly,
we add two nodes to the vertical constraint graph: one is a
source with zero weighted out-going edges to all the other
nodes and one is a sink with zero weighted in-coming edges
from all the other nodes. The source represents the bottom
boundary and the sink represents the top boundary of the final
packing.

In the following, we use ��� and ��� to denote the two
additional nodes in the horizontal constraint graph: ��� repre-
sents the left boundary and ��� represents the right boundary.
Similarly, we use ��� and � - to denote the two additional nodes
in the vertical constraint graph: ��� represents the top boundary
and � - represents the bottom boundary. After adding these
nodes, we can handle absolute placement constraint easily
as described below. Notice that there is no such cases as
�������	4�4 	 , � �
5H56�	� 	 , � �������6� 	 or � ��7D7D�	� 	 in the following
and � and � are non-negative numbers because we will not
consider packing modules outside the boundary of the chip:
� ����4�4D�	� 	��  �����G� :

– If � � 1"2 , insert an edge 7�ZX� ��� � ��� 	 in $�% with
V �/7AZ�	,�!� ;

– else, insert edges 7�Z�� ��� � ��� 	 and 7 � � ������� � 	 in
$ % with V ��7 Z 	,�R� and V ��7 � 	��53X� .

� ��������5H5 	 �  �����G� :
– If � � 1"2 , insert an edge 7�ZX� ������� � 	 in $�% with
V �/7AZ�	,�!� ;

– else, insert edges 7 Z � ���������
	 and 7 � � � ������� 	 in
$ % with V ��7 Z 	,�R� and V ��7 � 	��53X� .

� � ���6�E�	� 	B�  ������� :
– If ��� 1"2 , insert an edge 7�ZX� � � - ��� 	 in $"& with
V �/7 Z 	,�!� ;

– else, insert edges 7 Z � � � - ��� 	 and 7 � � ������� - 	 in
$ & with V �/7 Z 	,�!� and V ��7 � 	,�;3X� .

� � ������7D7 	��  �����G� :
– If � � 1"2 , insert an edge 7 Z � �
�����	� 	 in $ & with
V �/7 Z 	,�!� ;

– else, insert edges 7 Z � �
�����	� 	 and 7 � � ���	� ��� 	 in
$ & with V �/7 Z 	,�!� and V ��7 � 	,�;3X� .

The proof of correctness of these steps for absolute placement
constraint follows directly from that for relative placement
constraint and we will not repeat it here.

C. Examples of some Commonly Used Placement Constraint

Using the above specifications for absolute and relative
placement constraint, we can describe many different kinds
of placement constraints. In this section, we will pick a few
commonly used ones and show how each can be specified
using a combination of the relative and absolute placement
constraints. In the following, we use � ��� 	 and � �
� 	 to denote
the � and � coordinates of the lower left corner of module A
respectively and we use � W and V W to denote the height and
width of A respectively.

1) Alignment: To align module � , � , T and 
 horizontally
(Figure 4), we can impose the following constraints:

� �
���	� 	�� U
� ���J�	T 	�� U
� �
T"��
 	�� U

We restrict the vertical distances between these modules to be
zero, they will thus all align horizontally. Six additional edges
will be inserted into the vertical constraint graph.
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C D BA

v(A,B) = 0  v(B,C) = 0  v(C,D) = 0

Fig. 4. Examples of alignment constraint.

2) Abutment: To abut module � , � and T horizontally
(Figure 5), we can impose the following constraints:

� ������� 	�� U
� �
�E� T 	�� U
� �
����� 	I� V W
�����E� T 	I� V��

where VXW and V�� are the widths of module � and �
respectively. In this formulation, the vertical distances between
these modules are zero, so they will align horizontally. On the
other hand, � is restricted to be on the right hand side of �
by V W units and T on the right hand side of � by V � units,
so they will be abutting with each other horizontally. Four
additional edges will be inserted into each constraint graph.

7

8
10B
CA

h(A,B)=8  h(B,C)=7 v(A,B)=0  v(B,C)=0

Fig. 5. Examples of abutment constraint.

3) Preplace Constraint: To preplace module � with its
lower left corner at ���?��� 	 (Figure 6), we can impose the
following constraints:

� �
4�48��� 	I� �
� ���6�E�	� 	 � �

We restrict � ��� 	 to be � units from the left boundary and � ��� 	
to be � units from the bottom boundary, so � will be preplaced
with its lower left corner at ���;��� 	 in the final packing. Two
additional edges will be inserted into each constraint graph.

4) Range Constraint: To restrict the position of � to within
the range � � � � � 	�� � Z6� � � �

� � � Z�� � � � � � (Figure 7), we
can impose the following constraints:

� �
4�48��� 	F�  � Z � � � �
� ���6�E�	� 	��  � Z � � � �

p
A

q

h(LL,A)=p  v(BB,A)=q

Fig. 6. Examples of preplace constraint.

In this formulation, we restrict � ��� 	 to be � Z to �
� units

from the left boundary and � �
� 	 to be �(Z to � � units from
the bottom boundary, so A will lie in the required rectangular
region � � � � � 	�� � Z � � � �

� � � Z � � � � � � . Two additional
edges will be inserted into each constraint graph.

A

y
x

range

h(LL,A)=[x , x  ]

x

y

2 v(BB,A)=[y , y  ]21 1

1
1

2

2

Fig. 7. Examples of range constraint.

5) Boundary Constraint: To place module � at the upper
right corner of the final packing, and place � along the top
boundary (Figure 8), we can impose the following constraints:

� �
���	5"5 	I� VXW
� ������7D7 	F� � W
� ���J��7D7 	F� �	�

In this formulation, we restrict the horizontal distance between
� and the right boundary to be the width of � and the vertical
distance between � and the top boundary to be the height
of � , so module � will be placed at the upper right corner
in the final packing. Besides, � is restricted to be � � units
from the top boundary, so � will abut with the top boundary
as required. We need to insert two edges into the horizontal
constraint graph and four edges into the vertical constraint
graph.

6) Clustering: To cluster module � , � and T around 
 at
a distance of at most � units away vertically or horizontally
(Figure 9), we can impose the following constraints:

� � 
 ��� 	I� �3
�;��1�� �
� � 
 ��� 	I� �3
�;��1�� �
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9

7

6

15

B A

h(A,RR)=15  v(A,TT)=6  v(B,TT)=9

Fig. 8. Examples of boundary constraint.

� � 
 �	T 	 � �3
�;��1�� �
� � 
���� 	 � �3
�;��1�� �
� � 
���� 	 � �3
�;��1�� �
� � 
 �	T 	 � �3
�;��1�� �

In this formulation, we restrict the horizontal and vertical
distances of � , � and T from 
 to be at most � units in
both directions, so they will cluster around 
 at a distance
of at most � units away. Six additional edges will be inserted
into each constraint graph.
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A, B and C can lie.
lower left corners of
Range in which the

Fig. 9. Examples of clustering constraint.

7) General Placement Constraint: We can use combina-
tions of the above relative and absolute placement constraints
to specify different kinds of mixed constraints in general. For
example, to restrict the placement such that module � and T
align with each other horizontally and they cluster around �
at a distance of at most 20 units away (Figure 10), we can
impose the following constraints:

� ���J�	T 	�� U
� �����	� 	�� �3��1U ��1��1U1�
� �����	T 	�� �3��1U ��1��1U1�
�������	� 	�� �3��1U ��1��1U1�
�������	T 	�� �3��1U ��1��1U1�

The first constraint aligns � and T horizontally and the next
four cluster � and T around � to within a distance of 20 units
away. We need to add four additional edges to the horizontal
constraint graph and six to the vertical constraint graph.

A

2020

20
20

B
C

Range in which the
lower left corners
of B and C can lie.

v(B,C) = 0
v(A,B) = [-20,20]  v(A,C) = [-20,20]
h(A,B) = [-20,20]  h(A,C) = [-20,20]

Fig. 10. An example of an arbitrarily set of mixed constraints.

V. ALGORITHM AND IMPLEMENTATION

We use simulated annealing with sequence pair repre-
sentation. In each step of the annealing process, we will
generate a new packing and compute its area and interconnect
cost. We use the vertical and horizontal constraint graphs to
compute the position of each module. In order to satisfy the
given placement constraints, we will augment the graphs with
edges as described in the above section. We call these edges
constraining edges. If the packing is feasible after adding
these edges, i.e., no positive cycle exists in the constraint
graphs, we will compute the position of each module as
usual and all the constrained modules will be placed at the
correct positions. However it is possible that some constraints
cannot be satisfied after adding those constraining edges,
the packing is then infeasible (note that a packing can be
infeasible because the input set of placement constraints are
inherently contradictory to each other or the relative positions
implied by the sequence pair are contradictory to the input
set of constraints). Feasibility of a packing can be checked
by detecting positive cycles in the constraint graphs. If a
packing is infeasible, we will pack the modules as if there is
no placement constraint and compute a penalty term in the cost
function to penalize the violations. This strategy ensures that
all feasible solutions are reachable, and can drive the packing
solution to one that satisfies the constraints as much as possible
in case the user requirements are inherently inconsistent. We
observed a stable convergence in the annealing process using
this scheme and all the placement constraints can be satisfied
at the end of the annealing process in all our experiments.
We will describe the algorithm in details in the following sub-
sections.

A. Detecting Positive Cycles by Reduced Graphs

After augmenting those constraint graphs with constraining
edges, we need to test their feasibility by detecting positive
cycles in them. A direct implementation of some classical
algorithm (e.g., the modified Floyd-Warshall algorithm [11])
to check positive cycles will take ��� � � 	 time where � is the
total number of modules. In order to improve the runtime, we
will reduce the size of the constraint graphs before checking
for cycles. This is possible because of the following lemma
and theorem. We use $ % ������� % 	 and $ & ������� & 	 to denote
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the original horizontal and vertical constraint graphs obtained
from a sequence pair respectively. $�� % ���������% 	 and $��& ���������& 	
are obtained from $ % and $ & respectively by adding the
constraining edges.

Lemma 3: Any cycle in $�� % ( $��& ) must contain some edges
in � �% 3 � % ( � �& 3 � & ).

Proof: The original constraint graphs $!% and $�& ob-
tained from a sequence pair representation must be acyclic.
Therefore, any cycle in $�� % and $��& must contain at least one
constraining edge.

From this lemma, we can infer that any cycle in $�� %
( $��& ) must contain at least two modules which have place-
ment constraints. Therefore, instead of detecting positive cy-
cles in $ � % and $ �& , we will construct two reduced graphs� % �����A� ���% 	 and

� & � ���������& 	 from $ % and $ & respectively
where ��� is the set of all modules with placement con-
straints, ���% is the set of all edges �.7 ��0 �	�	�� 0 �	� � ����
����������� �����H0 � ������� $ % � and ���& is the set of all edges
��7� 0 �	�	 � 0 �	�O� ����
 ����������� �	��� 0 � ����� � $ & � . For any
edge 7 ��0 �	�	B� ���% , V ��7 	 �6	"!$# � 0 �	�	 where 	"!$# � 0 �	�	 denotes
the longest path from 0 to � in $!% , and, similarly, for any edge
7 ��0 �	�	 � � �& , V ��7 	6�H	"!&% � 0 �'� 	 where 	"!&%��0	�'�	 denotes the
longest path from 0 to � in $�& . The constraining edges will
be inserted into

� % and
� & to give

� �% and
� �& respectively.

We will then check for positive cycles in
� �% and

� �& and this
is equivalent to checking cycles in $�� % and $��& according to
the following theorem.

Theorem 2: A positive cycle exists in
� �% (

� �& ) if and only
if a positive cycle exists in $�� % ( $��& ).

Proof: Without loss of generality, we will only prove
for the horizontal constraint graph. The proof for the vertical
constraint graph follows similarly.

“If” condition: If there exists a positive cycle T in
� �% , the

edges in T must either be a constraining edge or an edge in� % . However every edge 7� 0 �	�	 in
� % actually corresponds to

a sequence of edges in $�% (the longest path from 0 to � in $!% ).
Since $�� % is obtained from $�% by inserting the constraining
edges, a positive cycle must also exist in $ � % .

“Only if” condition: If there exists a positive cycle T �
� Z � � � �
����( � Z in $�� % where the �)�* � for 0<�,+ � �
� � are vertices in
$ � % , at least two of these vertices must correspond to modules
with placement constraint according to Lemma 3. Denote these
vertices corresponding to modules with placement constraint
by �.-)/ Z10 ���.-2/ � 0 � �
���.-2/43 0 where � �5� � � and 6 � 0 	 � 6 � 0B1
+
	 for all 0 �7+�� ���
� �8� 3,+ . Note that ��-)/ Z10 ���.-2/ � 0 � �
���.-2/43 0
also exist in

� % because they correspond to modules with
placement constraints. Consider the path � * along T from ��-)/ * 0
to �.-)/ *�9 Z:0 where +��G0 � � . This path will either be a single
constraining edge or a sequence of edges from $,% . If � * is a
single constraining edge, this edge will also exist in

� �% since� �% is obtained from
� % by inserting the constraining edges.

If � * is a sequence of edges from $!% , there must also be an
edge 7���.-)/ * 0 ���.-)/ *�9 Z:0 	 in

� % such that V ��7 	 is not less than
the total weight of the path � * . It is because the weight of the
edge 7� �.-2/ * 0 ���.-)/ *�9 Z10 	 in

� % is computed as the longest path
from �.-2/ * 0 to �.-2/ * 9 Z:0 in $ % and it must be at least as long as
the path � * which runs from �.-2/ * 0 to �.-)/ *�9 Z:0 along the cycle T
in $ % . This edge 7� ��-)/ * 0 ���.-)/ *�9 Z:0 	 will also exist in

� �% since

� �% is obtained from
� % by inserting the constraining edges.

Therefore, every path � * from �.-2/ * 0 to �.-)/ * 9 Z10 on the cycle T
in $�� % where 0<�;+�� �(�
�
�	�F3<+ will correspond to an edge from
�.-)/ * 0 to �.-)/ *�9 Z10 in

� �% and the weight of the edge is not less
than the total weight of the path � * . We can conclude that a
positive cycle must also exist in

� �% .
Constructing

� % and
� & takes ��� �� � 1 � 	 time where �

is the total number of constraining edges and � is number of
modules with placement constraints. Notice that the number
of constraining edges � is usually much smaller than �� � ,
so the construction time for

� % and
� & is ��� �� � 	 . The

construction can be done by performing a single-source-
longest-path algorithm in $�% and $"& once for each � where
�E� ��� . Checking cycles in

� �% and
� �& by the modified Floyd-

Warshall algorithm [11] takes ��� � ��� � 1�� 	 	 time because � � 1"�
is an upper bound on the number of edges in

� �% and
� �& .

This time complexity can be further reduced in practice by
performing incremental updates as described in the following.

B. Moves and Incremental Updates

In every iteration of the annealing process, we will modify
the sequence pair by one of the following three kinds of moves:

[M1] Change the width and height of a module.
[M2] Exchange two modules in both sequences.
[M3] Exchange two modules in the first sequence.

The constraint graphs will not change much after each move,
so we do not need to reconstruct them once in every iteration.
We can take advantage of this incremental updates in two
different places: the construction of $!% and $"& , and the
construction of

� % and
� & .

1) Incremental Updates of $�% and $�& : In move M1, a
module � is picked and changed in its width and height, so the
structures of the constraint graphs will remain the same except
that all the out-going edges from � will have their weights
changed. In our implementation, the weights on the edges are
stored at the source vertices because all the edges out-going
from the same vertex will have the same weight. Therefore,
we only need to update the weight of vertex � in both $!% and
$"& after M1 and this will take constant time. In move M2, two
modules � and � are picked and switched in position in both
sequences. The structure of the constraint graphs will again
remain the same except that the vertices corresponding to �
and � will be switched in position. This will affect the weights
of the out-going edges from these two vertices. Therefore we
only need to update the weights in these two vertices in both
$�% and $�& and this will again take constant time. In move M3,
two modules � and � are picked and switched in position in
the first sequence. The structure of the constraint graphs will
change after this move. However, only those modules lying
between � and � in the first sequence will be affected and
there are = � of them on average. Besides, each update can be
done very efficiently (either an edge 7� 0 �	�	 in $�& is deleted
and a new edge 7� 0 �'� 	 is inserted into $ % , or an edge 7� 0 �'� 	
in $ % is deleted and a new edge 7� 0 �	�	 is inserted into $ & .
Therefore, $ % and $ & can be updated very efficiently in ����� 	
time.
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2) Incremental Updates of
� % and

� & : � % and
� & are

obtained from $ % and $ & by keeping only those vertices with
placement constraints. The weight of an edge 7��0	�'�	 in

� %
(
� & ) is the longest path from 0 to � in $ % ( $ & ). After move

M1, M2 or M3 of the annealing process, the edge weights in� % and
� & may change because the longest path between two

vertices in $�% and $�& will have changed. Fortunately this will
only affect a fraction of the edges in

� % and
� & .

In move M1, a module � is selected and changed in width
and height. The weight of an edge 7� 0 �'� 	 in

� % or
� & will be

affected if 0 can reach � in the constraint graphs $!% or $"& .
This happens if 0 is lying before � in the second sequence
and there are (��GZ

� of them on average. We need to perform
once the single-source-longest-path algorithm in $ % or $ & for
each of them and update the weights of all the edges 7� 0 �'� 	 in� % or

� & for all � � ��� . In M2 and M3, two modules � and
� are selected and switched in position in the sequence pair.
Similarly, an edge 7 ��0 �	�	 in

� % or
� & will be affected if 0

can reach � or � in $�% or $�& before or after the move. This
happens if 0 is lying before � or � in the second sequence
and there are about (�� �� of them on the average. Similarly, we
need to perform once the single-source-longest-path algorithm
for each of these affected modules and update the weights of
the corresponding edges in

� % and
� & . Therefore updating� % and

� & takes ��� �� � 	 time on average.

C. Time Complexity

In each iteration of the annealing process, we modify the
sequence pair by performing move M1, M2 or M3. After the
move, we need to update $ % , $ & , � % and

� & . Updating $ %
and $ & takes ����� 	 as explained above. Updating

� % and
� &

takes ������ � 	 time on average. After updating these graphs,
we need to check for positive cycles in

� �% and
� �& which

are obtained from
� % and

� & respectively by inserting the
constraining edges. The cycle checking step takes ��� � � � � 1�� 	 	
time. Therefore the total time taken per iteration is ��� � 1
�� � 1 � � � � 1 � 	 	 on average, i.e., ��� �� � 	 , since the number
of constraining edges � is usually much smaller than � � .

D. Annealing Schedule and Cost Function

The temperature schedule of the annealing process is of the
form 7 ��� 	$� � 7 ���D3 + 	 for all � > + . At each temperature
step, enough number of moves are attempted until the total
number of moves exceeds a certain number

�
where

�
is a

user defined constant. The temperature is initialized to a large
value at the beginning and the annealing process terminates
when the temperature is low enough. The best solution found
will then be used to go through a “final baking” process in
which only better solutions will be accepted.

The cost function is defined as �,1���� 1
	�� where � is the
total area of the packing. In our current implementation, � is
the half perimeter estimation of the interconnect cost but this
term can be replaced by other more sophisticated interconnect
cost estimations. � is a penalty term which is zero when all
the placement constraints are satisfied, and is otherwise the
sum of the squares of each violation, where a violation is
measured by the distance the constrained module is from its

desired position. This penalty term will be discussed in more
details in the following paragraph.

E. Handling Infeasible Packings

If a packing is infeasible, i.e., positive cycles exist in the
constraint graphs, we will pack the modules as if there is no
constraint and compute a penalty term � . For example, if an
edge 7R� �
����� 	 labeled � is inserted into the horizontal
constraint graph because of a given placement constraint,
the penalty term due to this edge in case of an infeasible
packing will be � � � � � � ��� 	(3 � ��� 	(3�����U�� 	 � . This gives a
good estimation of how far the modules are from their desired
positions. Notice that we need to accept infeasible intermediate
solutions in the annealing process because it may happen in
some cases that a good feasible solution can only be reached
from an initial starting point with some infeasible intermediate
solutions in between during the searching process. (If the
input set of placement constraints are inherently contradictory
to each other, there will always be positive cycles in the
constraint graphs. The floorplanner will then pack the modules
as if there is no constraints and the penalty term will drive the
result towards one that satisfies the requirements as much as
possible.) The convergence of the annealing process is very
stable using this scheme and all the placement constraints can
be satisfied at the end of the process in all our experiments.

VI. EXPERIMENTAL RESULTS

We tested our floorplanner on a set of MCNC benchmark
data (ami33, ami49 and playout) and a randomly generated
data set with 100 modules1. Ami33, ami49 and playout were
chosen because they are the largest (with 33, 49 and 62
modules respectively) among all the MCNC benchmarks. For
each experiment, the temperature is set to +?� �� + U�� initially
and is lowered at a constant rate of 0.95 to 0.98 until it is
below +���+ U �GZ�� . The number of iterations at one temperature
step is 80. � in the cost function is set such that the costs
of the wirelength and total area are approximately equal. 	 is
set at a high value (30 to 40) to ensure that all the placement
constraints can be satisfied at the end. All the experiments
were carried out on a 400 MHz Sun Ultra IIi.

We tested our floorplanner using the benchmark data and
a randomly generated data set (random100) by imposing dif-
ferent combinations of placement constraints to the modules.
The results are shown in Table I. The result reported in
each row is an average obtained by running the experiment
six times using three different sets of placement constraints.
Notice that the number of constraints refers to the number of
constraining edges in the graphs. We can see from the table
that the algorithm is very efficient. The percentage deadspace
ranges from 5.9% to 8.4% and all the placement constraints
can be satisfied in all the experiments. Besides, we can see
that the changes in deadspace area and total wirelength in
order to handle the placement constraints are very small.
Figure 11, 12, 13, 14 and 15 show five resultant packings

1The data sets are available in http://www.cse.cuhk.edu.hk/
˜fyyoung/data.
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for ami33, ami49 and playout. (Notice that the origin �
U �	U 	 is
at the upper right corner in all these packings.)

We have also compared our results with [13] that focuses
on handling range constraint in slicing floorplan. We repeated
the same experiments on range constraint using our new
unified method and the results are shown in Table II. The
result reported in each row is an average obtained by running
the experiment five times using the benchmark data, ami33,
ami49 and playout. The scaled runtimes in the fourth column
were obtained by dividing the original runtimes from [13]
by a factor of 2.46, the ratio between the speeds of floating
point computation of the two machines used. We can see
that the performance of the two methods are very similar in
both runtime and deadspace. The floorplanner in [13] was a
little bit faster because it considered slicing floorplans only.
Our floorplanner could give smaller deadspace although the
floorplanner in [13] have actually allowed the modules to
be very flexible in shape (with aspect ratio in the range of
 U�� �  � � � U1� ), while we considered a discrete number of shapes
for each module only in our experiments. However, the most
important difference is that unlike the method in [13] which
focuses on only one particular kind of placement constraint,
our method is more general and can handle different kinds
of placement constraints simultaneously. We have also tried
another data set from the paper [14], which can handle
boundary constraint in slicing floorplan. A resultant packing is
shown in Figure 16. The amount of deadspace obtained in [14]
is smaller because optimal shaping was done in their slicing
floorplanner.

In order to demonstrate the effects of an input set of
infeasible constraints, we performed an experiment in which
the required set of constraints were contradictory to each other.
The resultant packing is shown in Figure 17. In this example,
we require module 5 to be packed along the left boundary,
and on the right hand side of module 4 at the same time.
These contradictory requirements will always lead to positive
cycles in the constraint graphs. The floorplanner will then pack
the modules as if there is no constraints and the penalty term
will drive the result towards one that satisfies the requirements
as much as possible, as we can see from the example in
Figure 17. Figure 18 shows the growth in runtime with respect
to the number of placement constraints and we can see that
the relationship is almost linear.

VII. CONCLUSION

In this paper, we presented a method to handle different
kinds of placement constraints in floorplanning simultane-
ously. In this method, placement constraints are handled by
augmenting the constraint graphs with edges of positive, neg-
ative or zero weights. We have used incremental updates and
an interesting idea of reduced graph to improve the runtime
of the algorithm. Several benchmark data are used for testing
and the results are very promising. Good packings with all the
constraints satisfied can be obtained efficiently.
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Fig. 16. A resultant packing of the data set ami49-bc1 from [14] in which
module 6, 18, 20 and 23 are required to be on the left, module 17, 36, 45
and 48 on the right, module 0, 4, 8 and 47 at the top, and module 2, 9, 10
and 30 at the bottom. The deadspace obtained in [14] was 1.51%.
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Fig. 17. An input set of infeasible constraints that requires module 5 to be
placed along the left boundary, and on the right hand side module 4 at the
same time.
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