
Asynchronous Circuit Placement by Lagrangian
Relaxation

Gang Wu∗, Tao Lin∗, Hsin-Ho Huang†, Chris Chu∗ and Peter A. Beerel†
∗Department of Electrical and Computer Engineering, Iowa State University, IA

†Ming Hsieh Department of Electrical Engineering, University of Southern California, CA
Email: {gangwu, tlin, cnchu}@iastate.edu, {hsinhohu, pabeerel}@usc.edu

Abstract—Recent asynchronous VLSI circuit placement ap-
proach tries to leverage synchronous placement tools as much
as possible by manual loop-breaking and creation of virtual
clocks. However, this approach produces an exponential number
of explicit timing constraints which is beyond the ability of
synchronous placement tools to handle. Thus, synchronous placer
can only produce suboptimal results. Also, it can be very costly
in terms of runtime. This paper proposed a new placement
approach for asynchronous VLSI circuits. We formulated the
asynchronous timing-driven placement problem and transform
this problem into a weighted wirelength minimization problem
based on a Lagrangian relaxation framework. The problem can
then be efficiently solved using any standard wirelength-driven
placement engine that can handle net weights. We demonstrate
our approach on QDI PCHB asynchronous circuit with a state-
of-art quadratic placer. The experimental results show that
our algorithm can effectively improve the asynchronous circuits
performance at placement stage. In addition, the runtime of our
algorithm is shown to be more scalable to large-scale circuits
compared with the loop-breaking approach.

I. INTRODUCTION

With the continual diminishing of feature size, integrated
circuit (IC) design is progressively more difficult. Synchronous
design is facing particularly severe challenges due to the
increasing variations in process parameters and demand in
low power consumption. Asynchronous design provides a
promising solution to the emerging challenges in advanced
technology. Its potential advantages over synchronous design
include robustness towards process-voltage-temperature (PVT)
variations, lower power consumption, avoidance of the difficult
problem of clock distribution, higher operating speed, less
emission of electromagnetic noise, lower stress on power dis-
tribution network, improved security, and better composability
and modularity [1] [2] [3]. However, even asynchronous design
has all the potential advantages, synchronous circuits still
predominate. A main reason is that EDA tool support for
asynchronous design is grossly inadequate.

In current aggressive technologies, placement for asyn-
chronous circuit becomes a more important issue, as wire
delays are becoming more critical than gate delays. Most
works on the timing-driven placement of asynchronous circuits
directly leverage synchronous placement tools [4] [5] [6]. For
synchronous circuit, the circuit performance is bounded by

This work is supported in part by NSF award CCF-1219100.
Peter A. Beerel is also Chief Scientist, Technology Development in the

Communications, Storage, and Infrastructure Group, Intel, Calabasas, CA.

the most critical path and synchronous timing-driven placer
will minimize the maximum path delay between flip-flops.
However, in the case of asynchronous circuit, the performance
is bounded by the most critical cycle [2]. This creates issues
when applying synchronous placement tools for asynchronous
timing optimization, since the optimization objective is differ-
ent and timing-loops are not supported. In [4], a minimal set
of cut-points is identified to break these timing loops. Then the
handshaking cycles of the design are explicitly expressed as a
set of set max delay timing constraints for each segment. The
resulting number of constraints turns out to be far greater than
in a typical synchronous placement flow and exponential to
the circuit size. For large scale designs, it becomes impossible
for placement engine to satisfy all these constraints within a
reasonable amount of runtime. Also, these timing constraints
are too conservative to achieve a good optimization result, as
time borrowing is not allowed for segments along the same
cycle.

Another issue to leverage synchronous placement tool is
to enforce the timing constraints necessary for the functional
correctness of asynchronous circuits. Instead of setup and
hold time constraints for typical synchronous design, certain
asynchronous design style requires relative timing constraints
which constrains the relative delay between two paths [7].
Some other design styles require minimum and maximum
bounded delay values on gates and wires [8]. This differ-
ence of timing assumptions between asynchronous design and
synchronous design creates extra difficulties when applying
synchronous placement tools to asynchronous design.

Few works have been done for timing aware placement
algorithms targeting at optimizing critical cycles. In [9], se-
quential timing analysis based placement approach has been
proposed to optimize the cycle delay for synchronous design
under the assumption that retiming and clock skew scheduling
can be applied. Unfortunately, this technique is practical only
for the last stages of physical design and only a small amount
of useful skew is allowed. In [10], performance and relative
timing constraints for QDI circuits have been incorporated
into a constructive placer to handle asynchronous designs.
However, given their framework of construction based place-
ment approach, this algorithm can easily be trapped into
local minimum and produce suboptimal results. Also, this
approach will lead to high density placement hot spots which
can cause routability problems. In [11], a floorplan method

for asynchronous circuits based on simulated annealing and
sequence-pair has been proposed. However, they still need to
leverage synchronous place-and-route tools at the placement
stage.

In this paper, we proposed a new placement flow based on
a Lagrangian relaxation framework. We formulated the asyn-
chronous timing-driven placement problem considering both
performance and timing constraints. Instead of adding explicit
cycle constraints whose numbers can grow exponentially with
circuit size, we incorporated the cycle metric calculation linear
program into our problem formulation and the number of
constraints we have is polynomial in circuit size. In addition,
the special structure of the formulated timing-driven placement
problem allows us to simplify the Lagrangian dual problem
using Karush-Kuhn-Tucker (KKT) conditions and the original
problem is transformed into a weighted wirelength minimiza-
tion problem which can be solved effectively with existing
placement approaches. The general modeling of performance
and timing constraints also makes our approach applicable
to a wide variety of asynchronous design styles, including
Micropipeline [8], QDI [12], GasP [13] and Mousetraps [14]
pipeline templates.

We explored our approach on quasi-delay-insensitive (QDI)
Pre-Charged Half Buffer (PCHB) asynchronous designs syn-
thesized using the Proteus RTL flow [4]. The Lagrangian re-
laxation frame work is incorporated into state-of-art quadratic
placer POLAR [15]. We compared our results after detailed
placement and routing with both an industrial placement tool
and the Proteus placement flow.

The rest of this paper organized as follows. Section II in-
troduces timing issues faced by asynchronous design. Section
III elaborates our general Lagrangian relaxation framework.
Section IV proposed our asynchronous placement flow on QDI
PCHB asynchronous design. Section V shows the experimen-
tal results compared with other approaches. Finally, Section
VI concludes the paper.

II. TIMING FOR ASYNCHRONOUS CIRCUITS

First we define some notations that we use in this paper. An
asynchronous circuit can be represented by a hypergraph G =
(V,E). Let V =

{
v1, v2, . . . , v|V |

}
be the set of cells. Let

E =
{
e1, e2, . . . , e|E|

}
be the set of hyperedges. Let AT ={

a1, a2, . . . , a|V |
}

be the arrival time associated with each
cell.

A. Performance for Asynchronous Circuits

Here we introduce a Petri net [16], which is a commonly
used tool for modeling concurrent systems. A Petri net consists
of places, transitions, and arcs. Places in a Petri net can have
one or more tokens, or no token at all. The distribution of
tokens over the places will represent an initial marking of the
system. Transitions in a Petri net can fire if all its input places
contain at least one token. When a transition fires, it consumes
one token per input place and generates one token per output
place. Specifically, a Petri net is called marked graph if all
places have only one input and one output transition.

The performance of unconditional asynchronous circuits
can be modeled using timed marked graphs. For conditional
asynchronous circuits, we treat them as unconditional and
the circuit performance can be guaranteed conservatively as
proved in [17].

Fig. 1: Asynchronous ALU.

Fig. 2: Marked graph representation for Asynchronous ALU.

As an example, an asynchronous ALU design with two
operation modes, addition and multiplication, is shown in Fig.
1. We use the Full Buffer Channel Net model proposed in [18]
to obtain timed marked graph. The extracted marked graph is
shown in Fig. 2. Each cell is modeled using a transition (t) and
asynchronous channels between cells are modeled with a pair
of places (shown as circles), a forward place and a backward
place, which are labeled with forward and backward delays of
the corresponding channel. Black dots inside the circle denotes
the initial marking of the marked graph.

For any marked graph, let Cp be the set of neighboring
transition pairs which have a place between them. The cycle
time τ can be obtained by solving the following linear program
[19].

Minimize τ

Subject to ai +Dij −mijτ ≤ aj ∀(i, j) ∈ Cp
where ai and aj are the arrival time associated with transitions
ti and tj , which correspond to nodes vi and vj in the graph.
Dij is the delay associated with place p between transition ti
and tj , which corresponds to forward or backward path delay
of an asynchronous channel. mij is the number of tokens in
the place p. mij = 0 if the corresponding place p does not
contain token, which is quite often.

B. Timing Constraints

Timing assumptions made for different logic implementa-
tion style have a direct influence in the timing constraints
necessary to ensure hazard-free operation of asynchronous cir-
cuits. Except for delay-insensitive (DI) design [20] which are

premised on the fact that they will function correctly regardless
of the delays on the gates and the wires, timing constraints for
other asynchronous designs fall into two categories [2].

First is explicit timing constraints in the form of minimum
and maximum bounded delay values for gates and wires in
the circuit. An example is the bounded-delay asynchronous
circuits [8].

Let Uij be the maximum bounded delay and Lij be the
minimum bounded delay between nodes vi and vj . Let Ce be
the set of node pairs which we need to enforce explicit delay
bounds. The explicit timing constraints can be written as:

Lij ≤ aj − ai ≤ Uij ∀(i, j) ∈ Ce (1)

Second is relative timing constraints, referred to as relative
timing [7], which dictate the relative delay of two paths that
stem from a common point of divergence. Examples design
styles that have relative timing constraints include the quasi-
delay-insensitive (QDI) design style, such as WCHB, PCHB
and the Multi-Level Domino (MLD) template [2].

For a relative timing constraint from a node vk and forking
into two nodes vi and vj constraints can be written as:

|(ai − ak)− (aj − ak)| ≤ Iij ∀(i, j) ∈ Cr (2)

which bound the maximum difference in time that the signal
arrives at the two end-points of the fork. This type of constraint
captures the notion of an isochronic fork [2], a common type
of constraint in quasi-delay-insensitive designs. Here Iij is the
delay bound for isochronic fork. Cr is the set of node pairs
which have relative timing constraints.

III. ASYNCHRONOUS PLACEMENT WITH LAGRANGIAN
RELAXATION

Given an asynchronous circuit, we are interested in the min-
imum total wirelength and cycletime achievable with respect
to the timing constraints necessary to guarantee functional
correctness. In Section III-A, we first show how to formulate
this problem as a constrained optimization problem. Then,
we apply Lagrangian relaxation in Section III-B which is
a general technique for converting constrained optimization
problem into unconstrained problem. In Section III-C, we
explore the special structure of the primal problem which al-
lows us to extensively simplify the Lagrangian subproblem. In
Section III-D, we show how to solve the simplified Lagrangian
subproblem as weighted wirelength minimization problem.
In Section III-E, we describe how to solve Lagrangian dual
problem using a direction finding approach.

A. Problem Formulation

We denote the x-coordinates of cells by a vector x =(
x1, x2, · · · , x|V |

)
, and y-coordinates by a vector y =(

y1, y2, · · · , y|V |
)
. For pure wirelength-driven placement, the

objective is to minimize the sum of the half-perimeter bound-
ing box (HPWL) for all hyperedge e:

HPWL(x, y) =
∑
e∈E

[max
i∈e

xi −min
i∈e

xi + max
i∈e

yi −min
i∈e

yi]

Then the problem of minimizing both total HPWL and
cycletime subject to timing constraints (1), (2) in section II
can be formulated directly as:

Minimize HPWL(x, y) + ατ

Subject to ai +Dij −mijτ ≤ aj ∀(i, j) ∈ Cp (3)
Lij ≤ aj − ai ≤ Uij ∀(i, j) ∈ Ce (4)
|(ai − ak)− (aj − ak)| ≤ Iij ∀(i, j) ∈ Cr (5)

where the constant α in the objective function can be chosen
to adjust the tradeoff between minimizing wirelength and
cycletime.

Note that Equations (4), (5) can be rewritten into the same
form as:

(ai + Lij ≤ aj) ∧ (aj − Uij ≤ ai) (6)
(aj − Iij ≤ ai) ∧ (ai − Iij ≤ aj) (7)

To make equations in Section III-B, Section III-C more
concise, we combine Equations (3), (6), (7) and the primal
problem can be rewritten as:

Minimize HPWL(x, y) + ατ

Subject to ai +Wij − m̃ijτ ≤ aj ∀(i, j)

where Wij = Lij or −Uij ∀(i, j) ∈ Ce, Wij = −Iij
∀(i, j) ∈ Cr and Wij = Dij ∀(i, j) ∈ Cp. Similarly,
m̃ij = mij ∀(i, j) ∈ Cp and m̃ij = 0 ∀(i, j) ∈ Ce or Cr.

B. Lagrangian Relaxation

We relax all the constraints following the Lagrangian re-
laxation procedure. Nonnegative Lagrangian multiplier λij is
introduced for each constraint. Let λ be a vector of all the
Lagrange multipliers.

Let L(x, y, a, τ) = HPWL(x, y) + ατ

+
∑
∀(i,j)

λij(ai +Wij − m̃ijτ − aj)

Then the Lagrangian subproblem, which gives a lower bound
for the primal problem for any λ ≥ 0 [22], can be formulated
as:

LRS : Mimimize L(x, y, a, τ)

Let the function q(λ) be the optimal value of the prob-
lem LRS. We are interested in finding the values for the
Lagrangian multipliers λ to give the maximum lower bound,
which is labeled as the Lagrangian dual problem and defined
as follows:

LDP : Maximize q(λ)

Subject to λ ≥ 0

Solving LDP will provide a solution to the primal problem.

C. Simplification of LRS
Inspired by [21], we rearrange terms here and the La-

grangian function L(x, y, a, τ) can be rewritten as:

L = HPWL(x, y) + (α−
∑
∀(i,j)

λijm̃ij)τ

+
∑
k∈V

(
∑
∀(k,j)

λkj −
∑
∀(i,k)

λik)ak

+
∑
∀(i,j)

λijWij

The KKT conditions imply ∂L/∂ai = 0 for 1 ≤ i ≤ |v|
and ∂L/∂τ = 0 at the optimal solution of the primal problem.
Then the optimality conditions K on λ can be obtained as:

α =
∑
∀(i,j)

λijm̃ij∑
∀(k,j)

λkj =
∑
∀(i,k)

λik ∀k ∈ V

Apply the optimality conditions into LRS, we can obtain
a simplified Lagrangian subproblem LRS∗:

Minimize L∗(x, y) = HPWL(x, y) +
∑
∀(i,j)

λijWij

It can easily be seen that solving LRS is equivalent of
solving LRS∗.

D. Solving LRS∗

Since it is impossible to get accurate timing without detailed
placement and routing, as an approximation, we take the wire
delay as being proportional to the HPWL of the hyperedge e
associated with node i and j, which can be written as:

Wij = di +HPWLe · γe
where di is the intrinsic gate delay and HPWLe·γe is the total
wire load delay. γe is a constant value associated with each
edge and depends on the driver cell, load cells and electrical
characterization for the wires.

Note that for constraints (4) and (5), the corresponding Wij

is a constant value. For simplicity, we don’t write them here
explicitly. Then LRS∗ can be written as:

Minimize L∗(x, y)

= HPWL(x, y) +
∑
∀(i,j)

λij(di +HPWLe · γe)

+ terms independent of x, y

= HPWL(x, y) +
∑
∀(i,j)

HPWLe · λijγe

+ terms independent of x, y

Here the objective function only contains x, y as variables.
LRS∗ becomes a weighted wirelength minimization problem
for a set of hyperedges, which can be solved well by existing
standard synchronous placement engine with the ability to
weight nets.

E. Solving LDP
Traditional approach of solving Lagrangian dual problem is

to apply the subgradient optimization method [22]. However,
this approach requires projection after updating λ in order to
maintain λ within the dual feasible region. In addition, practi-
cal convergence of the subgradient optimization is difficult and
usually requires a good choice of initial solution and step size.
Here we apply a direction finding approach inspired by [23]
to solve LDP , which is shown to have better convergence
compared with the traditional approach. Combining LDP
defined in Section III-B with optimality condition K derived
in Section III-C, we rewrite LDP here as:

LDP : Maximize q(λ)

Subject to λ ≥ 0,λ ∈ K

For any feasible λ, we want to find an improving feasible
direction ∆λ and a step size β such that:

q(λ + β∆λ) > q(λ)

Note that ∇L∗λij
(x, y) = Wij ∀(i, j). Then an increasing

feasible direction ∆λ can be found by solving the following
linear program D:

Maximize
∑
∀(i,j)

∆λijWij

Subject to λ ≥ 0,λ ∈ K
max(−u,−λij) ≤ ∆λij ≤ u

where u is a constraint we introduced to bound the objective
function, similar to [23].

Our algorithm to solve LDP is shown in Algorithm 1.
It starts from an initial dual feasible λ, then the method
iteratively improves q(λ) by finding an improving direc-
tion and performing a line search. The algorithm terminates
when change of q(λ) is small enough or the duality gap
HPWL(x, y) + ατ − q(λ) is less than Error bound.

Algorithm 1 Solve Lagrangian Dual Problem
Ensure: λ which maximizes LRS∗

1: n =: 1; /* step counter */
2: λ =: initial positive value satisfy optimality condition K;
3: Solve linear program D to obtain optimal increasing direction

∆λ;
4: Perform line search on q(λ). Then a step size β which improves

function value q(λ+β∆λ) > q(λ) can be found. Terminate the
algorithm if the change of q(λ) is small enough;

5: Moving one step further by updating λ = λ + β∆λ;
6: n =: n+ 1;
7: Repeat Step 3-6 until

(HPWL(x, y) + ατ −Q(λ)) ≤ Error bound;

IV. ASYNCHRONOUS PLACEMENT FLOW FOR QDI PCHB
PIPELINE TEMPLATES

A. Asynchronous Design with Pre-Charged Half Buffer
(PCHB) Templates

PCHB is a QDI template developed at Caltech [12], which
designed with dual-rail asynchronous channels and 1-of-N

handshaking protocol [2]. Fig. 3 shows a three stage PCHB
pipeline structure with control circuit (CTRL), C-elements (C)
and domino logic (FU) for computation.

Marked lines in Fig. 3 show an example of timing assump-
tions made by PCHB. In particular, it requires the input to
the domino block go low before a rising transition on the
control signal ‘en’ occurs. This timing assumption is a relaxed
interpretation of the isochronic fork assumption [24] and
can easily be met without special care. We ignore this timing
constraint at global placement stage and leave it to be checked
after detailed placement and routing, similar to [4] and [6].

Fig. 3: PCHB pipeline template.

B. Asynchronous Placement Flow

Fig. 4 illustrates our placement flow for QDI PCHB pipeline
templates. We use a state-of-art quadratic placer POLAR
[15] as the placement engine. Initially, pure wirelength-driven
placement is performed on the asynchronous circuit, as a good
starting placement with minimized wirelength is necessary in
order to achieve better cycletime in later stage.

After initial placement, we calculate the total wirelength
and initial cycletime to set parameter α = k ·HPWL(x, y)/τ .
k is normally set to 1 in order to achieve a good balance
between total wirelength and cycletime. We first extract the
performance constraints based on our marked graph modeling
of the original circuit. Then, a linear program similar to D
is solved using Gurobi [25] to obtain an initial non-negative
λ satisfy K. Next, net weights as derived in Section II-
C are added into the hypergraph which is used to guide
POLAR solving LRS∗. At this point, we enter the timing
optimization stage of our flow. We start the loop of solving
LDP by iteratively solving the direction finding problem with
Gurobi and weighted wirelength minimization problem with
POLAR to find a direction and step size which increase the
objective value q(λ), until we achieve a small duality gap or
the improvement on the objective value is tiny. The solution
to LDP is a placement with optimized timing which will
be the output of our flow. Note that the constraints we have
for PCHB will not introduce negative edge weights. Thus,
it can be handled well by quadratic placer POLAR. For
other asynchronous design style which has different timing
constraints and negative weight edge exists, we need to choose
a non-linear type placement engine to solve LRS∗.

Finally, we export our design into Encounter to perform
legalization and routing.

Fig. 4: QDI PCHB placement flow.

V. EXPERIMENTAL RESULTS

The proposed approach is implemented using C++. All
experiments were run on a Liunx PC with 47GB of memory
and Intel Core-i3 3.3GHz CPU.

We run our flow on two sets of benchmarks. First is a set of
ISCAS89 benchmark circuits which are converted to uncondi-
tional asynchronous circuits using Proteus’s legacy RTL design
flow [4]. In particular, flip-flops from ISCAS89 are mapped
as token buffers and combinational gates are mapped as logic
cells in PCHB cell library. In addition, we developed several
benchmarks in RTL level and synthesized it using Proteus. For
ALU and Accumulator design, we choose different bit width
for the datapath to create a set of benchmarks with different
sizes.

We compared our flow against both Encounter and the
Proteus placement flow. The die size and I/O pin locations
are set to be the same for all three flows. In our case,
Encounter is used as a pure wirelength-driven placer without
any input timing constraints. For Proteus flow, we disabled the
gate resizing at its placement stage to avoid the changing of
input netlists. Finally, all placement results are exported into
Encounter and routed with same configuration.

Our experimental results are shown in Table 1. The size
column shows the number of cells in each design. The wire-
length column shows the detailed routed wirelength reported
by Encounter. All the designs are shown to be routable. The
cycletime column shows the cycletime calculated using the
linear program introduced in Section II-A for the final routed
design using our delay model.

We show significant improvement in cycletime compared
with the non-timing driven Encounter placement and Proteus
placement flow. For all the benchmarks, we achieved an
average improvement in cycletime of 12% over the Proteus
placement flow and 32% over the results of non-timing driven
placement by Encounter. The wirelength of our approach
is 3% worse compared with Encounter, which is expected
considering the extensive timing optimization that has been
performed and 6% better than Proteus placement flow. In
addition, our runtime is also shown to be much more scalable
in comparison with the Proteus approach.

Table I. Comparison on asynchronous benchmarks

Design Size Routed Wirelength x 106 (nm) Cycletime (ns) Runtime (s)
POLAR Proteus Encounter POLAR Proteus Encounter POLAR Proteus Encounter

s444 256 10.58 11.32 10.46 4.67 5.72 6.06 36 245 8
s510 519 33.10 35.38 32.84 6.87 7.01 7.25 37 330 12
s526 307 13.30 14.85 14.24 3.96 4.83 4.20 34 257 8
s526a 297 13.34 13.79 12.22 4.14 3.75 4.89 33 249 8
s641 636 22.83 26.96 22.02 4.41 4.88 5.00 36 313 10
s713 584 21.42 24.38 21.06 5.72 5.71 6.15 40 228 9
s820 681 44.30 48.53 43.39 7.10 8.34 10.40 41 431 13
s832 706 46.15 53.04 45.84 6.19 7.32 6.82 40 465 15
s838 707 38.65 37.49 33.32 4.88 5.58 5.91 37 337 13
s953 931 64.01 71.85 61.84 6.90 7.10 6.12 41 576 18

s1488 1314 124.88 137.06 130.13 11.80 11.35 12.79 49 771 27
s1423 1119 63.21 71.25 64.48 8.47 8.37 14.85 39 692 20
s9234 2108 120.19 134.48 119.40 6.76 8.19 9.83 51 517 31
s13207 5658 381.02 386.13 338.18 11.17 11.86 13.72 82 1202 67
s38417 15447 1310.20 1208.16 1253.42 42.44 68.30 80.43 298 1050 283
ALU4 413 16.92 18.78 18.01 5.22 5.99 5.68 44 261 10
ALU8 916 50.31 53.89 55.03 4.44 5.11 8.43 41 470 16
acc32 1187 65.50 59.87 49.09 5.46 5.57 6.45 41 528 17
acc64 3355 161.67 145.88 138.06 5.15 7.37 10.01 64 757 39
GCD 1505 23.55 24.17 23.32 18.63 20.68 20.05 45 604 21

FetchingUnit 5304 435.78 453.41 396.16 9.31 7.81 16.06 104 958 62
Average 1.00 1.06 0.97 1.00 1.12 1.32 1.00 10.34 0.43

VI. CONCLUSION

In this paper, we have proposed a timing-driven placement
approach targeting asynchronous circuits. Our problem for-
mulation only introduce polynomial number of performance
constraints which is more efficient and effective than the ap-
proaches using loop-breaking techniques or enforcing explicit
cycle constraints. The flexibility of our Lagrangian relaxation
framework also makes our framework applicable to a wide
range of asynchronous design styles. In addition, we simplified
the timing-driven placement problem into a weighted wire-
length minimization problem which can be solved by standard
placement algorithms with the ability to handle net weights.
We implemented a placement flow with a quadratic placer
to demonstrate our idea. The experimental results shows our
approach can greatly improve the performance for a given
asynchronous circuits at the placement stage. The runtime and
placement quality is also shown to be much better than the
previous state-of-the-art.

REFERENCES

[1] Semiconductor Industry Association. The International Technology
Roadmap for Semiconductors, 2011.

[2] P. A. Beerel, R. O. Ozdag, and M. Ferretti, A Designer’s Guide to
Asynchronous VLSI. Cambridge University Press, 2010.

[3] C. J. Myers, Asynchronous Circuit Design. John Wiley & Sons, 2004.
[4] P. A. Beerel, G. Dimou, and A. Lines, “Proteus: An ASIC Flow for

GHz Asynchronous Designs,” Design Test of Computers, IEEE, vol. 28,
pp. 36–51, Sept 2011.

[5] A. Yakovlev, P. Vivet, and M. Renaudin, “Advances in Asynchronous
Logic: From Principles to GALS & NoC, Recent Industry Applications,
and Commercial CAD Tools,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2013, pp. 1715–1724, March 2013.

[6] Y. Thonnart, E. Beigne, and P. Vivet, “A Pseudo-synchronous Implemen-
tation Flow for WCHB QDI Asynchronous Circuits,” in Asynchronous
Circuits and Systems (ASYNC), 2012, pp. 73–80, May 2012.

[7] K. S. Stevens, R. Ginosar, and S. Rotem, “Relative Timing,” Very Large
Scale Integration (VLSI) Systems, vol. 11, no. 1, pp. 129–140, 2003.

[8] I. E. Sutherland, “Micropipelines,” Communications of the ACM, vol. 32,
no. 6, pp. 720–738, 1989.

[9] A. P. Hurst, P. Chong, and A. Kuehlmann, “Physical Placement Driven
by Sequential Timing Analysis,” in ICCAD 2004, pp. 379–386, Nov
2004.

[10] E. Kounalakis and C. Sotiriou, “CPlace: A Constructive Placer for
Synchronous and Asynchronous Circuits,” in Asynchronous Circuits and
Systems (ASYNC), 2011, pp. 22–29, April 2011.

[11] M. Iizuka and H. Saito, “A Floorplan Method for ASIC Designs of
Asynchronous Circuits with Bundled-data Implementation,” in New
Circuits and Systems Conference (NEWCAS), 2013, pp. 1–4, June 2013.

[12] A. M. Lines, Pipelined Asynchronous Circuits. Master’s thesis, Califor-
nia Institute of Technology, 1998.

[13] I. Sutherland and S. Fairbanks, “GasP: A Minimal FIFO Control,” in
Asynchronous Circuits and Systems (ASYNC), 2001, pp. 46–53, 2001.

[14] M. Singh and S. Nowick, “MOUSETRAP: High-Speed Transition-
Signaling Asynchronous Pipelines,” Very Large Scale Integration (VLSI)
Systems, vol. 15, pp. 684–698, June 2007.

[15] T. Lin, C. Chu, J. Shinnerl, I. Bustany, and I. Nedelchev, “POLAR:
Placement Based on Novel Rough Legalization and Refinement,” in
ICCAD 2013, pp. 357–362, Nov 2013.

[16] J. L. Peterson, Petri Net Theory and the Modeling of Systems. Prentice
Hall PTR, 1981.

[17] M. Najibi and P. A. Beerel, “Performance Bounds of Asynchronous
Circuits with Mode-Based Conditional Behavior,” in Asynchronous
Circuits and Systems (ASYNC), pp. 9–16, May 2012.

[18] P. A. Beerel, A. Lines, M. Davies, and N.-H. Kim, “Slack Match-
ing Asynchronous Designs,” in Asynchronous Circuits and Systems
(ASYNC), 2006, pp. 11–pp, IEEE, 2006.

[19] J. Magott, “Performance Evaluation of Concurrent Systems using Petri
Nets,” Information Processing Letters, vol. 18, no. 1, pp. 7–13, 1984.

[20] J. T. Udding, “A Formal Model for Defining and Classifying Delay-
insensitive Circuits and Systems,” Distributed Computing, vol. 1, no. 4,
pp. 197–204, 1986.

[21] C.-P. Chen, C. Chu, and D. F. Wong, “Fast and Exact Simultaneous Gate
and Wire Sizing by Lagrangian Relaxation,” in ICCAD 1998, pp. 617–
624, Nov 1998.

[22] C. R. Reeves, Modern Heuristic Techniques for Combinatorial Problems.
John Wiley & Sons, Inc., 1993.

[23] J. Wang, D. Das, and H. Zhou, “Gate Sizing by Lagrangian Relaxation
Revisited,” Computer-Aided Design of Integrated Circuits and Systems,
vol. 28, pp. 1071–1084, July 2009.

[24] M. Prakash, Library Characterization and Static Timing Analysis of
Asynchronous Circuits. ProQuest, 2007.

[25] Gurobi Optimizer: http://www.gurobi.com.

