
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 5, MAY 2001 687

Handling Soft Modules in General Nonslicing Floorplan
Using Lagrangian Relaxation

F. Y. Young, Chris C. N. Chu, W. S. Luk, and Y. C. Wong

Abstract—In the early stage of floorplan design, many modules have
large flexibilities in shape (soft modules). Handling soft modules in general
nonslicing floorplan is a complicated problem. Many previous works have
attempted to tackle this problem using heuristics or numerical methods, but
none of them can solve it optimally and efficiently. In this paper, we show
how this problem can be solved optimally by geometric programming using
the Lagrangian relaxation technique. The resulting Lagrangian relaxation
subproblem is so simple that the optimal size of each module can be com-
puted in linear time. We implemented this method in a simulated annealing
framework based on the sequence pair representation. The geometric pro-
gram is invoked in every iteration of the annealing process to compute the
optimal size of each module to give the best packing. The execution time is
much faster (at least 15 times faster for data sets with more than 50 mod-
ules) than that of the most updated previous work by Murata and Kuh
(1998). For a benchmark data with 49 modules, we take 3.7 h in total for
the whole annealing process using a 600-MHz Pentium III processor while
the convex programming approach described by Murata and Koh needs
seven days using a 250-MHz DEC Alpha. Our technique will also be appli-
cable to other floorplanning algorithms that use constraint graphs to find
module positions in the final packing.

Index Terms—Floorplanning, Lagrangian relaxation, nonslicing, phys-
ical design, shaping.

I. INTRODUCTION

FLOORPLANNING has become increasingly important in physical
design of very large scale integrated circuits due to the advance in
the deep submicrometer technology. Many floorplanning algorithms
were proposed in recent years and many of them make use of con-
straint graphs to compute module positions in the final packing. Un-
fortunately, it is not known how shape flexibilities of soft modules
can be handled efficiently using constraint graphs. This is an impor-
tant problem since soft modules are common in the floorplanning stage
when many designs are not yet done in details. Some previous works
[4], [8], [9], [12] have attempted to tackle this problem but none of them
succeeded in obtaining the optimal solution efficiently.

There are two types of floorplans: slicing and nonslicing. A slicing
floorplan is a floorplan that can be obtained by recursively cutting rect-
angles horizontally or vertically. A nonslicing floorplan is one that is
not restricted to be slicing. Fig. 1 shows an example of each. Nonslicing
floorplans are a more general representation that can describe all kinds
of packings. However, slicing floorplans have an important advantage
over nonslicing: there are efficient algorithms to handle soft modules
in slicing floorplans optimally. A well-known approach by Wonget
al. [13] uses shape curve representation. A shape curve can describe
all possible shapes of a module and these shape curves can be added
up horizontally or vertically to produce new shape curves for super-
modules containing more than one basic modules. Mohet al. [5] and
Wanget al. [11] use numerical optimization methods. Mohet al. [5]
formulate the problem as a geometric programming and find its global

Manuscript received November 11, 2000. This paper was recommended by
Associate Editor D. Hill.

F. Y. Young is with the Department of Computer Science and Engineering,
The Chinese University of Hong Kong, New Territories, Hong Kong.

C. C. N. Chu is with the Department of Electrical and Computer Engineering,
Iowa State University, Ames, IA 50011 USA.

W. S. Luk and Y. C. Wong are with the Synopsys, Inc., Mountain View, CA
94043 USA.

Publisher Item Identifier S 0278-0070(01)03075-5.

(a) (b)

Fig. 1. (a) Slicing and (b) nonslicing floorplan.

minimum using some standard convex optimization techniques. How-
ever, all these methods are limited to placement topology of rectangular
dissection only, i.e., slicing.

The problem of handling soft modules becomes more complicated
in nonslicing floorplans. Both Panet al. [9] and Wanget al. [12] try to
generalize Stockmeyer’s algorithm [10] to nonslicing floorplan. Kang
et al.[4] extend the bounded sliceline grid (BSG) method [8] to handle
soft modules using heuristics. These methods are either suboptimal or
applicable to some specific nonslicing structures only. Murataet al.[7]
follow the framework of [5] and try to reduce the number of variables
and functions when formulating the problem so as to improve the ef-
ficiency. However, the execution time of their method to find an exact
solution is still very long. It takes seven days to pack a benchmark data
with 49 modules.

In this paper, we will present an efficient method to handle shape
flexibilities of soft modules in general nonslicing floorplans optimally.
The problem is formulated as a geometric program, but we use
the Lagrangian relaxation technique [6], a general technique for
constrained nonlinear optimization, to solve the problem efficiently.
This technique transforms the problem into a sequence of subproblems
called Lagrangian relaxation subproblems. Each subproblem can be
significantly simplified by the Kuhn–Tucker conditions. The resulting
subproblem is so simple that the size of each module can be computed
in linear time. This complexity can be further reduced to a constant on
average by using a different representation for nonslicing floorplans
that supports planar constraint graphs.

We implemented this method in a simulated annealing framework
using the sequence pair representation. The objective of the annealing
process is to minimize the total packing area and interconnect cost. To
evaluate the area in each iteration of the annealing process, we use the
geometric program to compute the optimal packing area taking into
account the shape flexibilities of all the soft modules simultaneously.
Our floorplanner can pack much faster than the most updated previous
work [7]. For the benchmark data with 49 modules, we take only 3.7 h
in total for the whole annealing process using a 600-MHz Pentium III
processor while the convex programming approach in [7] needs seven
days using a 250-MHz DEC Alpha. Our method will also be applicable
to other floorplanning algorithms that make use of constraint graphs to
compute module positions in the final packing.

The rest of this paper is organized as follow. We will formulate the
problem in Section II. Section III describes briefly the sequence pair
representation. We will formulate the geometric program in Section IV.
In Section V, we will explain in details the Lagrangian relaxation tech-
nique. Experimental results will be shown in Section VI and some re-
marks will be given in the last section.

II. PROBLEM FORMULATION

We consider two kinds of modules: hard modules and soft modules.
A hard module is a module whose dimension is fixed. A soft module
is one whose area is fixed, but its dimension can be changed as
long as its aspect ratio, i.e., the ratio of height to width, is within

0278–0070/01$10.00 © 2001 IEEE

688 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 5, MAY 2001

a given range. In this problem, we are givenn modules of areas
A1, A2; . . . ; An and their aspect ratio ranges[r1;min; r1;max],
[r2;min; r2;max]; . . . ; [rn;min; rn;max]. In case of a hard module,
the maximum and minimum aspect ratio will be the same.

A packingof a set of modules is a nonoverlap placement of the mod-
ules. Afeasible packingis a packing such that the widths and heights of
the modules are consistent with their aspect ratio constraints and area
constraints. We measure the area of a packing as the area of the smallest
rectangle enclosing all the modules.

We are also given the netlist information:net1; net2; . . . ; netm
and the relative positions of the input–output (I/O) pinsp1; p2; . . . ; pq
along the boundary of the chip. For each netneti, where1 � i � m,
we are given its weight, the I/O pin, and the set of modules to which
it is connected. Our objective is to obtain a feasible packing mini-
mizing the total packing area and interconnect cost. We use the sim-
ulated annealing technique (based on the sequence pair representation)
to search the solution space. For each intermediate solution in the an-
nealing process, we evaluate the packing by computing a linear func-
tion of its area and interconnect cost. However, there can be many re-
alizations of the same packing due to the shape flexibilities of the soft
modules. The most important contribution of our paper is that we de-
vised an efficient method to compute the shapes of the soft modules to
give the optimal packing. The problem is formulated as follows.

Problem Floorpolan Area Minimization (FP/AM):Given a set of
hard and soft modules with area and aspect ratio constraints, and a spe-
cific packing topology of these modules described by a pair of vertical
and horizontal constraint graphs, find the optimal shape of each module
so as to produce the smallest possible feasible packing taking into con-
sideration the shape flexibilities of all the soft modules simultaneously.

III. SEQUENCEPAIR AND CONSTRAINT GRAPH

We use sequence pair to represent a general floorplan in the an-
nealing process. A sequence pair of a set of module is a pair of combi-
nations of the module names. For example,s = (abcd; bacd) is a se-
quence pair of the module setfa; b; c; dg. We can derive the relative
positions between the modules from a sequence pairs by the following
rules.

1) H-constraint:If s = (� � � a � � � b � � � ; � � � a � � � b � � �), module
b is on the right hand side of modulea.

2) V-constraint:If s = (� � � a � � � b � � � ; � � � b � � � a � � �), module
b is below modulea.

We can use constraint graphs to represent these horizontal and vertical
placement relationships. A horizontal (vertical) constraint graphGh

(Gv) for a set ofn modules is a graph ofn vertices with the vertices
representing the modules and the edges representing the horizontal
(vertical) placement constraints. For example, if moduleb is on the
right-hand side of modulea, we will add an edge froma to b in the
horizontal constraint graph with a weight equal to the width ofa. The
reason is that ifb is on the right hand side ofa, its lower left corner (no-
tice that we always refer the position of a module by the coordinates
its lower left corner) should be at a distance of at least the width ofa
from the lower left corner ofa. Similarly, if moduleb is above module
a, we will add an edge froma to b in the vertical constraint graph with
a weight equal to the height ofa. We can build these graphs directly
from a sequence-pair representation.

1) Add an edge froma to b labeledwa to the horizontal constraint
graphGh wherewa is the width ofa iff s = (� � � a � � � b � � � ;
� � � a � � � b � � �).

2) Add an edge fromb to a labeledhb to the vertical constraint
graphGv wherehb is the height ofb iff s = (� � � a � � � b � � � ;
� � � b � � � a � � �).

(a) (b)

Fig. 2. (a) Horizontal and (b) vertical constraint graphs for the sequence pair
(abcd; bacd).

Fig. 2 shows the horizontal and vertical constraint graphs for the se-
quence pairs = (abcd; bacd). In this example, the orders ofa and
b in the two sequences are different(� � � a � � � b � � � ; � � � b � � � a � � �),
soa is aboveb and there is an edge fromb toa labeledhb in the vertical
constraint graph. For modulesa andc, their orders are the same in both
sequences(� � � a � � � c � � � ; � � � a � � � c � � �), soc is on the right-hand
side ofa and there is an edge froma to c labeledwa in the horizontal
constraint graph. In this way, we can construct the horizontal and ver-
tical constraint graphs by looking at the orders of every pair of mod-
ules in the two sequences. In the annealing process, we can modify a
sequence pair by two kinds of moves:

1) M1: exchange two modules in the first sequence only;
2) M2: exchange two modules in both sequences.

These two moves are sufficient to transform any sequence pair� to any
other arbitrary sequence pair� in one or more steps.

IV. FORMULATION OF THE GEOMETRIC PROGRAM

We are given n modules M1, M2; . . . ; Mn of areas A1,
A2; . . . ; An. For each moduleMi, where1 � i � n, its minimum
and maximum aspect ratios areri;min andri;max, respectively. The
minimum and maximum width ofMi are, thus,Li = Ai=ri;max

andUi = Ai=ri;min, respectively. We are also given the topology
of the packing described by a pair of horizontal and vertical constraint
graphs. Letxi denote the smallestx position of the lower left corner
of modulei satisfying all the horizontal constraints in the horizontal
constraint graphGh. Similarly, yi denotes the smallesty position of
the lower left corner of modulei, satisfying all the vertical constraints
in the vertical constraint graphGv . Then, for each edgee(i; j) from
modulei to modulej in Gh, we have the following constraint:

xi + wi � xj

wherewi is the width of modulei. Similarly, for each edgee(i; j) from
modulei to modulej in Gv , we have the following constraint:

yi +
Ai

wi

� yj :

In the horizontal constraint graphGh, we denote the set of sources and
sinks bysh andth, respectively, where a source is a vertex without in-
coming edge and a sink is a vertex without outgoing edge. Similarly,
we usesv andtv to denote the set of sources and sinks inGv , respec-
tively. Then, for each modulei in sh

xi = 0

and for each modulei in sv

yi = 0:

For simplicity, we add one dummy vertex labeledn + 1 to eachGh

andGv . The dummy vertex inGh andGv represents the rightmost
and the topmost boundary of the chip, respectively. Edgee(i; n + 1)
with weightwi is added toGh for eachi 2 th because the rightmost

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 5, MAY 2001 689

chip boundary should be at a distance of at leastwi from each module
i 2 th. Similarly, e(i; n + 1) with weightAi=wi is added toGv

for eachi 2 tv . From now onwards, we assume that the constraint
graphsGh andGv contain these additional vertices and edges. The
problem can be formulated as the following geometric programming
primal problem (PP):

minimize xn+1yn+1

subject to xi + wi � xj 8 e(i; j) 2 Gh (A)

yi +
Ai

wi

� yj 8 e(i; j) 2 Gv (B)

Li � wi � Ui 8 1 � i � n: (C)

V. LAGRANGIAN RELAXATION

According to the Lagrangian relaxation procedure, we can introduce
nonnegative multipliers, called Lagrange multipliers, to the constraints
in order to get rid of those difficult constraints and incorporate them
into the objective function. Let�i; j denote the multiplier for the con-
straintxi + wi � xj in (A) and �i; j denote the multiplier for the
constraintyi + Ai=wi � yj in (B). Let ~� and~� be vectors of all
the Lagrange multipliers introduced to the constraints in (A) and (B),
respectively. Then, the Lagrangian relaxation subproblem associated
with the multiplier~� and~�, denoted byLRS=(~�; ~�), becomes

minimize xn+1yn+1+

e(i; j)2G

�i; j(xi + wi � xj)+

e(i; j)2G

�i; j yi +
Ai

wi

� yj

subject to Li � wi � Ui 8 1 � i � n:

LetQ(~�; ~�) denote the optimal value of the problemLRS=(~�; ~�). We
define the Lagrangian dual problem (LDP) of PP as follows:

maximize Q(~�; ~�)

subject to ~� � 0 and~� � 0:

SincePP can be transformed into a convex problem [7], we can apply
[6, theorem 6.2.4] and imply that if(~�; ~�) is the optimal solution to
LDP , the optimal solution ofLRS=(~�; ~�) will also optimizePP .

A. Simplification of the Lagrangian Relaxation Subproblem

The Lagrangian relaxation subprogramLRS=(~�; ~�) can be greatly
simplified by the Kuhn–Tucker conditions. Consider the Lagrangian�
of PP [6]

� =xn+1yn+1 +
e(i; j)2G

�i; j(xi + wi � xj)

+
e(i; j)2G

�i; j(yi +
Ai

wi

� yj) +
1�i�n

ui(Li � wi)

+
1�i�n

vi(wi � Ui)

=xn+1yn+1 �
e(i; n+1)2G

�i; n+1xn+1

�

e(i; n+1)2G

�i; n+1yn+1

+
1�i�n e(i; j)2G

�i; j �
e(j; i)2G

�j; i xi

+
1�i�n e(i; j)2G

�i; j �
e(j; i)2G

�j; i yi

+
1�i�n e(i; j)2G

�i; j wi+
e(i; j)2G

�i; j
Ai

wi

+
1�i�n

ui(Li � wi) +
1�i�n

vi(wi � Ui):

The Kuhn–Tucker conditions imply that@�=@xi = 0 and@�=@yi = 0
for all 1 � i � n + 1 at the optimal solution ofPP . Therefore, in
searching for the~� and~� to optimizeLDP , we only need to consider
those multipliers such that these conditions are satisfied. Therefore, for
all 1 � i � n

@�=@xi =
e(i; j)2G

�i; j �
e(j; i)2G

�j; i = 0

@�=@yi =
e(i; j)2G

�i; j �
e(j; i)2G

�j; i = 0

and

@�=@xn+1 = yn+1 �
e(i; n+1)2G

�i; n+1 = 0

@�=@yn+1 =xn+1 �
e(i; n+1)2G

�i; n+1 = 0:

Rearrange

e(j; i)2G

�j; i =
e(i; j)2G

�i; j (1)

e(j; i)2G

�j; i =
e(i; j)2G

�i; j (2)

and

yn+1 =
e(i; n+1)2G

�i; n+1 (3)

xn+1 =
e(i; n+1)2G

�i; n+1: (4)

We use
 to denote the set of(~�; ~�) satisfying the above relationships
(1)–(4) for a given pair of horizontal and vertical constraint graphs. If
(~�; ~�) 2
, the objective functionF of LRS=(~�; ~�) becomes

F =
1�i�n e(i; j)2G

�i; j wi +
e(i; j)2G

�i; j
Ai

wi

�

e(i; n+1)2G

�i; n+1
e(i; n+1)2G

�i; n+1

where(
e(i; n+1)2G �i; n+1)(e(i; n+1)2G �i; n+1) is a constant

for a fixed(~�; ~�).

690 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 5, MAY 2001

B. SolvingLRS=(~�; ~�)

In this section, we consider solving the Lagrangian relaxation sub-
problemLRS=(~�; ~�) when(~�; ~�) 2
, i.e., computingwi for 1 �
i � n. F can be written as

F =

k +
1�i�n e(i; j)2G

�i; j wi +
e(i; j)2G

�i; j
Ai

wi

where

k = �
e(i; n+1)2G

�i; n+1
e(i; n+1)2G

�i; n+1

is a constant. DifferentiateF with respect towi in order to get the
optimal value ofwi to minimizeF

@F

@wi

=0

e(i; j)2G

�i; j �
Ai

w2
i e(i; j)2G

�i; j =0

wi =

Ai �
e(i; j)2G

�i; j

e(i; j)2G

�i; j
:

Recall thatwi must lie within the range[Li; Ui]. Let w�i denote
(Ai � e(i; j)2G �i; j)= e(i; j)2G �i; j . Since @F=@wi is

positive forwi < w�i and negative forwi > w�i , the optimalwi can
be computed as

wi = minfUi; maxfLi; w
�
i gg:

The total time to compute the widths of all the modules areO(jEhj+
jEvj), wherejEhj andjEvj are the numbers of edges in the horizontal
and vertical constraint graphs, respectively. The algorithmFind-Width
below outlines the steps to solveLRS=(~�; ~�).

Algorithm Find-Width
/* This algorithm solves opti-
mally given */
Input: Areas

Lower bounds of widths
Upper bounds of widths
Constraint graphs and
Lagrange multipliers

Output: Widths
1. For to
2.
3. For all
4. Compute
5. For all
6. Compute
7. If and
7. Compute
8. .

C. SolvingLDP

As explained above, we only need to consider those(~�; ~�) 2
 in
order to maximizeQ(~�; ~�) in theLDP problem. We used a subgra-
dient optimization method to search for the optimal(~�; ~�). Starting

from an arbitrary(~�; ~�) 2
 in stepk, we will move to a new pair
(~�0; ~�0) by following the subgradient direction:

�0i; j = [�i; j + �k(xi + wi � xj)]
+

�0i; j = �i; j + �k yi +
Ai

wi

� yj

+

where

[x]+ =
x; if x > 0

0; if x � 0

and�k is a step size such thatlimk!1 �k = 0 and 1
k=1 �k = 1.

After updating~� and~�, we will project (~�0; ~�0) back to the nearest
point (~��; ~��) in
 and solve the Lagrangian relaxation subproblem
LRS=(~��; ~��) using the method described in Section V-B. This pro-
cedure is repeated until the solution converges. The following algo-
rithm summarizes the steps to solveLDP .

Algorithm Solve-LDP
/* This algorithm solves the problem
optimally. Given the placement topology
described by a pair of constraint graphs,
it computes the optimal values for the
widths of the modules to minimize the
total packing area. */
Input: Areas ,

Lower bounds of widths
Upper bounds of widths
Constraint graphs and

Output: Widths
1. Initialize and
2.
3. Repeat
4. Call Find-width() to solve
5. Compute using the

longest path algorithm
6. Compute

7. Compute

8. Project to such that

9.
10.
11. Until ’s converge.

D. Projection

As described above, we used subgradient optimization to search for
the optimal(~�; ~�). Starting from an arbitrary(~�; ~�) 2
, we will
move to a new pair(~�0; ~�0) by following the subgradient direction.
(~�0; ~�0) will then be projected back to the nearest point(~��; ~��) in

based on the two-norm measure. This projection step is done by finding
an orthonormal bases~�1; . . . ; ~�p; ~�1; . . . ; ~�q of
. Then

~�� =

p

i=1

(~�0 � ~�i)~�i (5)

~�� =

q

i=1

(~�0 � ~�i)~�i: (6)

To find the orthonormal bases spanning
, we first find a setI of in-
dependent vectors spanning
 using QR decomposition. For simplicity,

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 5, MAY 2001 691

we consider�’s only in the following discussion. Let
� denote the set
of ~�’s satisfying the relationships (1) and (3) and let

Q�
~� = ~y

be the system of equations described by (1) and (3). By QR decompo-
sition, we can write each dependent variable�i in ~� as a linear combi-
nation of the other independent variables�j ’s in ~�

�i =
j

�i; j�j :

From these formulae, we can obtain a set of independent vectorsI�
spanning
�. Notice that in (1)–(4), each variable will appear at most
twice and their coefficients are either 1 or�1, so the QR decomposi-
tion step takes onlyO(n2) time instead ofO(n3), wheren is the total
number of modules and there is no floating point division throughout
the whole process. Then we apply the Gram–Schmidt process [2] to
obtain the orthonormal bases fromI�.

Algorithm Gram–Schmidt
Input: An independent set
Output: An orthonormal set

such that the set spans the
same space as

1. For
2. For (skip when)
3.
4.
5.
6. .

The Gram–Schmidt Algorithm takesO(jEj3), where jEj is the
number of edges in the constraint graph. Fortunately, we only need
to do the QR decomposition and Gram–Schmidt process once for
each sequence pair. After finding an orthonormal set of vector, we can
repeatedly use this set to do projection in searching for an optimal
(~�; ~�) 2
 according to (5) and (6). Another useful incremental
technique to improve the efficiency is due to the observation that the
structures of the constraint graphs are unchanged if we just exchange
two modules in a move of the annealing process (M2), so we do
not need to recompute the orthonormal bases in almost half of the
iterations.

VI. EXPERIMENTAL RESULTS

We tested our floorplanner with the MCNC benchmarks and some
randomly generated data sets using a 600-MHz Pentium III processor.
In all the experiments, the weightings between the area term and the
wirelength term in the cost function of the annealing process are ap-
proximately balanced. We did three sets of experiments. In the first set,
we want to know the speed and quality of sizing all the modules once
by the Lagrangian relaxation method. We randomly generated six data
sets with 10 to 500 modules each. The aspect ratio of each module
can range from 0.1 to 10.0 and the areas of the modules are randomly
generated in the range between 0 and 500 000. The sizing procedure is
applied only once at the end of the annealing process and the chip as-
pect ratio can range between 0.5 to 2.0. The result is shown in Table I.
Notice that the result for each data set is obtained by repeating the ex-
periment six times and picking the best one. Fig. 3 shows the packings
for the data set with 100 modules before and after the sizing procedure.
Murata and Kuh [7] have also reported the speed and quality of their
method on data set with module size randomly generated in the range
between1002 to 10 0002 running on a 250-MHz Alpha DEC and their
results is shown in Table II.

TABLE I
SPEED AND QUALITY OF THE SIZING PROCEDURE

(a)

(b)

Fig. 3. Packings of 100 modules (a) before and (b) after one sizing step.

In the second set of experiments, we apply the sizing procedure in
every iteration of the annealing process. We use the same set of parame-
ters as in [7]: the initial temperature is decided such that the acceptance
ratio is 95%, the temperature is exponentially lowered in four decades
by 20 steps, the number of iterations in one temperature step is ten times
the number of modules, and the aspect ratio of the whole chip is approx-
imately one. The temperature drops until it is below a certain threshold
(1 � 10�10). We test our method using the benchmark data sets and
the aspect ratio of the modules can range between 0.1 to 10.0. The re-
sults is shown in Table III. Note that our experiments are performed
on a 600-MHz Pentium III processor while [7] used a 250-MHz DEC
Alpha processor. Fig. 4 shows a result packing for ami33.

692 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 5, MAY 2001

TABLE II
RESULTS FROM[7]

TABLE III
RESULTS OFAPPLYING THE SIZING PROCEDURE INEVERY ITERATION OF

THE ANNEALING PROCESS

Fig. 4. Result packing of ami33 with aspect ratio bound [0.1, 10.0]. It has 1.6%
deadspace.

In the last set of experiments, we also use the benchmark data sets
and invoke the sizing procedure in every iteration of the annealing
process. However, we allow the aspect ratio of each module to range
from 0.5 to 2.0. This is a more reasonable range and it can better demon-
strate the speed and quality of the sizing method in practice. In this set
of experiments, the initial temperature is decided such that the accep-
tance ratio is 95%. The aspect ratio of the whole chip is also approxi-
mately one. The temperature is lowered at a constant rate of 0.95 until
it is below a certain threshold (1�10�10) and the number of iterations
at each temperature step is a constant of 30. The results are shown in
Table IV.

TABLE IV
RESULTS OFTESTING WITH THE BENCHMARK DATA USING ASPECT

RATIO BOUND [0.5, 2.0]

VII. REMARKS

Our method can also be used in the presence of hard rectilinear
blocks. This can be done by partitioning a rectilinear hard block into
several rectangular submodules and keeping them together as one
piece by inserting additional edges in the constraint graphs. In this
way, we can still shape the soft modules optimally in the presence of
hard blocks.

In our current implementation, the time taken to compute the width
of a modulei is linear to the total number of outgoing edges fromi in
the two constraint graphs. This isO(n) on average for constraint graphs
constructed from the sequence pair representation. However, this can
be reduced toO(1) by using another representation, e.g., O-tree [1] and
B�-tree [3], which supports planar constraint graphs.

ACKNOWLEDGMENT

The authors would like to thank Prof. M. D. F. Wong for his kindness
of providing us the source code for the sequence pair floorplanning
algorithm.

REFERENCES

[1] Y. C. Chang, Y. W. Chang, G. M. Wu, and S. W. Wu, “B-Trees: A
new representation for nonslicing floorplans,” inProc. 37th ACM/IEEE
Design Automation Conf., June 2000, pp. 458–463.

[2] D. S. Watkins,Fundamentals of Matrix Computations, 1st ed. New
York: Wiley, 1991.

[3] P.-N. Guo, C.-K. Cheng, and T. Yoshimura, “An O-tree representation
of nonslicing floorplan and its applications,” inProc. 36th ACM/IEEE
Design Automation Conf., June 1999, pp. 268–273.

[4] M. Kang and W. W. M. Dai, “General floorplanning with L-shaped,
T-shaped and soft blocks based on bounded slicing grid structure,” in
Proc. IEEE Asia South Pacific Design Automation Conf., Jan. 1997, pp.
265–270.

[5] T.-S. Moh, T.-S. Chang, and S. L. Hakimi, “Globally optimal floorplan-
ning for a layout problem,”IEEE Trans. Circuit Syst. I, vol. 43, pp.
713–720, Sept. 1996.

[6] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty,Nonlinear Programming:
Theory and Algorithms, 2nd ed. New York: Wiley, 1997.

[7] H. Murata and E. S. Kuh, “Sequence-pair based placement method for
hard/soft/preplaced modules,” inProc. Int. Symp. Physical Design, Apr.
1998, pp. 167–172.

[8] S. Nakatake, K. Fujiyoushi, H. Murata, and Y. Kajitani, “Module place-
ment based on BSG-structure and IC layout applications,” inProc. IEEE
Int. Conf. Computer-Aided Design, Nov. 1996, pp. 484–491.

[9] P. Pan and C. L. Liu, “Area minimization for floorplans,”IEEE Trans.
Computer-Aided Design, vol. 14, pp. 129–132, Jan. 1995.

[10] L. Stockmeyer, “Optimal orientations of cells in slicing floorplan de-
signs,”Inform. Control, vol. 59, no. 2, pp. 91–101, May 1983.

[11] T.-C. Wang and D. F. Wong, “An optimal algorithm for floorplan area
optimization,” in Proc. ACM/IEEE Design Automation Conf., June
1990, pp. 180–186.

[12] , “Optimal floorplan area optimization,”IEEE Trans. Computer-
Aided Design, vol. 11, pp. 992–1001, Aug. 1992.

[13] D. F. Wong and C. L. Liu, “A new algorithm for floorplan design,” in
Proc. 23rd ACM/IEEE Design Automation Conf., 1986, pp. 101–107.

