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Abstract. Delay of VLSI circuit components can be controlled by varying their sizes. In other words,
performance of VLSI circuits can be optimized by changing the sizes of the circuit components. In this
paper, we define a special type of geometric program called unary geometric program. We show that under
the Elmore delay model, several commonly used formulations of the circuit component sizing problem
considering delay, chip area and power dissipation can be reduced to unary geometric programs. We present
a greedy algorithm to solve unary geometric programs optimally and efficiently. When applied to VLSI
circuit component sizing, we prove that the runtime of the greedy algorithm is linear to the number of
components in the circuit. In practice, we demonstrate that our unary-geometric-program based approach
for circuit sizing is hundreds of times or more faster than other approaches.
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1. Introduction

Since the invention of integrated circuits almost 40 years ago, sizing of circuit com-
ponents (e.g., transistors and wire segments) has always been an effective technique
to achieve desirable circuit performance. The reason is both resistance and capacitance
of a circuit component are functions of the component size. Since the delay of a cir-
cuit component can be modeled as a product of the resistance of the component and
the capacitance of the subcircuit driven by the component, the delay of a circuit can be
minimized by sizing of circuit components.

Both transistor/gate sizing [6,12,15,16,21] and wire sizing [2,4,7,9,18,20] have
been shown to be effective to reduce circuit delay. Transistor sizing is the problem of
changing the channel length of transistors. Gate sizing is basically the same as transistor
sizing. Gate is a collection of transistors working together to perform a specific logic
function. Gate sizing refers to the problem of sizing the transistors inside a gate simulta-
neously by the same factor. Wire sizing refers to the problem of determining the width of
the wires at every point along the wires. To make the design and fabrication process eas-
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ier, wires are usually divided into fixed-length segments and every point in a segment is
sized to the same width. Since transistor/gate sizes affect wire-sizing solutions and wire
sizes affect transistor/gate-sizing solutions, it is beneficial to simultaneously size both
transistors/gates and wires [2,7,8,17,19]. However, the simultaneous problem is harder
to solve.

In this paper, we consider performance optimization of VLSI circuits by sizing
components. In order to simplify the presentation, we illustrate the idea by simultaneous
gate and wire sizing. All techniques introduced in this paper can be easily applied to
simultaneous transistor and wire sizing. The widely used Elmore delay model [11] is
used here for delay calculation.

Various formulations of the sizing problem considering delay, chip area and power
dissipation have been proposed. When delay alone is considered, two commonly used
formulations are minimizing a weighted sum of the delay of components, and mini-
mizing the maximum delay among all circuit outputs. Besides delay, it is desirable to
minimize the chip area occupied by the circuit and the power dissipation of the circuit
as well. All these objectives can be optimized effectively by circuit component sizing.
However, these objectives are usually conflicting. As a result, to consider the tradeoff
of these design objectives, formulations like minimizing the maximum delay among all
circuit outputs subject to bounds on area/power, and minimizing area/power subject to
delay bounds on all circuit outputs have been proposed.

Fishburn and Dunlop [12] have already pointed out that for the transistor sizing
problem, several formulations can be written as geometric programs [10]. In fact, by
generalizing the idea of [12], it is not difficult to see that all formulations listed above can
be written as geometric programs. However, it would be very slow to solve them by some
general-purpose geometric programming solver. So instead of solving it exactly, many
heuristics were proposed [6,12,15,16]. Sapatnekar et al. [21] transformed the geometric
programs for transistor sizing into convex programs and solved them by a sophisticated
general-purpose convex programming solver based on interior point method. This is
the best known previous algorithm that can guarantee exact transistor sizing solutions.
However, to optimize a circuit of only 832 transistors, the reported runtime is already
9 hours on a Sun SPARCstation 1.

In this paper, we define a special type of posynomial [10] and geometric program:

Definition 1. A unary posynomial is a posynomial of the following form:

u(x1, . . . , xn) =
∑

1�i�n

αi

xi
+

∑
1�i�n

βixi +
∑

1�i,j�n
γij
xi

xj
,

where αi , βi and γij for all i and j are non-negative constants.

Definition 2. A unary geometric program is a geometric program which minimizes a
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unary posynomial subject to upper and lower bounds on all variables. In other words, it
is a geometric program of the following form:

Minimize u(x1, . . . , xn) =
∑

1�i�n

αi

xi
+

∑
1�i�n

βixi +
∑

1�i,j�n
γij
xi

xj

subject to Li � xi � Ui for all 1 � i � n,
where αi , βi , γij , Li and Ui for all i and j are non-negative constants.

As we show in section 2, the formulation of minimizing weighted component delay
is a unary geometric program. For all other formulations, Chen, Chu and Wong [3]
showed that they can be reduced by the Lagrangian relaxation technique to problems
very similar to weighted component delay problems. We observe that these problems are
also unary geometric programs. In other words, by solving unary geometric programs,
all formulations of circuit component sizing above can be solved.

To solve unary geometric programs, we present a greedy algorithm which is both
optimal and efficient. In particular, for unary geometric programs corresponding to VLSI
circuit component sizing, we prove that the runtime of the greedy algorithm is linear to
the number of components in the circuit.

The rest of this paper is organized as follows. In section 2, we explain why different
formulations of the circuit sizing problem can be reduced to unary geometric programs.
In section 3, we present the greedy algorithm to solve unary geometric programs, prove
its optimality and analyze its convergence rate. In section 4, we analyze the runtime
of the greedy algorithm when applied to VLSI circuits. In section 5, experimental re-
sults to show the runtime and storage requirements of our approach to circuit sizing are
presented.

2. Reduction to unary geometric programs

In this section, we show that any formulation of circuit component sizing with one of
delay, area and power constituting the objective function and with constraints on the
other two can be reduced to unary geometric programs.

For a general VLSI circuit, we can ignore all latches and optimize its combinational
subcircuits. Therefore, we focus on combinational circuits below. Figure 1 illustrates
a combinational circuit. We call a gate or a wire segment a circuit component. Let n
be the number of component in the circuit. The circuit component sizing problem is to
optimize some objective function subject to some constraints involving delay, area and
power. For 1 � i � n, let xi be the gate size if component i is a gate, or the segment
width if component i is a wire segment. Let Li and Ui be, respectively, the lower bound
and upper bound on the component size xi , i.e., Li � xi � Ui .

In section 2.1, we first introduce the model that we use for delay calculation. In
section 2.2, we show that the formulation of minimizing a weighted sum of component
delays can be written directly as a unary geometric program. In section 2.3, we show
that all other formulations can be reduced to unary geometric programs.
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Figure 1. A combinational circuit.

Figure 2. The model of a gate by a switch-level RC circuit. Note that ri = r̂i /xi and ci = ĉixi + fi , where
r̂i , ĉi and fi are the unit size output resistance, the unit size gate area capacitance and the gate perimeter
capacitance of the gate i respectively. Although the gate shown here is a 2-input AND gate, the model can

be easily generalized for any gate with any number of input pins.

2.1. Delay model

For the purpose of delay calculation, we model circuit components as RC circuits. A gate
is modeled as a switch-level RC circuit as shown in figure 2. See [22] for a reference of
this model. For this model, the output resistance ri = r̂i/xi , and the input capacitance
of a pin ci = ĉixi + fi , where r̂i , ĉi and fi are the unit size output resistance, the unit
size gate area capacitance and the gate perimeter capacitance of gate i respectively. (To
simplify the notations, we assume the input capacitances of all input pins of a gate are
the same. We also ignore the intrinsic gate delay. It is clear that all our results will still
hold without these assumptions.)

A wire segment is modeled as a π -type RC circuit as shown in figure 3. For this
model, the segment resistance ri = r̂i/xi , and the segment capacitance ci = ĉixi + fi ,
where r̂i , ĉi and fi are the unit width wire resistance, the unit width wire area capacitance
and the wire fringing capacitance of segment i respectively. The classical Elmore delay
model [11] is used for delay calculation. The delay of each component is equal to the
delay associated with its resistor. The delay associated with a resistor is equal to its
resistance times its downstream capacitance, i.e., the total capacitance driven by the
resistor. The delay along a signal path is the sum of the delays associated with the
resistors in the path.
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Figure 3. The model of a wire segment by a π-type RC circuit. Note that ri = r̂i /xi and ci = ĉi xi + fi ,
where r̂i , ĉi and fi are the unit width wire resistance, the unit width wire area capacitance and the wire

fringing capacitance of the segment i respectively.

2.2. Weighted component delay formulation

In this subsection, we show that the problem of minimizing a weighted sum of the delays
of components can be written directly as a unary geometric program.

According to section 2.1, the capacitance of component i is a linear function in xi
and the capacitances of output loads are constants. So the downstream capacitance of
each component is a linear function in x1, . . . , xn. For example, the downstream capac-
itance of component 6 is (̂c6x6 + f6)/2 + (̂c9x9 + f9) + CL1 . Since the resistance of
component i is inversely proportional to xi and the resistance of drivers are constants,
the delay associated with each component in the circuit can be written as a unary posyn-
omial in x1, . . . , xn plus a constant. For example,

Delay of component 6 = r̂6

x6

(
ĉ6x6 + f6

2
+ (̂c9x9 + f9)+ CL1

)
= r̂6(f6/2 + f9 + CL1 )

x6
+ r̂6ĉ9

x9

x6
+ r̂6ĉ6

2
.

It is clear that a weighted sum of the component delays is also a unary posynomial plus
a constant. Together with upper and lower bounds on component sizes, the weighted
component delay formulation can be written as a unary geometric program.

2.3. Other formulations

Chen, Chu and Wong [3] showed that the Lagrangian relaxation technique can be used
to handle different formulations of circuit component sizing. Lagrangian relaxation is
a general technique for solving constrained optimization problems. In Lagrangian re-
laxation, “troublesome” constraints are “relaxed” and incorporated into the objective
function after multiplying them by constants called Lagrange multipliers, one multiplier
for each constraint. For any fixed vector λ of the Lagrange multipliers introduced, we
have a new optimization problem (which should be easier to solve because it is free of
troublesome constraints) called the Lagrangian relaxation subproblem.

Chen, Chu and Wong [3] showed that there exists a vector λ such that the opti-
mal solution of the Lagrangian relaxation subproblem is also the optimal solution of the
original circuit component sizing problem. The problem of finding such a vector λ is
called the Lagrangian dual problem. The Lagrangian dual problem can be solved by the
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classical method of subgradient optimization [1]. Therefore, if the Lagrangian relax-
ation subproblem can be solved optimally, the original circuit sizing problem can also
be solved optimally.

For all formulations stated in section 1, the corresponding Lagrangian relaxation
subproblems are indeed very similar to a weighted component delay problem. No matter
which of delay, area or power is in the objective function and which are in the constraints,
after incorporating the constraints into the objective function, the resulting objective
function is always a weighted sum of total component area, total power dissipation,
component delays and input driver delays.

The total component area, the total power dissipation and the input driver delays
are all linear functions in x1, . . . , xn. It is obvious for the case of area. For power dis-
sipation, power is dissipated mainly when charging and discharging capacitances in the
circuit. Power dissipation is a linear function in the capacitances of components. Since
the capacitance of component i is linear to its size xi , the total power dissipation is a
linear function in x1, . . . , xn. For input driver delays, note that the resistance of each
input driver is a constant and the total capacitance driven by each input driver is a linear
function in x1, . . . , xn. So the delay associated with each input driver is a linear function
in x1, . . . , xn.

As a result, for any formulation considered, the objective function of the La-
grangian relaxation subproblem is a unary geometric function. Together with the upper
and lower bounds on component sizes, the Lagrangian relaxation subproblem is a unary
geometric program.

3. Greedy algorithm for solving unary geometric program

In this section, we present a greedy algorithm which can solve unary geometric pro-
grams very efficiently and optimally. In section 3.1, we present the greedy algorithm. In
section 3.2, we prove that if we use (x1, . . . , xn) = (L1, . . . , Ln) as the starting solution,
the algorithm always converges to the optimal solution. In section 3.3, we prove that if
(αi �= 0 or βi �= 0) for all i, then the greedy algorithm will converge linearly to the
optimal solution from any starting solution.

3.1. The greedy algorithm

The basic idea of the greedy algorithm is to iteratively adjusting the variables. In each
iteration, the variables are examined one by one. When xk is examined, it is adjusted
optimally while keeping the values of all other variables fixed. We call this operation an
optimal local adjustment of xk . The following lemma gives a formula for optimal local
adjustment.
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Lemma 1. For a solution x = (x1, x2, . . . , xn) of a unary geometric program, the opti-
mal local adjustment of xk is given by

xk = min

{
Uk,max

{
Lk,

√ ∑
1�i�n, i �=k γikxi + αk∑

1�j�n, j �=k γkj /xj + βk

}}
.

Proof.

u(x1, . . . , xn)

=
∑

1�i�n

αi

xi
+

∑
1�i�n

βixi +
∑

1�i,j�n
γij
xi

xj

= 1

xk

( ∑
1�i�n, i �=k

γikxi + αk
)

+ xk
( ∑

1�j�n, j �=k
γkj

1

xj
+ βk

)
+ terms independent of xk.

So by the Kuhn–Tucker conditions [13], the optimal value of xk between Lk and Uk
which minimize u(x1, . . . , xn) is

xk = min

{
Uk,max

{
Lk,

√ ∑
1�i�n, i �=k γikxi + αk∑

1�j�n, j �=k γkj /xj + βk

}}
. �

The greedy algorithm is given below.

Greedy algorithm for unary geometric program.

S1. Let (x1, . . . , xn) be some starting solution.

S2. for k := 1 to n do

xk = min

{
Uk,max

{
Lk,

√ ∑
1�i�n, i �=k γikxi + αk∑

1�j�n, j �=k γkj /xj + βk .
}}

S3. Repeat step S2 until no improvement.

3.2. Optimality of the greedy algorithm

In this subsection, we prove that if we use (x1, . . . , xn) = (L1, . . . , Ln) as the starting
solution, the algorithm always converges to the optimal solution.

Let

x = (x1, . . . , xn), Ak(x) =
∑

1�i�n, i �=k
γikxi, Bk(x) =

∑
1�j�n, j �=k

γkj
1

xj
.

Note that u(x) is a posynomial in x. It is well known that under a variable transformation,
a posynomial is equivalent to a convex function. So u(x) has a unique global minimum
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and no other local minimum. We show in the following two lemmas that with the starting
solution (x1, . . . , xn) = (L1, . . . , Ln), the greedy algorithm always converges to the
global minimum.

Lemma 2. If the greedy algorithm converges, then the solution is optimal.

Proof. Suppose the algorithm converges to x∗ = (x∗
1 , . . . , x

∗
n). Then for 1 � k � n,

by lemma 1,

x∗
k = min

{
Uk,max

{
Lk,

√
Ak(x∗)+ αk
Bk(x∗)+ βk

}}
.

Note that u(x) is a posynomial in x, and that under the transformation xk = ezk for
1 � k � n, the function h(z) = u(ez1 , . . . , ezn) is convex over�z = {z: Lk � ezk � Uk,
1 � k � n}. Let z∗ = (z∗1, . . . , z

∗
n) where x∗

k = ez
∗
k for 1 � k � n. We now consider 3

cases:
Case 1: x∗

k = √
(Ak(x∗)+ αk)/(Bk(x∗)+ βk).

In this case, we have ∂u
∂xk
(x∗) = 0. Thus

∂h

∂zk
(z∗) = ∂u

∂xk
(x∗)

∂xk

∂zk
(z∗) = ∂u

∂xk
(x∗)ez

∗
k = 0.

Case 2: x∗
k = Lk.

In this case, Lk �
√
(Ak(x∗)+ αk)/(Bk(x∗)+ βk). We have ∂u

∂xk
(x∗) � 0 and

zk − z∗k � 0,∀z ∈ �z. Hence

∂h

∂zk
(z∗)(zk − z∗k) = ∂u

∂xk
(x∗)ez

∗
k (zk − z∗k) � 0, ∀z ∈ �z.

Case 3: x∗
k = Uk.

In this case, Uk �
√
(Ak(x∗)+ αk)/(Bk(x∗)+ βk). We have ∂u

∂xk
(x∗) � 0 and

zk − z∗k � 0, ∀z ∈ �z. Hence

∂h

∂zk
(z∗)(zk − z∗k) = ∂u

∂xk
(x∗)ez

∗
k (zk − z∗k) � 0, ∀z ∈ �z.

So ∂h
∂zk
(z∗)(zk − z∗k) � 0 for all k and for all z ∈ �z. Thus for any feasible solution x,

u(x)− u(x∗)= h(z)− h(z∗)
� ∇h(z∗)(z − z∗) as h is convex

=
n∑
k=1

∂h

∂zk
(z∗)(zk − z∗k)

� 0.

Therefore x∗ is the global minimum point. �
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Lemma 3. If (x1, . . . , xn) = (L1, . . . , Ln) is used as the starting solution, the greedy
algorithm always converges.

Proof. For any two vectors x and y, we use x � y to denote that xi � yi for all i.
Consider any two feasible solutions x and y. Let x′ and y ′ be the solutions after

locally adjusting some variable xk of x and y, respectively. If x � y, then Ak(x) �
Ak(y) and Bk(x) � Bk(y). So

x′
k = min

{
Uk,max

{
Lk,

√
Ak(x)+ αk
Bk(x)+ βk

}}

� min

{
Uk,max

{
Lk,

√
Ak(y)+ αk
Bk(y)+ βk

}}
= y′

k.

Also, x′
j = xj � yj = y′

j for j �= k. Hence x � y implies x ′ � y ′.
If we consider x and y be solutions before two consecutive optimal local adjust-

ment operations, then x ′ = y. Therefore, x � x ′ = y � y ′. Since the starting solution
is (L1, . . . , Ln), we can prove by mathematical induction that all variables are monoton-
ically increasing after each optimal local adjustment operation.

If we consider y to be the optimal solution, then y = y ′. Hence x � y implies
x ′ � y. Since the starting solution is (L1, . . . , Ln), we can prove by mathematical
induction that every xi after each optimal local adjustment operation is upper bounded
by the optimal value yi .

As xi is monotonically increasing and is upper bounded for all i, the greedy algo-
rithm always converges. �

By lemmas 2 and 3, we have the following theorem.

Theorem 1. For any unary geometric program, if (x1, . . . , xn) = (L1, . . . , Ln) is used
as the starting solution, the greedy algorithm always converges to the optimal solution.

3.3. Convergence rate of the greedy algorithm

In section 2, we show that many formulations of the circuit sizing problem can be re-
duced to a sequence of unary geometric programs by Lagrangian relaxation. We prove
in section 3.2 the convergence of the greedy algorithm only for the special starting so-
lution x = (L1, . . . , Ln). So in order to guarantee convergence, before solving each
unary geometric program instance, all variables have to be reset to their lower bounds
to form the starting solution for the greedy algorithm. However, since two consecutive
unary geometric program instances by Lagrangian relaxation are almost the same (ex-
cept that the Lagrange multipliers are changed by a little bit), the optimal solution of
the first unary geometric program is close to the optimal solution of the second one, and
hence a good starting solution to the second one. So if we can guarantee convergence
to the optimal solution, it is better not to reset the solution before solving each unary
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geometric program instance. We observe that not reseting can speed up the greedy algo-
rithm by more than 50% in practice. In addition, even for the special starting solution,
the convergence rate of the greedy algorithm is not known.

In this subsection, we consider unary geometry programs satisfying the condition
that αi �= 0 or βi �= 0 for all i. We point out in section 4 that for VLSI circuit component
sizing problems, this condition is essentially always true. Under this condition, we prove
that the greedy algorithm always converges to the optimal solution for any starting so-
lution. Moreover, we prove that the convergence rate for any starting solution is always
linear with convergence ratio upper bounded by the parameter σ defined as follows:

σ = max
1�k�n

{
φk + θk

2

}
,

where

φk = 1
/(

1 + αk

Ak(U1, . . . , Un)

)
and θk = 1

/(
1 + βk

Bk(L1, . . . , Ln)

)
.

Note that for all k, at least one of αk and βk is positive. So at least one of φk and θk is
less than 1. Therefore, it is clear that σ is a constant such that 0 < σ < 1.

Lemma 4 gives bounds on the changes of the variables after each iteration of the
greedy algorithm. Let x(0) = (x(0)1 , x

(0)
2 , . . . , x

(0)
n ) be the starting solution, and for t � 1,

let x(t) = (x
(t)

1 , x
(t)

2 , . . . , x
(t)
n ) be the solution just after the t th iteration of the greedy

algorithm. Let " = max1�i�n{(Ui − Li)/Li}.

Lemma 4. For any t � 0,

1

1 +"σ t � x
(t+1)
i

x
(t)
i

� 1 +"σ t for all i.

The proof of lemma 4 is given in the appendix.

Theorem 2. If αi �= 0 or βi �= 0 for all i, then the greedy algorithm always converges
to the optimal solution for any starting solution.

Proof. Since 0 < σ < 1, 1 +"σ t → 1 as t → ∞. So by lemma 4, it is obvious that
the greedy algorithm always converges for any starting solution. Lemma 2 proves that if
the greedy converges, then the solution is optimal. So the theorem follows. �

Let x∗ = (x∗
1 , x

∗
2 , . . . , x

∗
n) be the optimal solution. The following lemma proves

that the convergence rate of the greedy algorithm is linear with convergence ratio upper
bounded by σ .
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Lemma 5. For any t � 0, ∣∣∣∣x∗
i − x(t)i
x∗
i

∣∣∣∣ � (1 +")"σ t
1 − σ

for all i.

Proof. For any t � 0 and for any i,
Case 1: (1 +")σ t/(1 − σ ) � 1.

Then

x
(t)
i

x∗
i

� Ui

Li
� 1 +" � 1 +"(1 +")σ t

1 − σ .

Similarly, we can prove

x
(t)
i

x∗
i

� 1

1 + (1 +")"σ t/(1 − σ ).

Case 2: (1 +")σ t/(1 − σ ) < 1.
Then

x
(t)
i

x∗
i

=
∞∏
k=t

x
(k)
i

x
(k+1)
i

.

So by lemma 4, 1/P � x(t)i /x∗
i � P where P = ∏∞

k=t (1 +"σk).

lnP =
∞∑
k=t

ln
(
1 +"σk)

=
∞∑
k=t

(
"σk − 1

2
"2σ 2k + 1

3
"3σ 3k − 1

4
"4σ 4k + · · ·

)
(1)

�
∞∑
k=t

( ∞∑
j=1

1

j
"jσ jk

)

=
∞∑
j=1

"j

j

∞∑
k=t

(
σ j
)k

=
∞∑
j=1

"j

j

σ jt

1 − σ j

�
∞∑
j=1

"j

j

σ jt

(1 − σ )j (2)

= ln
1

1 −"σ t/(1 − σ ), (3)
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where (1) is because ln(1 + x) = x − 1
2x

2 + 1
3x

3 − 1
4x

4 + · · ·, (2) is because 0 < σ < 1,
which implies 0 < (1 − σ )j < 1 − σ < 1 − σ j for j � 1, and (3) is because 0 <
"σ t/(1−σ ) < (1 +")σ t/(1−σ ) < 1 and ln 1

1−x = x+ 1
2x

2 + 1
3x

3 +· · · if 0 < x < 1.
So

P � 1

1 −"σ t/(1 − σ )
= 1 + "σ t

1 − σ
/(

1 − "σ t

1 − σ
)

� 1 + "σ t

1 − σ
/(

1 − "

1 +"
)

= 1 + (1 +")"σ t
1 − σ .

Hence

1

1 + (1 +")"σ t/(1 − σ ) � x
(t)
i

x∗
i

� 1 + (1 +")"σ t
1 − σ .

Therefore for both cases,

1

1 + (1 +")"σ t/(1 − σ ) � x
(t)
i

x∗
i

� 1 + (1 +")"σ t
1 − σ .

It is easy to see that

1 − (1 +")"σ t
1 − σ � 1

1 + (1 +")"σ t/(1 − σ ).

So for any t � 0 and for all i,∣∣∣∣x∗
i − x(t)i
x∗
i

∣∣∣∣ � (1 +")"σ t
1 − σ . �

4. Analysis of the greedy algorithm when applied to VLSI circuits

In this section, we analyze the runtime of the greedy algorithm when applied to VLSI
circuits. In section 4.1, we show that for VLSI circuits, each iteration of the greedy
algorithm only takes time linear to the number of circuit components. In section 4.2,
we show that for VLSI circuits, the condition αi �= 0 or βi �= 0 for all i in section 3.3
is always true. So we conclude that for any circuit component sizing formulation, the
Lagrangian relaxation subproblem can be solved optimally by the greedy algorithm in
time linear to the size of the circuit. Notice that Chu and Wong [5] also showed that the
runtime of a similar greedy algorithm for wiring sizing of a single interconnect tree is
linear.
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4.1. Linear time for each iteration

We first show that when applied to VLSI circuits, each iteration of the greedy algorithm
only takes linear time. For each optimal local adjustment operation of xk, we need to
calculated

Ak(x) =
∑

1�i�n, i �=k
γikxi and Bk(x) =

∑
1�j�n, j �=k

γkj
1

xj
.

Hence each optimal local adjustment operation takes O(n) time and each iteration takes
O(n2) time in general.

However, for VLSI circuits, Ak(x)’s and Bk(x)’s can be computed incrementally.
The reason is for any component k, Ak(x) is a weighted downstream capacitance and
Bk(x) is a weighted upstream resistance of the component. So Ak(x) can be computed
easily by finding a weighted sum of Aj(x) over all component j at the output of com-
ponent k. Similarly, Bk(x) can be computed easily by finding a weighted sum of Bj(x)
over all component j at the input of component k. Note that the number of inputs and
number of outputs for VLSI circuits are always bounded by a smaller constant in prac-
tice. If we perform the optimal local adjustment operations in a topological order, for
each k, both Ak(x) and Bk(x) can be computed in constant time. Therefore, the optimal
local adjustment of xk can be done in constant time. As a result, each iteration of the
greedy algorithm only takes linear time.

4.2. Convergence ratio of the greedy algorithm

In section 3.3, we prove that the greedy algorithm converges linearly with convergence
ratio σ to the optimal solution from any starting solution. The convergence ratio σ is
upper bounded by the maximum of (φk+θk)/2 among all k. So if both φk = 1 and θk = 1
for some k, then the proof cannot guarantee the convergence of the greedy algorithm.
This situation occurs when αk = 0 and βk = 0 for some k. On the other hand, if αk �= 0
or βk �= 0 for all k, then σ is less than 1. The convergence of the greedy algorithm is
guaranteed. Moreover, the larger the values of αk’s and βk’s, the faster the convergence
of the greedy algorithm. For all k, αk and βk are, respectively, the coefficients of the
terms 1/xk and xk in the objective function of the unary geometric program. For VLSI
circuit component sizing, αk’s and βk’s are essentially always non-zero. Factors causing
αk’s and βk’s to be greater than zero are listed below.

Wire fringing capacitance and gate perimeter capacitance. The Elmore delay for a
component is equal to its resistance times its downstream capacitance. Notice that wire
fringing capacitance and gate perimeter capacitance are independent of the component
sizes, whereas the resistance of any component is inversely proportional to its size. So
the wire fringing capacitance of all wire segments and the gate perimeter capacitance of
all gates/loads at the downstream of component k contribute to the value of αk.
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Driver resistance and load capacitance. The Elmore delay for a driver equals to the
driver resistance times the total capacitance of wire segments and gates driven by it.
Since the driver resistance is independent of x1, . . . , xn, and the total capacitance of
wire segments and gates driven is a linear function of x1, . . . , xn, the driver resistance
contributes to the value of βk for all component k driven by the driver. Similarly, if any
component k is in the upstream of a load with capacitance CL, then the term CL̂rk/xk
will occur in the Elmore delay expression. Therefore, the load capacitance contributes
to the value of αk.

Component area. For any VLSI circuit sizing formulation involving the total compo-
nent area, βk �= 0 for all k. Let the total component area be

∑n
i=1 ωixi for some positive

constants ω1, . . . , ωn. If the total component area is the objective to minimize, then the
objective function of the unary geometric program will contain the term

∑n
i=1 ωixi . If

the total component area is constrained, then after Lagrangian relaxation, the objective
function of the unary geometric program will contain the term λ(

∑n
i=1 ωixi) where λ is

the Lagrange multiplier. In both cases, βk �= 0 for all k.

Power dissipation. As stated in section 2.3, the power dissipation of a circuit is a linear
function

∑n
i=1 ωixi for some positive constants ω1, . . . , ωn. So if power dissipation is

considered either in the objective or as a constraint, βk �= 0 for all k.
In fact, the number of iterations of the greedy algorithm is a function of the conver-

gence ratio σ . The value of σ depends on a lot of factors like the electrical parameters of
the fabrication technology, the resistance of drivers and the capacitance of loads, and the
upper and lower bounds on the component sizes. However, we observe that the actual
convergence ratio is not very sensitive to those factors, and is usually much less than 0.1
in practice. In addition, the change in σ does not affect the number of iterations very
much. For example, if σ changes from 0.05 to an unrealistically large value 0.5, the
number of iterations is increased only by a factor of log 0.05/ log 0.5 = 4.3.

Since the convergence rate of the greedy algorithm is linear and the runtime of each
iteration is O(n), we have the following theorem.

Theorem 3. When applied to VLSI circuit component sizing, the total runtime of the
greedy algorithm for any starting solution is O(n log(1/ε)), where ε specifies the preci-
sion of the final solution (i.e., for the optimal solution x∗, the final solution x satisfies
|(x∗

i − xi)/x∗
i | � ε for all i).

Proof. By lemma 5, for any t � 0 and for all i,

∣∣∣∣x∗
i − x(t)i
x∗
i

∣∣∣∣ � (1 +")"σ t
1 − σ .
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In order to guarantee that |(x∗
i − x(t)i )/x∗

i | � ε for all i, the number of iterations t must
satisfy

(1 +")"σ t
1 − σ � ε,

or equivalently,

t � log1/σ
(1 +")"
(1 − σ )ε .

In other words, at most ⌈
log1/σ

(1 +")"
(1 − σ )ε

⌉
iterations are enough. Since each iteration of the greedy algorithm takes O(n) time, the
total runtime is O(n log(1/ε)). �

Therefore, to obtain a solution with any fixed precision, only a constant number of
iterations of the greedy algorithm are needed. This implies that for Lagrangian relaxation
subproblems of VLSI circuit component sizing, the runtime of the greedy algorithm
is O(n).

5. Experimental results

In this section, the runtime and storage requirements of our unary-geometric-program
based approach to circuit component sizing are presented. We implemented a circuit
component sizing program for minimizing area subject to maximum delay bound on a
PC with a 333 MHz Pentium II processor. In the program, the Lagrangian relaxation
technique is used to reduce the problem to unary geometric programs, which are then
solved optimally by our greedy algorithm. The Lagrangian dual problem is solved by
the classical subgradient optimization method. We test our circuit component sizing
program on adders [14] of different sizes ranging from 8 bits to 1024 bits. Number of
gates range from 120 to 15360. Number of wires range from 96 to 12288 (note that the
number of wires here means the number of sizable wire segments). The total number of
sizable components range from 216 to 21648. The lower bound and upper bound of the
size of each gate are 1 and 100, respectively. The lower bound and upper bound of the
width of each wire are 1 and 3 µm, respectively. The stopping criteria of our program is
the solution is within 1% of the optimal solution.

In table 1, the runtime and storage requirements of our program are shown. Even
for a circuit with 27648 sizable components, the runtime and storage requirements of
our program are 11.53 minutes and about 23 MB only. As mentioned in section 1, the
interior-point-method based approach in [21] is the best previous algorithm that can
guarantee exact circuit sizing solutions. The largest test circuit in [21] has 832 transis-
tors and the reported runtime and memory are 9 hours (on a Sun SPARCstation 1) and
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Table 1
The runtime and storage requirements of our circuit component sizing program on test circuits of different

sizes.

Circuit name Circuit size Runtime Memory
# Gates # Wires Total (minutes) (MB)

adder (8 bits) 120 96 216 0.00 0.48
adder (16 bits) 240 192 432 0.01 0.76
adder (32 bits) 480 384 864 0.02 1.15
adder (64 bits) 960 768 1728 0.09 1.75
adder (128 bits) 1920 1536 3456 0.28 2.82
adder (256 bits) 3840 3072 6912 0.85 5.37
adder (512 bits) 7680 6144 13824 2.75 11.83
adder (1024 bits) 15360 12288 27648 11.53 22.92

11 MB, respectively. Note that for a problem of similar size (864), our approach only
needs 1.3 seconds of runtime (on a PC with a 333 MHz Pentium II processor) and 1.15
MB of memory. According to the SPEC benchmark results [23], our machine is roughly
40 times faster than the slowest model of Sun SPARCstation 1. Taking the speed dif-
ference of the machines into account, our program is about 600 times faster than the
interior-point-method based approach for a small circuit. For larger circuits, we expect
the speedup to be even more significant.

Figures 4 and 5 plot the runtime and storage requirements of our program. By
performing a linear regression on the logarithm of the data in figure 4, we find that the
empirical runtime of our program is about O(n1.7). Figure 5 shows that the ratio of the
storage versus the circuit size of our program is close to linear. The storage requirement
for each sizable component is about 0.8 KB.

The basic idea of the subgradient optimization method is to repeatedly modify the
vector of Lagrange multipliers according to the subgradient direction and then solve the
corresponding Lagrangian relaxation subproblem until the solution converges. Figure 6
shows the convergence sequence of the subgradient optimization method for the La-
grangian dual problem on a 128-bit adder. It shows that our program converges smoothly
to the optimal solution. The solid line represents the upper bound of the optimal solu-
tion and the dotted line represents the lower bound of it. The lower bound values come
from the optimal value of the unary geometric program at current iteration. Note that
the optimal solution is always inbetween the upper bound and the lower bound. So these
curves provide useful information about the distance between the optimal solution and
the current solution, and help users to decide when to stop the programs.

Figure 7 shows the area versus delay tradeoff curve of a 16-bit adder. In our exper-
iment, we observe that to generate a new point in the area and delay tradeoff curve, the
subgradient optimization method converges in only about 5 iterations. It is because the
vector of Lagrange multipliers of the previous point is a good approximation for that of
the new point and hence the convergence of the subgradient optimization method is fast.
As a result, generating these tradeoff curves requires only a little bit more runtime but
provides precious information.
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Figure 4. The runtime requirement of our program versus circuit size.

Figure 5. The storage requirement of our program versus circuit size.

Figure 6. The convergence sequence for a 128-bit adder.
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Figure 7. The area versus delay tradeoff curve for a 16-bit adder.

6. Conclusion

We have introduced a special type of geometric program called unary geometric pro-
gram, which is of the following form:

Minimize u(x1, . . . , xn) =
∑

1�i�n

αi

xi
+

∑
1�i�n

βixi +
∑

1�i,j�n
γij
xi

xj

subject to Li � xi � Ui for all 1 � i � n,

where αi , βi , γij , Li and Ui for all i and j are non-negative constants. We have shown
that unary geometric programs are very useful in VLSI circuit component sizing. Many
formulations involving delay, area and power can be reduced by the Lagrangian relax-
ation technique to unary geometric programs.

We have presented a greedy algorithm to solve unary geometric programs opti-
mally and very efficiently. We have proved that the algorithm converges to the optimal
solution if xi is set to Li for all i in the starting solution. We have also proved that when
applied to VLSI circuit component sizing, the algorithm always converges to the optimal
solution from any starting solution in time linear to the number of gates or wire segments
in the circuit.

Appendix: Proof of lemma 4

In order to prove lemma 4, we need to prove lemmas 6, 7, and 8 first.
For lemmas 6 and 7, we focus on variable xk for some fixed k. Note that during

the n optimal local adjustment operations just before the local adjustment of xk at a
particular iteration (except the first iteration), each variable is adjusted exactly once.
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Intuitively, the following two lemmas show that during these n adjustment operations, if
the changes in all variables are small, then the change in xk during the local adjustment
of xk at that iteration will be even smaller.

For some t � 1, let x = (x1, . . . , xn), x′ = (x′
1, . . . , x

′
n) and x ′′ = (x′′

1 , . . . , x
′′
n)

be, respectively, the solutions just before the local adjustment of xk at iteration t , t + 1
and t + 2 of the greedy algorithm. Let

q ′
k =

√
Ak(x)+ αk
Bk(x)+ βk and q ′′

k =
√
Ak(x′)+ αk
Bk(x′)+ βk .

So by lemma 1, x′
k = min{Uk,max{Lk, q ′

k}} and x′′
k = min{Uk,max{Lk, q ′′

k }}.

Lemma 6. For any ρ > 0, if

1

1 + ρ � x′
i

xi
� 1 + ρ for all i,

then

1

1 + ρσ � q ′′
k

q ′
k

� 1 + ρσ.

Proof. If xi/(1 + ρ) � x′
i � (1 + ρ)xi for all i, we have

1

1 + ρAk(x) � Ak(x′) � (1 + ρ)Ak(x)

and

1

1 + ρBk(x) � Bk(x′) � (1 + ρ)Bk(x).

Since γik � 0 and xi � Ui for all i and k, we have

Ak(x) =
∑

1�i�n, i �=k
γikxi �

∑
1�i�n, i �=k

γikUi = Ak(U1, . . . , Un).

So by the definition of φk , φk � 1/ (1 + αk/Ak(x)), or equivalently,

Ak(x) � φk
(
Ak(x)+ αk

)
.

Hence

Ak(x
′)+ αk � (1 + ρ)Ak(x)+ αk

= ρAk(x)+
(
Ak(x)+ αk

)
� ρφk

(
Ak(x)+ αk

)+ (
Ak(x)+ αk

)
= (1 + ρφk)

(
Ak(x)+ αk

)
(4)



56 CHU AND WONG

and

Ak(x
′)+ αk � 1

1 + ρAk(x)+ αk
=Ak(x)+ αk − ρ

1 + ρAk(x)

�Ak(x)+ αk − ρφk

1 + ρ
(
Ak(x)+ αk

)
=
(

1 − ρφk

1 + ρ
)(
Ak(x)+ αk

)
>

1

1 + ρφk
(
Ak(x)+ αk

)
as ρ > 0 and 0 < φk < 1. (5)

Similarly, since γkj � 0 and xj � Lj for all j and k, we have

Bk(x) =
∑

1�j�n, j �=k
γkj

1

xj
�

∑
1�j�n, j �=k

γkj
1

Lj
= Bk(L1, . . . , Ln).

So by the definition of θk, θk � 1/(1 + βk/Bk(x)), or equivalently,

Bk(x) � θk
(
Bk(x)+ βk

)
.

Hence we can prove similarly that

Bk(x
′)+ βk � (1 + ρθk)

(
Bk(x)+ βk

)
(6)

and

Bk(x
′)+ βk > 1

1 + ρθk
(
Bk(x)+ βk

)
. (7)

By definitions of q ′
k and q ′′

k , and by (4) and (7), we have

q ′′
k =

√
Ak(x′)+ αk
Bk(x′)+ βk

�
√
(1 + ρφk)(1 + ρθk)Ak(x)+ αk

Bk(x)+ βk
�
(

1 + ρ φk + θk
2

)
q ′
k (as geometric mean � arithmetic mean)

� (1 + ρσ )q ′
k.

Similarly, by (5) and (6), we can prove that

q ′′
k � 1

1 + ρ(φk + θk)/2q
′
k � 1

1 + ρσ q
′
k.
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As a result, 1/(1 + ρσ ) � q ′′
k /q

′
k � 1 + ρσ . �

Lemma 7. For any ρ > 0, if

1

1 + ρ � x′
i

xi
� 1 + ρ for all i,

then

1

1 + ρσ � x′′
k

x′
k

� 1 + ρσ.

Proof. By lemma 6, if xi/(1 +ρ) � x′
i � (1 +ρ)xi for all i, then q ′

k/(1 +ρσ ) � q ′′
k �

(1 + ρσ )q ′
k. By lemma 1, x′

k = min{Uk,max{Lk, q ′
k}} and x′′

k = min{Uk,max{Lk, q ′′
k }}.

In order to prove x′
k/(1 + ρσ ) � x′′

k , we consider three cases:
Case 1: q ′

k < Lk.
Then x′

k = Lk. So

1

1 + ρσ x
′
k = 1

1 + ρσ Lk < Lk � x′′
k .

Case 2: q ′′
k > Uk.

Then x′′
k = Uk. So

1

1 + ρσ x
′
k � 1

1 + ρσ Uk < Uk = x′′
k .

Case 3: q ′
k � Lk and q ′′

k � Uk.
Then q ′

k � Lk ⇒ x′
k � q ′

k and q ′′
k � Uk ⇒ q ′′

k � x′′
k . So

1

1 + ρσ x
′
k � 1

1 + ρσ q
′
k � q ′′

k � x′′
k .

In order to prove x′′
k � (1 + ρσ )x′

k, we consider another three cases:
Case 1: q ′

k > Uk.
Then x′

k = Uk. So x′′
k � Uk < (1 + ρσ )Uk = (1 + ρσ )x′

k.
Case 2: q ′′

k < Lk.
Then x′′

k = Lk. So x′′
k = Lk < (1 + ρσ )Lk � (1 + ρσ )x′

k.

Case 3: q ′
k � Uk and q ′′

k � Lk.
Then q ′

k � Uk ⇒ q ′
k � x′

k and q ′′
k � Lk ⇒ x′′

k � q ′′
k . So

x′′
k � q ′′

k � (1 + ρσ )q ′
k � (1 + ρσ )x′

k.

As a result, 1/(1 + ρσ ) � x′′
k /x

′
k � 1 + ρσ . �

Lemma 8 gives bounds on the changes of the variables after each iteration of the
greedy algorithm. Be reminded that x(t) = (x

(t)

1 , x
(t)

2 , . . . , x
(t)
n ) is the solution just after

the t th iteration of the greedy algorithm.
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Lemma 8. For any t � 0 and ρ > 0, if

1

1 + ρ � x
(t+1)
i

x
(t)
i

� 1 + ρ for all i,

then

1

1 + ρσ � x
(t+2)
i

x
(t+1)
i

� 1 + ρσ for all i.

Proof. The lemma can be proved by induction on i.
Base case: Consider the variable x1. Before the local adjustment of x1, the solutions
at iteration t + 1 and t + 2 are (x(t)1 , x

(t)
2 , . . . , x

(t)
n ) and (x(t+1)

1 , x
(t+1)
2 , . . . , x(t+1)

n ), re-
spectively. Since 1/(1 + ρ) � x

(t+1)
i /x

(t)
i � 1 + ρ for all i, by lemma 7, we have

1/(1 + ρσ ) � x(t+2)
1 /x

(t+1)
1 � 1 + ρσ .

Induction step: Assume that the induction hypothesis is true for i = 1, . . . , k − 1. Be-
fore the local adjustment of xk , the solutions at iteration t + 1 and t + 2 are (x(t+1)

1 ,

. . . , x
(t+1)
k−1 , x

(t)
k , . . . , x

(t)
n ) and (x(t+2)

1 , . . . , x
(t+2)
k−1 , x

(t+1)
k , . . . , x(t+1)

n ), respectively. By in-
duction hypothesis,

1

1 + ρσ � x
(t+2)
i

x
(t+1)
i

� 1 + ρσ for i = 1, . . . , k − 1.

Hence

1

1 + ρ � x
(t+2)
i

x
(t+1)
i

� 1 + ρ for i = 1, . . . , k − 1,

as σ < 1. Also, it is given that

1

1 + ρ � x
(t+1)
i

x
(t)
i

� 1 + ρ for i = k, . . . , n.

So by lemma 7,

1

1 + ρσ � x
(t+2)
k

x
(t+1)
k

� 1 + ρσ.

Hence the lemma is proved. �

Proof of lemma 4. This can be proved by induction on t .
Base case: Consider t = 0. Note that for any solution x = (x1, . . . , xn), Li � xi � Ui
for all i. For all i,

x
(1)
i

x
(0)
i

� Ui

Li
� 1 + Ui − Li

Li
� 1 +".
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Similarly, we can prove that for all i, x(1)i /x
(0)
i � 1/(1 +").

Induction step: Assume that the induction hypothesis is true for t . Therefore,

1

1 +"σ t � x
(t+1)
i

x
(t)
i

� 1 +"σ t for all i.

By lemma 8,

1

1 +"σ t+1
� x

(t+2)
i

x
(t+1)
i

� 1 +"σ t+1 for all i.

Hence the lemma is proved. �
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