
Flip-flop Clustering by Weighted K-means Algorithm

Gang Wu∗, Yue Xu†, Dean Wu‡, Manoj Ragupathy†, Yu-yen Mo† and Chris Chu∗
∗Department of Electrical and Computer Engineering, Iowa State University, IA, United States

†Oracle America, Santa Clara, CA, United States
‡RedMart, Singapore

Email: {gangwu, cnchu}@iastate.edu, {yue.x.xu, manoj.ragupathy, yuyen.mo}@oracle.com, dean.wu@gmail.com

ABSTRACT
This paper presents a novel flip-flop clustering and reloca-
tion framework to help reduce the overall chip power con-
sumption. Given an initial legalized placement, our goal is
to reduce the wirelength of the clock network by reducing
distance between flip-flops and their drivers, while minimize
the disturbance of original placement result. The idea is to
form flip-flops into clusters, such that all flip-flops within
each cluster can be placed near a single clock buffer and
connected by a simple routing structure. Therefore, overall
clock network wirelength can be greatly reduced and sig-
nificant power savings can be achieved. In particular, we
propose a modified K-means algorithm which effectively as-
signs flops into clusters at the clustering step. Then, at the
relocation step, flops are actually relocated and regularly
structured clusters are formed. Our framework is evaluated
on real industrial benchmarks. We compare our framework
with a flow without flop clustering and an industrial win-
dow based flop clustering flow. Experimental results show
our framework can achieve significant dynamic power sav-
ings while has less disturbance of the original placement.

1. INTRODUCTION
Due to the more restrictive temperature constraints and

increasing requirements of the battery life, power has be-
come a very important optimization objective for modern
VLSI designs. An effective way to reduce power consump-
tion is to put more emphasis on the design and optimization
of clock networks, since among the overall chip power con-
sumption, more than 40% power can be consumed by the
switching power of the clock network [1]. One reason that
clock consumes so much power is because the clock signals
switch much more frequently than regular signals. Another
reason is that the clock network often drives a large number
of flip-flops which create huge load capacitance.

Power optimization for clock network has been studied
for decades and many techniques, such as clock gating [2],
clock buffer sizing [3], dynamic voltage/frequency scaling [4],

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’16, June 05-09, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4236-0/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2897937.2898025

etc., have been developed. Recently, researchers try to op-
timize clock network by exploring better placement loca-
tions for flip-flops. One family of techniques perform flip-
flop placement during the traditional global placement stage,
through net weighting [5] or using the guidance of Manhat-
tan rings [6]. However, these methods might increase routing
congestion and also lead to significant signal wirelength in-
crease, especially for large scale designs [7]. Another family
of techniques try to adjust flip-flop locations after the place-
ment stage [8–15]. The basic idea is to bring flip-flops closer
to each other and form them into clusters. As an example,
Fig. 1 shows part of the design after performing the post-
placement flip-flop clustering using the framework proposed
in this paper.

There are many benefits of performing flip-flop cluster-
ing after the conventional placement stage. First, since the
number of flops per cluster can be controlled to optimize the
use of a single clock buffer, the total number of clock buffers
used in the design can be much less, and the reduction of
the number of clock buffer at the first level can reduce the
rest of clock tree. Second, after forming a regular placement
structure for all the flops within one cluster, a simple rout-
ing structure, such as fishbone routing, will be able to route
the leaf level of the clock tree. Thus, the overall clock wire-
length can be effectively reduced [10]. In addition, since all
the flops are placed very close to the clock buffer, the clock
skew is reduced, which can help improve the timing of the
circuit [15].

Figure 1: Part of the design after performing flip-flop clus-
tering and relocation. Flip-flops are highlighted as red and
clock buffers are highlighted as blue.

The reduction of clock network wirelength comes at a cost
of the increase of signal wirelength. However, since a signif-
icant portion of the power is consumed by clock wires [1],
the clock power reduction can be larger than the overhead
in signal power. Another concern is that flop clustering
might hurt the timing of the circuit, as the clustering pro-
cess might cause some flops to move a very long distance,
and the combinational cells can also be moved because of
the legalization. However, the timing degradation can be
effectively controlled by minimizing the disturbance of the
original placement and limiting the maximum displacement
of flip-flops during the clustering process. In addition, con-
sidering the timing information at flop clustering stage is
rough, there are still chances to improve the timing in later
stages such as the routing stage. Therefore, flip-flop cluster-
ing is able to produce significant power savings with tolera-
ble delay impact.

Many works have been done on the post-placement flip-
flop clustering problem. In [8] [9], the groups of flip-flops
or latches to be formed into clusters are either determined
by some simple heuristic criterion or by greedily splitting
big clusters. Thus, the clustering results obtained by these
approaches can be far from optimal. In [10], a genetic algo-
rithm based latch clustering approach is proposed. However,
genetic algorithms usually have long runtime and are not
scalable, which makes it not practical for large scale circuits.
In [11–14], the authors explored the intersection graph based
clustering approach which helps replace a group of flops into
a multi-bit flip-flop (MBFF). The idea is to form an inter-
section graph based on the intersection of the feasible move-
ment regions of flip-flops. Then, the clustering problem is
transformed into the problem of finding all maximal cliques
in the intersection graph. However, this approach is suitable
only when feasible movement region of each flip-flop is very
small, in which case each formed MBFF only contains very
few number of flip-flops. In our case, the feasible movement
region is much larger and each formed cluster contains many
flip-flops. Therefore, the obtained intersection graph will be
very dense and the runtime of these algorithms will not be
acceptable. In [15], a clustering approach adapting K-means
algorithm is proposed, which is similar to our framework.
However, the proposed approach does not have control on
the number of flip-flops within each cluster, which can create
very unbalanced clustering results and violating the maxi-
mum drive strength of the clock buffer. Also, they do not
have constraint on the maximum displacement of flip-flops,
and might cause timing degradation when flops move a very
long distance.

In this paper, we are focusing on the problem of reducing
power consumption by performing post-placement flip-flop
clustering and relocation. The input to our framework is a
a design which has already been placed and legalized. We
want to group and relocate the flip-flops to form them into
regularly structured clusters. Our goal is to minimize the
total displacement of all the flip-flops which in turn reduces
the disruption of the original placement results, and mini-
mize the number of clock buffers used, therefore reduce the
rest of clock tree. In addition, we enforce a hard constraint
on the maximum allowable displacement for each flip-flop to
avoid timing degradation caused by critical flops moved very
far away from its original position. We also enforce an up-
per bound on the maximum number of flops allowed within
each cluster to help meet the maximum the drive strength

of the clock buffers. Other design constraints, such as clock
domains, enable signals and placement blockages are also
considered in our framework.

Our framework decomposes the flip-flop clustering prob-
lem into two steps: flip-flop clustering and flip-flop reloca-
tion. The first step finds the groups of flops to be clus-
tered by a modified K-means algorithm. Since the stan-
dard K-means algorithm does not enforce any constraints,
we developed methods which can be combined with the K-
means algorithm to guarantee the clustering results satisfy
the maximum displacement constraint for each flip-flop and
the cluster size constraint for each cluster. In particular,
since the sizes of the clusters generated by the standard K-
means algorithm are very unbalanced, we add weights on
each cluster at the cluster assignment step of K-means to
help balance the number of flops within each cluster. In the
flip-flop relocation step, we actually moves the flops into le-
gal locations with respect to the placement blockages and
form them into regularly structured clusters.

The effectiveness of our framework is evaluated on real
industrial designs which contain 400K cells on average. Our
framework is compared with a physical design flow with-
out performing any flip-flop clustering and an existing win-
dow based clustering flow which has already been used in
the production. In terms of the total switching power, our
framework has achieved 9.4% savings compared with the
flow without flip-flop clustering and 4.8% savings compared
with the window based flip-flop clustering flow.

The rest of this paper is organized as follows. In Section II,
we describe preliminaries about the K-means algorithm and
formally define the problem solved in this paper. In Section
III, we present our flip-flop clustering framework. Finally,
the experimental results are presented in Section IV.

2. PRELIMINARIES

2.1 K-means algorithm
K-means algorithm [16] is one of the most widely used

algorithms for clustering, due to its simplicity, efficiency and
empirical success [17]. The standard K-means algorithm
finds a partition such that the sum of Euclidean distance
between the cluster center and the instances is minimized.
Here, the cluster center is calculated as the mean location
of all the instances within the cluster.

Let N be the total number of instances to be clustered.
We denote the x-coordinates of instances by a vector x =
(x1, x2, · · · , xN). We denote their y-coordinates by a vector
y = (y1, y2, · · · , yN). Let C = (C1, C2, · · · , CK) be a set of
K clusters of instances. Let µx(Ck) and µy(Ck) be the x
and y coordinate of the center of cluster Ck. The problem
solved by K-means algorithm can be formally written as:

Min

K∑
k=1

∑
(xi,yi)∈Ck

(||xi − µx(Ck)||2 + ||yi − µy(Ck)||2)

The steps of the standard K-means algorithm which solves
the above problem are as follows:

• Step 1: Choose K initial cluster center locations.

• Step 2: Assign each instance to the cluster which pro-
vides the smallest cost.

• Step 3: Recompute the center location of each cluster.

• Step 4: Repeat steps 2 and 3 until there is no further
change in costs of all instances.

Here, the cost of assigning an instance locating at (xi, yi)
to cluster Ck is defined as:

Cost = ||xi − µx(Ck)||2 + ||yi − µy(Ck)||2

The runtime of the standard K-means algorithm is O(t ∗
N∗K), where t is the number of iterations until convergence.
In practice, t is often small and the results only improve
slightly after few iterations, which makes K-means algorithm
to be very fast compared with other clustering methods,
especially for very large scale data sets [18].

2.2 Problem formulation
In our problem, the instances to be clustered are flip-flops.

The flop displacement cause by the clustering process can be
approximated as the Manhattan distance between the flip-
flop and the cluster center. Then, the flip-flop clustering
problem which minimize the total sum of flop displacement
and K, while satisfies the cluster size constraints and flop
displacement constraints can be formulated as:

Min

K∑
k=1

∑
(xi,yi)∈Ck

(|xi − µx(Ck)|+ |yi − µy(Ck)|) + α ∗K

Subject to |Ck| ≤ size limit ∀k
|xi − µx(Ck)|+ |yi − µy(Ck)| ≤ disp limiti

∀k and ∀(xi, yi) ∈ Ck

Here, α is a constant value adjusting the effort between min-
imizing displacement and K. size limit is a given constant
value denote the cluster size limit. disp limiti is the maxi-
mum allowable displacement for flop i according to its timing
criticality.

It can be seen that the standard K-means algorithm can-
not be directly applied to our problem due to the differ-
ences in objective function and the extra constraints. We
will discuss how we handle these differences by our weighted
K-means algorithm in Sec. III-A.

3. OUR PROPOSED FRAMEWORK

Figure 2: The proposed flip-flop clustering and relocation
framework.

An overview of our two-step flip-flop clustering framework
is shown in Fig. 2. Our framework starts with a timing
optimized, legalized placement. At the flip-flop clustering
step, we first initialize K cluster center locations. Then, a
clustering solution satisfying the cluster size constraints and
flop displacement constraints are generated by our weighted
K-means algorithm. At the flip-flop relocation step, we first
find legal locations for clock buffers and flops. Then, buffers
are inserted per cluster and flops are relocated. In the end,
we legalize the combinational cells with flop locations fixed.

3.1 Flip-flop Clustering

3.1.1 Initialize cluster centers
Finding a proper K value can be difficult, since increas-

ing K will result in a smaller total flop displacement, but
also increase the number of clock buffers used in the design.
A trivial solution would be driving each flop by one clock
buffer. Here, we use a large α value in the objective func-
tion to minimize K. After we decide K, we also need to
find K initial cluster center locations, which can affect the
clustering results and the number of iterations required to
converge. One commonly used idea is to randomly pick K
instance locations from the data set and use them as the ini-
tial center locations. However, we do not want to introduce
randomness into our framework, which might cause troubles
for the physical design convergence. Here, we propose the
following recursive bipartition approach to help us find an
initial K value and deploy K center locations on the place-
ment region, as shown in Algorithm 1:

Algorithm 1 Initialize K Cluster Centers

1: function initCenter(S, K);
2: if |S| ≤ size limit then
3: Initiate a center at (

∑
xi∈S

xi/|S|,
∑

yi∈S
yi/|S|);

4: return
5: end if
6: Bipartite S into S1, S2

7: with |S1| = |S| ∗ bK/2c /|K|, |S2| = |S| ∗ dK/2e /|K|;
8: initCenter(S1, bK/2c);
9: initCenter(S2, dK/2e);

10: end function

We use S to denote the set of flip-flops to be partitioned.
Since α is large, it is the best to generate a solution with K as
small as possible. Initially, we roughly setK = |S|/size limit.
The function returns when the number of flip-flops to be
partitioned is no more than size limit. Otherwise, we split
the flip-flops into two partitions with one partition has |S| ∗
bK/2c /|K| flops and the other has |S| ∗ dK/2e /|K| flops.
This makes the number of flip-flops assigned at each parti-
tion be proportional to the number of clusters at each par-
tition. In particular, we sort the flops based on their x or
y coordinates depending on whether we perform vertical or
horizontal partition at this iteration. Then, we assign flip-
flops to S1 based on their sorted order until we reach the
desired number of flops for this partition. The rest of flops
will be assigned to S2.

3.1.2 Assign flip-flops to clusters
The standard K-means algorithm assigns a flip-flop to the

cluster whose center yields the smallest Euclidean distance.
Considering wires can only be horizontal or vertical during

the routing, here we use Manhattan distance instead of Eu-
clidean distance. Thus, the cluster can be picked based on
the following cost function:

Cost = |xi − µx(Ck)|+ |yi − µy(Ck)| (1)

However, if we generate the clustering results using the
above cost function, the sizes of the clusters can be very un-
balanced, which makes it very difficult to satisfy the cluster
size constraints required by our problem formulation. An
example is shown in Fig. 3, where X axis lists the index of
each cluster and is sorted based on the cluster size. Y axis
shows the number of flops within each cluster. Considering
the maximum allowable cluster size to be 80, it can be seen
that there are many clusters which are over the size limit.

Figure 3: Sizes of clusters by standard K-means algorithm.

In order to have a more balanced clustering results, we
add a weight to each cluster based on its current size. The
basic idea is to set a higher weight to a cluster if it contains
more flip-flops. Thus, flip-flops will have a lower tendency
to be assigned to this cluster, since the cost of choosing the
cluster is set to be the original cost multiply the current
weight of this cluster. However, when we choose a proper
weight setting method, we also need to consider the trade-
off between cell displacement and the balancing of cluster
sizes. In particular, a higher weight or history based weight
provides us less overflow but larger total flip-flop displace-
ment. Here, we use a smaller and non-history based weight
as shown below, which provides a better total displacement.
The overflowed clusters can be effectively handled at our
resolve overflow step.

Cost = (|xi − µx(Ck)|+ |yi − µy(Ck)|) (2)

∗ max((|Ck|/size limit), 1)

Figure 4: Sizes of clusters by weighted K-means algorithm.

Fig. 4 shows the cluster sizes after applying the above
cost function. It can be seen that all the cluster sizes are
around the size limit. The effectiveness of the weighted K-
means algorithm can also be seen in Fig. 5, where X axis
shows the number K-means iteration and Y axis shows the
percentage of overflowed clusters. After we use the weighted
cost function, the percentage of overflowed clusters becomes

less and less when more iterations of K-means algorithm are
performed.

(a) (b)

Figure 5: Percentage of overflow clusters in (a) standard
K-means algorithm (b) weighted K-means algorithm.

In the first iteration of the K-means algorithm, we still
use Equation (1) to calculate the cost at flip-flop assignment
step, since all clusters are empty in the beginning. In the rest
of the K-means iterations, we update the cluster assignment
of each flip-flop at the flip-flop assignment step, based on
the cost calculated by Equation (2).

One thing we noticed is that it is very important to update
the weight of the cluster immediately, which means when-
ever we move a flip-flop from one cluster to the other, we
need to update the weight of the corresponding two clus-
ters. Otherwise, oscillation problems can happen: in one
iteration, many flip-flops are moved into one cluster, but in
next iteration, all these flip-flops move away due to the huge
weight of this cluster caused at the previous iteration. This
can make the K-means algorithm become very difficult to
converge.

3.1.3 Update cluster centers
Same as the standard K-means algorithm, at this step,

centers of each cluster are recalculated as the mean value of
the flip-flop locations:

µx(Ck) =
∑

xi∈Ck

xi/|Ck|, µy(Ck) =
∑

yi∈Ck

yi/|Ck| ∀k

3.1.4 Resolve overflow
For some designs such as the one in Fig. 4, simply adding

weights in the cost function will make all clusters satisfy the
size constraints. However, this cannot be guaranteed for all
the designs. Thus, we add the resolve overflow step within
the K-means iteration which guarantees all cluster sizes are
under the size limit when our weighted K-means algorithm
terminates.

Our method to resolve overflow is like this: at every cer-
tain K-means iterations, we pick one cluster which has most
number of flip-flops among all the clusters violating the size
constraints. Then, a new center is inserted near the center of
this cluster and a new empty cluster is created accordingly.
Next, if a smaller cost can be achieved, the flip-flop in the
overflowed cluster will be moved to this new cluster. The
weights of these two clusters are also updated accordingly.

The K-means iteration continues until all the clusters sat-
isfy the size constraints and there is no improvement on costs
of all the flip-flops within certain iterations.

3.1.5 Resolve over displacement
If the number of clusters (K) is sufficient and the disp limiti

is not too small, most of the flip-flops will satisfy the dis-

placement constraint for the clustering solution generated by
our weighted K-means algorithm. However, there are some
corner cases, which one flop can be extremely far away from
other flops in the original legalized placement. Thus, it is
necessary to develop a post-processing step to fix the over
displacement problems for these particular flip-flops.

The method we used to fix over displacement is to insert a
new cluster centered at the location of the violating flip-flop.
Then, we assign the violating flip-flop to this new cluster. To
take the most advantage of this new cluster, we will also as-
sign nearby flip-flops to this new cluster, if smaller costs can
be achieved. Different from resolving overflow, we cannot
resolve the over displacement within the K-means iteration,
since the resolve displacement step inserts a small weight
cluster which can be pulled away from the violating flip-flop
by other flops during the K-means iteration.

An example of the flip-flop clustering results are shown
in Fig. 8 (a), where each flip-flop is assigned to one cluster
which is denoted by the fly lines (blue) connecting the flip-
flops to the center of the cluster.

3.2 Flip-flop Relocation

3.2.1 Find candidate buffer and flip-flop locations
The desired clock buffer location is the mean center loca-

tion generated by our algorithm. However, it is possible that
this location is overlapping with some placement blockages.
In this case, we simply search around and find the nearest
legal location as the candidate buffer location.

We form the flops within one cluster into a wing struc-
ture which has an empty column over the clock buffer, just
as the cluster structure used in the window based industrial
flow. To find candidate flop locations, a default configured
wing structure is formed first, according to the location of
the clock buffer. Then, candidate locations which are over-
lapping with the blockages will be removed, as shown in Fig.
6 (a). If the remaining candidate locations are not enough
to allocate all the flops within this cluster, we use a new
configuration to enlarge the wing structure until sufficient
candidate flop locations are found, as shown in Fig. 6 (b).

(a) (b)

Figure 6: (a) A 4 × 4 configuration for the wing structure
with blockage overlapping locations removed. (b) An en-
larged 4×6 configuration with sufficient candidate locations.

3.2.2 Insert buffers and relocate flip-flops
First, buffers are inserted at the candidate buffer location.

Then, flops are sequentially moved to the candidate flop
locations as shown in Fig. 7. In particular, for each flop,
we try all candidate locations within the wing structure and
pick the one which provides the smallest displacement. After
we relocates the flop to the candidate location, this location
will no long be available for other flops. The order we used
to relocate the flop is based on their timing criticality and
the flop which is more timing critical will be moved first.

Figure 7: Move flip-flops into candidate locations.

In the end, we also adjust the orientation of the flip-flops
to make sure their clock pins are properly aligned to help
reduce the clock wirelength. Part of the design with routed
clock nets after flop relocation is shown in Fig. 8 (b).

(a) (b)

Figure 8: Part of the design: (a) after performing flip-flop
clustering (b) after clock routing.

4. EXPERIMENTS
Our flip-flop clustering and relocation framework are eval-

uated on 8 real industrial designs ranging from 55K to 795K
cells. These designs are placed using the state-of-art com-
mercial physical design tool as an input to both the window
based flip-flop clustering flow and our framework. In partic-
ular, the window based flip-flop clustering flow look for flops
to group window by window. All the flops within a window
are greedily moved together to form a cluster. This flow has
already been used in real production and is able to obtain
sufficient power savings with minor timing degradation.

We set the size limit to be 80 and the disp limiti to be
60 µm for all the flops, which is same as the value used in
the window based industrial flow. The flop clustering is per-
formed at each group of flops having the same clock domain
and sharing a common enable signal. In addition, the resolve
overflow step is performed at every 5 K-means iteration and
the loop terminates when there is no improvement within 10
iterations. After the flip-flop relocation, a commercial phys-
ical design tool is used to legalize the combinational cells if
they are overlapping with the relocated flops. Finally, rest
of the clock tree is constructed by commercial CTS tool and
the design is routed to get the wire load.

Since the static power consumption will not be affected
by the flip-flop locations, we focus on comparing the switch-
ing power among all the flows. The switching power for
both clock and signal nets are estimated using the tradi-
tional β ∗ Cload ∗ V dd2 ∗ fclock which is a good approxima-
tion for interconnect power. Here, β denotes the switching
activity factor.

Table I. Comparison on industrial benchmarks

of # of Disp. x 103 (µm) Total WL x 106 (µm) Clk Switching Power (mW) Total Switching Power (mW)
Cells Flops WB Ours NC WB Ours NC WB Ours NC WB Ours

D1 55K 9K 67.58 74.44 1.60 1.68 1.70 8.04 6.23 4.50 23.28 22.29 20.81
D2 172K 36K 237.68 190.74 4.94 5.26 5.20 24.11 18.66 17.04 71.05 69.05 66.86
D3 229K 39K 365.85 311.79 12.44 12.86 12.71 34.12 21.30 19.29 153.79 145.66 142.26
D4 322K 58K 371.03 310.82 7.44 8.48 7.90 40.99 28.08 28.17 111.47 109.39 103.83
D5 399K 73K 1018.83 441.55 10.76 13.03 11.32 53.18 34.11 33.43 155.44 159.47 142.17
D6 668K 123K 934.80 859.02 20.04 21.26 20.89 102.75 67.06 59.88 293.07 271.06 260.65
D7 537K 127K 716.12 637.18 16.09 17.05 16.90 88.19 69.04 60.61 240.72 231.87 222.40
D8 795K 166K 1171.14 979.31 21.22 22.87 22.67 124.72 88.32 79.99 325.49 306.96 297.09

Norm. 1.283 1.000 0.952 1.032 1.000 1.572 1.099 1.000 1.094 1.048 1.000

The experimental results are shown in Table I. “NC” de-
notes the non-clustering flow. “WB” denotes the window
based flip-flop flow. “Disp.” column shows the total flip-flop
displacement. “Total WL” column shows the total wire-
length which includes clock nets and regular signal nets.
Compared with the flop displacement, our framework is 28.3%
better than the window based flow. This indicates our frame-
work has much less disturbance on the original placement
results and should be much easier to achieve timing clo-
sure compared with the window based flow. For the clock
switching power, our framework is 57.2% better than the
flow without any flip-flop clustering and 9.9% better than
the window based flow. For the total switching power, our
framework is 9.4% better than the non-clustering flow and
4.8% better than the window based flow. These show that
our framework is very effective on reducing dynamic power
consumption. The average number of flops per cluster is
around 73 for all our clustering results, which indicates the
clock buffer being used is close to minimum. Since the win-
dow based flow is implemented using Tcl scripts while our
framework is implemented using C++, it is not fair to com-
pare the runtime between these two flows. In general, our
framework runs much faster than the window based clus-
tering flow and the proposed weighted K-means algorithm
converges within minutes even for very large designs.

5. CONCLUSIONS
This paper has proposed a novel flip-flop clustering frame-

work to help reduce power consumption at post-placement
stage. The weights in the cost function of K-means algo-
rithm is essential for us to generate more balanced clustering
results, which makes the K-means algorithm suitable for the
flip-flop clustering problem. In addition, we develop efficient
steps guaranteeing the clustering results satisfying the size
and displacement constraints. Our framework is evaluated
on large scale industrial designs and compared with indus-
trial flows. The significant improvement has demonstrated
the practicability and the effectiveness of our framework.

6. REFERENCES
[1] D. Papa, C. Alpert, C. Sze, Z. Li, N. Viswanathan,

G.-J. Nam, and I. L. Markov, “Physical synthesis with
clock-network optimization for large systems on
chips,” Micro, IEEE, vol. 31, no. 4, pp. 51–62, 2011.

[2] Q. Wu, M. Pedram, and X. Wu, “Clock-gating and its
application to low power design of sequential circuits,”
IEEE Trans. Circuits Syst. I, Fundam. Theory,
vol. 47, no. 3, pp. 415–420, 2000.

[3] K. Wang and M. Marek-Sadowska, “Buffer sizing for
clock power minimization subject to general skew
constraints,” in DAC 2004.

[4] S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw,
“Combined dynamic voltage scaling and adaptive
body biasing for lower power microprocessors under
dynamic workloads,” in ICCAD 2002.

[5] Y. Cheon, P.-H. Ho, A. B. Kahng, S. Reda, and
Q. Wang, “Power-aware placement,” in DAC 2005.

[6] Y. Lu, C. Sze, X. Hong, Q. Zhou, Y. Cai, L. Huang,
and J. Hu, “Navigating registers in placement for clock
network minimization,” in DAC 2005.

[7] D.-J. Lee and I. L. Markov, “Obstacle-aware clock-tree
shaping during placement,” TCAD, vol. 31, no. 2,
pp. 205–216, 2012.

[8] W. Hou, D. Liu, and P.-H. Ho, “Automatic register
banking for low-power clock trees,” in ISQED 2009.

[9] C. J. Alpert, Z. Li, G.-J. Nam, D. A. Papa, C. N. Sze,
and N. Viswanathan, “Latch clustering with proximity
to local clock buffers,” 2013. US Patent 8,458,634.

[10] S. I. Ward, N. Viswanathan, N. Y. Zhou, C. C. Sze,
Z. Li, C. J. Alpert, and D. Z. Pan, “Clock power
minimization using structured latch templates and
decision tree induction,” in ICCAD 2013.

[11] I. H.-R. Jiang, C.-L. Chang, and Y.-M. Yang,
“INTEGRA: Fast multibit flip-flop clustering for clock
power saving,” TCAD, vol. 31, pp. 192–204, 2012.

[12] S.-H. Wang, Y.-Y. Liang, T.-Y. Kuo, and W.-K. Mak,
“Power-driven flip-flop merging and relocation,”
TCAD, vol. 31, pp. 180–191, 2012.

[13] Y.-T. Chang, C.-C. Hsu, M. P.-H. Lin, Y.-W. Tsai,
and S.-F. Chen, “Post-placement power optimization
with multi-bit flip-flops,” in ICCAD 2010.

[14] C. Xu, P. Li, G. Luo, Y. Shi, and I. H.-R. Jiang,
“Analytical clustering score with application to
post-placement multi-bit flip-flop merging,” in ISPD,
pp. 93–100, ACM, 2015.

[15] R. Puri, H. Qian, C. N. Sze, and J. Warnock, “Regular
local clock buffer placement and latch clustering by
iterative optimization,” 2012. US Patent 8,104,014.

[16] S. P. Lloyd, “Least squares quantization in PCM,”
IEEE Trans. Inf. Theory, vol. 28, pp. 129–137, 1982.

[17] A. K. Jain, “Data clustering: 50 years beyond
k-means,” Pattern recognition letters, vol. 31, no. 8,
pp. 651–666, 2010.

[18] S. Har-Peled and B. Sadri, “How fast is the k-means
method?,” Algorithmica, vol. 41, pp. 185–202, 2005.

