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ABSTRACT
To minimize the effect of process variation for a design in
triple patterning lithography (TPL), it is beneficial for all
standard cells of the same type to share a single coloring
solution. In this paper, we investigate the TPL-aware de-
tailed placement refinement problem under these coloring
constraints. Given an initial detailed placement, the po-
sitions of standard cells are perturbed and a TPL solution
complying with the coloring constraints is derived while min-
imizing cell displacement, lithography conflicts and stitches.
We prove that this problem is NP-complete and show that it
can be formulated as a mixed integer linear program. Since
mixed integer linear programming is very time consuming,
we propose an effective heuristic algorithm. In our approach,
important adjacent pairs of standard cells are recognized
firstly, since they have significant impact on cell displace-
ment. Then a tree-based heuristic is applied to generate a
good initial solution for our linear programming-based re-
finement. Experimental results show that compared with
mixed integer linear programming, our heuristic approach is
comparable in solution quality while using very short CPU
runtime.

1. INTRODUCTION
With the technology node scaling to sub-16nm, electron

beam (E-beam), extreme ultraviolet lithography (EUVL)
and TPL are considered the most promising lithography
technologies. In this paper, we are focusing on TPL.

There are many previous works on TPL optimization. The
fundamental problem of TPL is to eliminate lithography
conflicts while minimizing stitch count. [1–8] are related
to TPL layout decomposition. [1–4] focus on 2-Dimension
layout decomposition. [5, 6] focus on row-based 1-Dimension
layout decomposition. [9, 10] consider TPL during detailed
routing stage.

Recently, [11] presents a TPL aware detailed placement
approach in which layout decomposition and placement are
resolved simultaneously. The approach is effective in resolv-
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ing lithography conflicts. However, the approach only con-
siders the optimization of wirelength together with lithogra-
phy conflicts and stitch number. It is not clear how to incor-
porate other placement objectives like timing and routabil-
ity.

Besides, [6] points out the advantage of assigning the same
lithography pattern for the same standard cell type during
TPL layout decomposition. This would minimize the effect
of process variation and best guarantee that those standard
cells of the same type eventually have similar physical and
electrical characteristics. However, [6] only considers the de-
composition of a fixed layout, and hence often cannot com-
pletely satisfy these constraints.

In this paper, we investigate the TPL-aware detailed place-
ment refinement problem under the coloring constraints that
all standard cells of the same type should share the same
TPL coloring solution. Given an initial detailed placement,
the positions of standard cells are perturbed and a TPL solu-
tion complying with the coloring constraints is derived while
minimizing total cell displacement, lithography conflicts and
stitches simultaneously.

Different from [11], our approach is applied to an opti-
mized detailed placement under any conventional placement
metrics. By refining it with minimal perturbation, the qual-
ity of the detailed placement can be preserved. In addition,
we consider the coloring constraints. Compared with [6], as
placement perturbation is allowed, the coloring constraints
are always satisfied in our approach. We prove that this
problem is NP-complete and show that it can be formulated
as a mixed integer linear program (MILP). Since the MILP
is time consuming to solve, we propose an effective heuristic
algorithm to solve it. In our algorithm, important adja-
cent pairs of standard cells are recognized firstly, since they
have significant impact on cell displacement. Then a tree-
based heuristic is applied to generate a good initial solution
which is then refined by a linear programming (LP)-based
technique. Experimental results show that compared with
MILP solution, the heuristic method is comparable in so-
lution quality while using very limited CPU runtime. The
contributions of this paper are summarized as follows.

• We formulate a new TPL optimization problem consid-
ering TPL coloring constraints for standard cells dur-
ing detailed placement.

• We prove that this new problem is NP-complete.

• We propose a MILP formulation for this new problem.

• Since MILP is very time consuming to solve, we pro-
pose an effective heuristic algorithm.
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(a) Given initial detailed placement.
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(b) One solution: try to optimize the dis-
placement of the second row.
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(c) Another solution: try to optimize the
displacement of the first row.

Figure 1: An instance of problem: choosing different coloring solutions for types A, B and C plus cell shifting.

The rest of paper is organized as follows. In Section 2,
we gives the formal problem definition and its MILP for-
mulation. In Section 3, we prove that this problem is NP-
complete. In Section 4, we illustrate the heuristic algorithm.
In Section 5, we present the experimental results. Finally,
we make our conclusions in Section 6.

2. PROBLEM DEFINITION
Given a standard cell library, all feasible coloring solu-

tions for each cell type are found out firstly. Since each
cell contains only a small number of layout features, the
enumerative approach proposed in [11] works well. Besides,
this step is performed once per library. For the i-th type
of cell denoted by ti, there are ni feasible coloring solu-
tions p1i , p

2
i , · · · , pni

i . The corresponding stitch counts are
s1i , s

2
i , . . . , s

ni
i . The width of ti is wi. There are k types of

standard cells in the library. Given a detailed placement,
which has n rows. For the j-th row, the types of standard
cells ordered from left to right are c1j , c

2
j , · · · , c

rj
j , where rj

is the number of cells in the j-th row.
The TPL-aware displacement-driven detailed placement

with coloring constraints is defined as follows.
Given a standard cell library with a set of feasible coloring

solutions for each standard cell type, and an initial detailed
placement, eliminate all lithography conflicts by choosing
one coloring solution for each type of standard cell and shift-
ing the standard cells without changing the cell ordering in
each row. The objective is to minimize the total cell dis-
placement and the number of stitches.

Fig. 1 gives an instance of this problem. By choosing
coloring solutions for types A, B and C and shifting cells,
conflicts are eliminated. In Fig. 1(a), an initial detailed
placement with two rows is given. In Fig. 1(b), cell dis-
placement of the second row is optimized well while that
of the first row is not. On the contrary, in Fig. 1(c), cell
displacement of the first row is optimized well while that of
the second row is not. It shows that different TPL solutions
may lead to significantly different cell distribution in each
row.

2.1 MILP formulation
The above problem can be formulated as a MILP. We use

a binary variable bji to denote whether the coloring solution

pji is assigned to standard cell type ti. In the i-th row, the
original central x-coordinates of cells ordered from left to
right are o1i , o

2
i , · · · , orii , their new central x-coordinates are

x1i , x
2
i , · · · , xrii , their displacement are q1i , q

2
i , · · · , qrii . For

any two adjacent cells, the type of left one is ti and its

coloring solution is pui , the type of right one is tj and its
coloring solution is pvj . To avoid lithography conflict, the
minimal distance between these two cells is a constant de-
noted by du,vi,j . For any two adjacent cells in the row i, let

xj−1
i and xji be their central x-coordiniates, their actual dis-

tance is denoted by zji . Besides, the width W of placement
region is also given. The problem can be formulated into
the following mathematical programming. Note that in this
paper, for any pair of adjacent cells, the distance is from the
center of the left one to the center of the right one.

Minimize: α
n∑

i=1

ri∑
j=1

n
c
j
i∑

k=1

bk
c
j
i

× sk
c
j
i

+ β
n∑

i=1

ri∑
j=1

qji

Subject to:
ni∑
j=1

bji = 1, ∀1 ≤ i ≤ k

xji − x
j−1
i = zji , ∀1 ≤ i ≤ n ∧ 2 ≤ j ≤ ri

zji ≥
n
c
j−1
i∑

u=1

n
c
j
i∑

v=1

bu
c
j−1
i

×bv
c
j
i

×du,v
c
j−1
i ,c

j
i

,∀1 ≤ i ≤ n∧2 ≤

j ≤ ri
xji − o

j
i ≤ q

j
i ,∀1 ≤ i ≤ n ∧ 1 ≤ j ≤ ri

oji − x
j
i ≤ q

j
i ,∀1 ≤ i ≤ n ∧ 1 ≤ j ≤ ri

xji ≥
w

c
j
i

2
, ∀1 ≤ i ≤ n ∧ 1 ≤ j ≤ ri

xji ≤W −
w

c
j
i

2
, ∀1 ≤ i ≤ n ∧ 1 ≤ j ≤ ri

bji = 0 or 1,∀1 ≤ i ≤ k ∧ 1 ≤ j ≤ ni

The objective is a weighted sum of total cell displace-
ment and stitch count. The first constraint represents that
standard cells of the same type should have the same col-
oring solution. The second and third constraints represent
that for any two adjacent cells, there is enough distance
to avoid lithography conflict. The fourth and fifth con-
straints represent cell displacement. Finally, the last two
constraints mean that cells should be put inside of place-
ment region. The product of two binary variables in the
third constraint can be transformed into linear constraints
as follows: c = a ∗ b⇔ a+ b− c ≤ 1 ∧ a− c ≥ 0 ∧ b− c ≥ 0,
where a, b, c are all binary variables. Therefore, the problem
can be formulated as a MILP.

3. COMPLEXITY OF PROBLEM
To see the complexity of this problem, let us look at a

special version of its decision problem firstly.
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(a) An instance of 3-coloring problem.
The three colors are RED, BLUE and
GREEN.

t1 t2 t0 t1 t0t3 t2 t3 t0 t3 t4

(b) An instance of single-row version.
The widths of cells are 1. The width
of row is 11. For any type of stan-
dard cell ti, it has three feasible color-
ing solutions

(
p1i , p

2
i , p

3
i

)
. p1i , p2i and p3i

are respectively corresponding to RED,
BLUE and GREEN.

Figure 2: The reduction from 3-coloring problem to
single-row version.

Definition 1 (Single-row version). The given ini-
tial detailed placement has only one row. The problem is to
decide whether there is a feasible solution to accommodate
all cells without conflicts.

Theorem 1. The single-row version is NP-complete.

Proof. It is easy to see that the single-row version is
NP. We show that the 3-coloring problem can be reduced to
single-row version. Since the 3-coloring is NP-complete [12],
the single-row version is NP-complete.

Suppose in a 3-coloring problem instance, there are n
nodes denoted by x1, x2, · · · , xn . There are m edges de-
noted by e1, e2, · · · , em. We can construct the following
single-row version instance.

Each node xi is corresponding to one type of standard
cell ti, which has three feasible coloring solutions p1i , p

2
i , p

3
i .

p1i , p
2
i and p3i are corresponding to RED, BLUE and GREEN

respectively. There is a special type of standard cell t0. The
width of standard cells are all 1.

We define the minimal distance between ti and tj to elim-
inate conflict as follows.

du,vi,j =

 1 if u 6= v and i 6= 0 and j 6= 0
2 if u = v and i 6= 0 and j 6= 0
1 if i = 0 or j = 0

It means that for any pair of adjacent cells, if the type
of either one is t0, the minimal distance between these two

cells to avoid conflict is 1 no matter what the final color-
ing solutions are. Otherwise, if the left one is assigned the
coloring solution which is corresponding to pki (1 ≤ k ≤ 3)
and the right one is assigned the coloring solution which
is corresponding to pkj , the minimal distance between these
two cells to avoid lithography conflict is 2. Otherwise the
minimal distance is 1.

For any two nodes xi and xj , suppose i < j without loss of
generality. If there is an edge e = (xi, xj), then we construct
a pair of adjacent cells (ti, tj). Besides, we add a standard
cell of type t0 between any two pairs of constructed adjacent
cells. And the width of row is defined as the number of
constructed standard cells, i.e., 3m-1. Fig.2 (b) shows the
corresponding single-row version instance of the 3-coloring
problem instance in Fig.2 (a).

If the above 3-coloring problem instance is true, then in
the constructed single-row version instance, for any two ad-
jacent cells ti and tj (i < j), we can choose the coloring
solutions so that the minimal distance between these two
cells to avoid lithography conflict is 1. Therefore, all the
constructed standard cells can be put inside of the row. Sim-
ilarly, if single-row version instance is true, then we can find
a solution that satisfies the corresponding 3-coloring prob-
lem instance.

The displacement-driven TPL-aware detailed placement
with ordering and coloring constraints is a generalization of
the single-row version, so it is also NP-complete [12].

4. METHODOLOGY
Since the problem is NP-complete and MILP is very time

consuming, we propose an effective heuristic algorithm to
solve this problem. In this section, we firstly show the moti-
vation of our approach. Next, we present its overview which
is composed of three stages. Finally, we illustrate these three
stages respectively.

4.1 Motivation
Since standard cells of the same type should have the same

coloring solution, we define adjacent pair as follows.

Definition 2. An adjacent pair is a pair of types of two
adjacent standard cells.

For example, if the type of left cell is ti and the type
of right one is tj , the corresponding adjacent pair is (ti, tj).
The minimal distances of adjacent pairs to avoid lithography
conflicts have significant impact on solution quality of this
problem. There are two reasons. Firstly, if these minimal
distances are not optimized well, then it would be difficult to
put all cells inside of the row region, as shown in Fig. 3(a).
Secondly, different adjacent pairs have different impact on
total cell displacement, as shown in Fig. 3(b). Therefore,
our method tries to focus on the minimal distances of im-
portant adjacent pairs.

4.2 Overview
Our approach is composed of three stages. In the first

stage, we propose a method to recognize the important ad-
jacent pairs. In the second stage, we try to optimize mini-
mal distances of important adjacent pairs and a tree-based
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(a) The upper figure represents that all the cells are
put inside of row if the minimal distances (to elimi-
nate lithography conflicts) of adjacent pairs are op-
timized well. On the contrary, in the lower figure,
the right most cell B is outside of row if those min-
imal distances of adjacent pairs are not optimized
well.

B C C CC

B C C CC

(b) In the upper figure which represents the original
placement, the left-most adjacent pair (cell B and
cell C) is the most important one to optimize cell
displacement. If the minimal distance of this pair
to eliminate conflict is not optimized well, all the
other cells on the right hand side would be shifted
right as shown in lower figure.

Figure 3: The two examples reveal the motivation
of our heuristic approach.

heuristic is applied to get a good initial solution. In the
last stage, we apply LP-based method to refine the solution.
The overview is presented in Fig. 4.

Standard 
cell lib

Detailed 
placement

Recognize important 
adjacent pairs

Tree-based heuristic

LP-based refinement

End

Estimate cell 
distribution

Calculate the weights of 
adjacent pairs

Generate solution graph

Generate maximum 
spanning tree

Dynamic programming

Figure 4: The overview of our heuristic approach.

4.3 Important adjacent pair recognition
We use a positive integer to represent how important an

adjacent pair is. We call this integer the weight of adjacent
pair. Higher weight means more important. For example,

as shown in Fig. 3(b), apparently, the adjacent pair (B,C)
should have the highest weight. We use weight[i][j] to de-
note the weight of adjacent pair (ti, tj).

At this stage, we do not know what the final coloring is.
Therefore, we propose a simple method to estimate the new
cell distribution. For any adjacent pair (ti, tj), we calculate
the average minimal distance davei,j to avoid lithography con-
flict. This value is given by the following formula.

davei,j =

ni∑
u=1

nj∑
v=1

d
u,v
i,j

ni∗nj

The minimal total cell displacement can be achieved by
LP as follows.

Minimize:
n∑

i=1

ri∑
j=1

qji

Subject to:
xji − x

j−1
i ≥ dave

c
j−1
i ,c

j
i

, ∀1 ≤ i ≤ n ∧ 2 ≤ j ≤ ri
xji − o

j
i ≤ q

j
i , ∀1 ≤ i ≤ n ∧ 1 ≤ j ≤ ri

oji − x
j
i ≥ q

j
i , ∀1 ≤ i ≤ n ∧ 1 ≤ j ≤ ri

xji ≥
w

c
j
i

2
,∀1 ≤ i ≤ n ∧ 1 ≤ j ≤ ri

xji ≤W −
w

c
j
i

2
, ∀1 ≤ i ≤ n ∧ 1 ≤ j ≤ ri

Then we define shifting direction of standard cell below.

Definition 3. For the j-th standard cell in row ri, its
shifting direction is left if xji < oji , and right if xji > oji ,
otherwise no shifting. We use � to denote left shifting, � for
right shifting, and = for no shifting.

Algorithm 1 gives the method to calculate the weights of
adjacent pairs. The idea is that for a pair of adjacent cells,
if their minimal distance to eliminate conflict is increased,
the weight of this pair would roughly reflect the increment
of total cell displacement. Let us look at an example. A
placement row contains six cells and five adjacent pairs. The
shifting directions of these six cells are �, �, �, �, �, �. The
five adjacent pairs’ weights ordered from left to right are
respectively 5, 4, 3, 2 and 1. The weight of the left-most one
is 5, because if its minimal distance is increased by 1 unit,
the total cell displacement would be increased by 5 units
roughly.

4.4 Tree-based heuristic
After the weights of all adjacent pairs are computed, a

solution graph can be constructed as follows. In the solution
graph, each node represents a standard cell type. The edge
between two nodes represents an adjacent pair.

Let fi be the coloring solution that standard cell type ti
uses. The cost costi of node ti and the cost costi,j of edge
connecting ti and tj in the solution graph are defined as fol-
lows.

costi[fi] = β ∗ weight[i][i] ∗ dfi,fii,i + α ∗ sfii
costi,j [fi, fj ] = β∗[weight[i][j]∗dfi,fji,j +weight[j][i]∗dfj ,fij,i ]

The purpose of our tree-based heuristic is to find the col-
oring solution for each standard cell type, so that the total
cost including cost of nodes and edges in the solution graph
is minimized. It is not hard to see that if solution graph is



Algorithm 1 Method to calculate the weights of adjacent
pairs

1: Calculate davei,j for each pair of adjacent pair (ti, tj);

2: Solve the LP to get the shifting direction of each standard
cell;

3: for each placement row do
4: [start, end] is the index range of cells (in ascending order

of their x-coordinate) in this row;
5: for any adjacent pair P = (ti, tj) in the row do
6: ll and rr are the indexes of ti and tj in the row;
7: if the left cell is � then
8: for k from ll to start do
9: if the cell whose order is k is � or = then

10: weight[i][j]+ = 1;
11: else
12: break;
13: end if
14: end for
15: end if
16: if the right cell is � then
17: for k from ll+ 1 to end do
18: if the cell whose order is k is � or = then
19: weight[i][j]+ = 1;
20: else
21: break;
22: end if
23: end for
24: end if
25: end for
26: end for

of a tree structure, then dynamic programming can be ap-
plied to get the optimal coloring solution. Fortunately, it is
observed that solution graphs for industrial benchmarks are
sparse graphs. Next, we propose a method to leverage this
observation.

4.4.1 Maximum spanning tree generation
The basic idea to leverage the observation is to ignore

some relatively less important adjacent pairs and turn the
solution graph into a tree. The cost of each edge connect-
ing ti and tj in solution graph is replaced by cost′i,j = α ∗
[weight[i][j]∗

(
dmax
i,j − dmin

i,j

)
+weight[j][i]∗

(
dmax
j,i − dmin

j,i

)
],

where dmax
i,j and dmin

i,j are defined as follows.

dmax
i,j = max1≤u≤ni max1≤v≤nj d

u,v
i,j

dmin
i,j = min1≤u≤ni min1≤v≤nj d

u,v
i,j

It is easy to see that for any edge connecting ti and tj ,
if cost′i,j is small, then no matter what the final coloring
solutions for ti and tj are, the cost of this edge in the solution
graph is similar. Therefore, we use maximum spanning tree
to replace the original solution graph. Note that, cost′i,j is
only used during generating maximum spanning tree rather
than the following dynamic programming.

4.4.2 Dynamic programming solution
After maximum spanning tree is generated, dynamic pro-

gramming could be applied to find an initial coloring solu-
tion. We use the node which has maximal out-degree as the
root to generate the tree topology. Then bottom-up method
is adopted to construct optimal solutions in the tree. For any
node ti, we maintain a vector Best[i]. The entry Best[i][j]
stores the best cost over all possible coloring solutions for
the sub-tree rooted at node ti if ti is choosing coloring solu-
tion pji . Suppose it has m children (x1, x2, · · · , xm), and the

vectors for these m children have already been constructed.
The vector for ti can be constructed by the following for-
mula. The final total cost is the minimal element of Best[i]
if ti is the root of the tree.

Best[i][j] = costi[p
j
i ] +∑

1≤p≤m min1≤z≤nxp

(
Best[xp][z] + costi,xp [pji , p

z
xp

]
)

4.5 LP-based refinement
The LP-based refinement technique is presented in Algo-

rithm 2. The idea is that we enumerate all the coloring
solutions for one standard cell type while others are fixated.
The node whose associated edges’ costs are larger is given
a higher priority. In Line 4 of Algorithm 2, once the col-
oring solutions for all the cells are fixed, it is easy to see
that minimal cell displacement can be achieved by solving
the following LP, where d

c
j−1
i ,c

j
i

is the minimal distance to

eliminate conflict for adjacent cells cj−1
i and cji in the i-th

row.

Minimize:
n∑

i=1

ri∑
j=1

qji

Subject to:
xji − x

j−1
i ≥ d

c
j−1
i ,c

j
i
, ∀1 ≤ i ≤ n ∧ 2 ≤ j ≤ ri

xji − o
j
i ≤ q

j
i , ∀1 ≤ i ≤ n ∧ 1 ≤ j ≤ ri

oji − x
j
i ≥ q

j
i , ∀1 ≤ i ≤ n ∧ 1 ≤ j ≤ ri

xji ≥
w

c
j
i

2
,∀1 ≤ i ≤ n ∧ 1 ≤ j ≤ ri

xji ≤W −
w

c
j
i

2
, ∀1 ≤ i ≤ n ∧ 1 ≤ j ≤ ri

Algorithm 2 LP-based refinement

1: Calculate the associated edges’ costs of each node;
2: for each node in descending order of associated edges’ costs

do
3: for each coloring solution for this node do
4: Minimize the total cell displacement by solving the LP

in Section 4.5;
5: if the value of cost function is better than the current

best then
6: Update the current best;
7: Update the coloring solution for this node.
8: end if
9: end for

10: end for

5. EXPERIMENTAL RESULTS
Our approach is implemented in C++ on a Linux server

with Intel Xeon X5550 2.67GHz CPU, 94GB main memory.
The benchmarks are derived from [11]’s. Gurobi [13] is used
to solve MILP and LP. Since the problem is NP-complete
and it cannot be expected to get the optimal solutions for
some benchmarks within limited CPU runtime. We limit
the MILP solver to run 7200s and report the best solutions
within the time limit of MILP solver.

The experimental results are shown in Table I. Compare
with MILP solutions, our heuristic approach achieves the
same number of stitches. For total cell displacement, the
heuristic method is only 2.9% worse than that of MILP solu-
tions on average. However, the heuristic method gets 207×
speed up on average. Besides, our method only increases
wirelength by less 1% over the initial detailed placement.



Table 1: Experiment results: MILP V.S. Heuristic.
benchmark MILP Heuristic

displacement # of conflicts # of stitches runtime(s) displacement # of conflicts # of stitches WL increase runtime(s)

alu-70 2.88E+05 0 610 1245 2.94E+05 0 610 0.6% 12
alu-80 6.76E+05 0 610 7200 6.87E+05 0 610 1.4% 14
alu-90 1.94E+06 0 610 7200 1.97E+06 0 610 4.0% 15
byp-70 1.04E+05 0 1134 739 1.04E+05 0 1134 0.0% 21
byp-80 3.85E+05 0 1134 7200 3.68E+05 0 1134 0.1% 28
byp-90 1.54E+06 0 1134 7200 1.60E+06 0 1134 0.7% 31
div-70 1.60E+05 0 1316 3042 1.60E+05 0 1316 0.1% 28
div-80 3.53E+05 0 1316 7200 3.64E+05 0 1316 1.7% 35
div-90 3.62E+06 0 1316 7200 3.61E+06 0 1316 3.8% 32
ecc-70 2.76E+04 0 258 13 2.90E+04 0 258 0.0% 4
ecc-80 8.91E+04 0 258 11 1.09E+05 0 258 0.1% 5
ecc-90 3.55E+05 0 258 23 3.55E+05 0 258 0.9% 6
efc-70 2.84E+04 0 671 420 3.15E+04 0 671 0.0% 6
efc-80 1.14E+05 0 671 4127 1.16E+05 0 671 0.3% 8
efc-90 5.95E+05 0 671 4800 6.00E+05 0 671 2.4% 8
ctl-70 4.55E+04 0 275 351 4.89E+04 0 275 0.0% 10
ctl-80 1.38E+05 0 275 4345 1.40E+05 0 275 0.0% 12
ctl-90 3.49E+05 0 275 7200 3.50E+05 0 275 0.6% 13
top-70 4.95E+05 0 4731 3165 5.12E+05 0 4731 0.0% 326
top-80 1.48E+06 0 4731 7200 1.51E+06 0 4731 0.2% 391
top-90 7.36E+05 0 4731 7200 7.19E+05 0 4731 0.1% 482
Norm. 0.971 1 1 207 1.000 1 1 0.8% 1

6. CONCLUSIONS
In this paper, we are focusing on displacement-driven TPL

optimization in detailed placement stage under coloring con-
straints. We recognize this problem as NP-complete, then
propose two solutions. The first one is MILP, the other is
heuristic approach. We show that the heuristic approach
is very efficient compared with MILP by experiment. The
proposed heuristic method can produce competitive solution
quality within very limited CPU runtime.
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