
FOARS: FLUTE Based Obstacle-Avoiding Rectilinear
Steiner Tree Construction∗

Gaurav Ajwani
Department of Electrical and

Computer Engineering
Iowa State University

Ames, IA 50011
gajwani@iastate.edu

Chris Chu
Department of Electrical and

Computer Engineering
Iowa State University

Ames, IA 50011
cnchu@iastate.edu

Wai-Kei Mak
Department of Computer

Science
National Tsing Hua University
Hsinchu, Taiwan 300 R.O.C.
wkmak@cs.nthu.edu.tw

ABSTRACT
Obstacle-avoiding rectilinear Steiner minimal tree (OARSMT)
construction is becoming one of the most sought after prob-
lems in modern design flow. In this paper we present FOARS,
an algorithm to route a multi-terminal net in the presence
of obstacles. FOARS is a top down approach which includes
partitioning the initial solution into subproblems and using
obstacle aware version of Fast Lookup Table based Wire-
length Estimation (OA-FLUTE) at a lower level to gen-
erate an OAST followed by recombining them with some
backend refinement. To construct an initial connectivity
graph FOARS uses a novel obstacle-avoiding spanning graph
(OASG) algorithm which is a generalization of Zhou’s span-
ning graph algorithm without obstacle [1]. FOARS has a
run time complexity of O(n log n). Our experimental re-
sults indicate that it outperforms Lin et al. [2] by 2.3% in
wirelength. FOARS also has 20% faster run time as com-
pared with Long et al. [3], which is the fastest solution till
date.

Categories and Subject Descriptors
B.7.2 [Hardware, Integrated Circuits, Design Aids]:
Placement and Routing

General Terms
Algorithms, Design, Performance, Theory

Keywords
Physical Design, Routing, Spanning Graph, RSMT

1. INTRODUCTION
∗This work was partially supported by National Science
of Council of Taiwan under grant NSC 98-2220-E-007-031,
IBM Faculty Award, and NSF under grant CCF-0540998.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’10, March 14–17, 2010, San Francisco, California, USA.
Copyright 2010 ACM 978-1-60558-920-6/10/03 ...$5.00.

With the advent of re-usability using Intellectual Property
(IP) sharing, the chip in today’s design is completely packed
with fixed blocks such as IP blocks, macros, etc. Routing of
multi-terminal nets in the presence of obstacles has become
a quintessential part of the design and has been studied by
many (e.g., [2–12]). As pointed out by Hwang [13], in the
absence of obstacles multi-terminal net routing corresponds
to the rectilinear Steiner minimal tree problem which is NP-
complete. The presence of obstacles in the region makes
multi-terminal routing problem even harder.

In this work, we develop a new O(n log n) time algorithm
called FOARS for OARSMT generation by leveraging FLUTE
[14]. FLUTE is a very fast and robust tool for the rectilinear
Steiner minimal tree problem without obstacle. It is widely
used in many recent academic global routers. FLUTE by
its design cannot handle obstacles. A simple strategy to
generate an OARSMT would be to call FLUTE once and le-
galize the edges intersecting with obstacles. Unfortunately,
the OARSMT obtained by such a simple strategy can be
far from optimal. A better strategy is to break the Steiner
tree produced by FLUTE on overlapping obstacles, recur-
sively call FLUTE for local optimization, and then combine
all locally optimized subtrees at the end. However, as the
number of pins increases or if the routing region is severely
cluttered with obstacles, the quality of the solution produced
will degrade because it lacks a global view of the problem.
To tackle this, we propose a partitioning algorithm with a
global view of the problem at the top level to divide the
problem into smaller instances that can be effectively han-
dled.

To guide the partitioning algorithm, we propose to use a
sparse obstacle-avoiding spanning graph (OASG) to capture
the proximity information amongst the pins and corners of
obstacles. Three categories of graph have been used to cap-
ture the proximity information during OARSMT construc-
tion in the past. [4, 6, 7, 11] all use the escape graph. [10]
utilizes a Delaunay triangulation based graph. Both the
escape graph and Delaunay triangulation based graph con-
tain O(n2) edges, where n is the total number of pins and
obstacle corners. [2, 3, 5, 8, 9] are based on various forms of
obstacle-avoiding spanning graphs. Shen et al. [5] proposed
a form of OASG that only contains a linear number of edges
which is also adopted in [8]. Later Lin et al. [2] proposed
adding missing “essential edges” to Shen’s OASG. Unfortu-
nately, it increases the number of edges to O(n2) in the worst
case (O(n log n) in practice) and hence the time complexity
of later steps of OARSMT construction is increased to a

large extent. In view of that, Long et al. [3, 9] proposed a
quadrant approach to generate an OASG with a linear num-
ber of edges. But as we will see later, the OASG generated
by Long’s approach is not ideal. In this paper, we present a
novel octant approach to generate an O(n)-edge OASG with
more desirable properties.

Different from [2, 3, 5, 9] which directly use an OASG to
construct an OARSMT, we only use an OASG to guide
the partitioning and construct our final OARSMT using
FLUTE. We note that a shortcoming of constructing an
OARSMT from an OASG directly is that it tends to fol-
low obstacle boundaries and make detours towards obstacle
corners. This makes it easier to lead to congestion when
routing many nets in a design. (Adding essential edges as
in [2] will help but will result in O(n2) edges as an escape
graph.) On the other hand, since we only utilize the OASG
to guide our partitioning and use FLUTE for local optimiza-
tion, the OARSMT thus constructed will follow an obstacle
boundary only when absolutely necessary. In addition, the
OASG generated by our proposed octant approach has a lin-
ear number of edges like Long’s [3,9] and possesses other de-
sirable properties not found in Long’s OASG. For example,
our OASG is guaranteed to contain at least one minimum
spanning tree in the absence of obstacle while Long’s OASG
does not have such a guarantee.

The rest of the paper is organized as follows. We first
provide an overview of the main steps of our OARSMT con-
struction approach in Section 2. Each main step is described
in details in Sections 3 to 7. The experimental results are
reported in Section 8. Finally, we give our conclusion in
Section 9.

2. OVERVIEW OF THE ALGORITHM
Our algorithm can be distinctly divided into the following

five stages.

Stage 1: OASG Generation. First, we obtain the con-
nectivity information between the pins and obstacle
corner vertices using a novel octant OASG generation
algorithm. Section 3 describes the OASG algorithm in
detail.

Stage 2: OPMST Generation. Based on the OASG, we
construct a minimum terminal spanning tree (MTST)
using the approach mentioned in [15] and then obtain
an obstacle penalized minimal spanning tree (OPMST)
from the MTST. Section 4 talks about OPMST con-
struction in detail.

Stage 3: OAST Generation. We partition the pin ver-
tices based on the OPMST constructed in the previ-
ous step. After partitioning, we pass the subproblems
to OA-FLUTE which calls FLUTE recursively to con-
struct an obstacle-aware Steiner tree (OAST). Section
5 talks about the partitioning and OA-FLUTE in more
detail.

Stage 4: OARSMT Generation. In this step, we rec-
tilinearize the pin-to-pin connections avoiding obsta-
cles to construct an OARSMT. Section 6 discusses
OARSMT construction.

Stage 5: Refinement. To further reduce the wirelength,
we perform V-shape refinement on the OARSMT. De-
tails for it can be found in Section 7.

Fig. 1 depicts the outputs after various stages of the algo-
rithm.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

(a) OASG

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

(b) MTST

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

(c) OPMST

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

(d) OARSMT

Figure 1: Outputs at various stages for benchmark
RC01

3. OASG GENERATION

3.1 Previous Approaches
Zhou et al. [1] described a spanning graph generation al-

gorithm with O(n) edges in the absence of obstacles. We
prove that their approach can be seen as a special case of
our obstacle-avoiding spanning graph generation algorithm.
Here we start with a few definitions.

Definition 1 Given an edge e(u, v) and an obstacle b, e is
completely blocked by b if every monotonic Manhattan path
connecting u and v intersects with a boundary of b.

Definition 2 Given a set of m pins and k obstacles, an
undirected graph G = (V, E) connecting all pin and corner
vertices is called an OASG if none of its edges is completely
blocked by an obstacle.

Although Definition 2 does not necessitate a linear num-
ber of edges for an OASG, in order to have a fast run time
it is desired to limit the solution space. In the past, there
have been a couple of efforts to construct an OASG with a
linear number of edges. Shen et al. [5] suggested a quadrant
approach in which each point can connect in four quadrants
in the plane formed by horizontal and vertical line going
through the point. Shen did not clearly explain their algo-
rithm in the paper.

Long et al. [9] recently described a novel quadrant ap-
proach which is a modified version of [1] for OASG genera-
tion with a linear number of edges in O(n log n) time. They
suggested scanning along ±45◦ lines and maintaining an ac-
tive vertex list, a set of vertices in the graph which are not
yet connected to their nearest neighbor, similar to [1]. After
scanning any vertex v, they search for its nearest neighbor
u in the active vertex list, such that the edge (u, v) is not
completely blocked by any obstacle in the graph. This is
followed by deletion of u from the list and addition of v in
the list.

We found that their algorithm has certain shortcomings.
First, their algorithm is not symmetric, i.e., the nearest
neighbor for any vertex in a quadrant is contingent upon
the direction of scanning which means they have to scan
along all four quadrants of a vertex in order to capture its
connectivity information. Second, unlike [1] in the absence
of obstacles, their algorithm cannot guarantee the presence
of at least one MST in the plane. Third, their algorithm
cannot handle abutting obstacles due to minor mistakes in
the inequality conditions.

3.2 Our Approach for OASG
Looking at the above mentioned issues we conceived that

rather than modifying Zhou et al’s [1] approach, it will be
best to simply build on their idea. Therefore, we propose an
algorithm based on octant partition exhibiting uniqueness
property similar to their algorithm. We reiterate the defi-
nition given in their paper. The notation ||pq|| represents
rectilinear distance between p and q.

Definition 3 [1] Given a point s, a region R has the unique-
ness property with respect to s if for every pair of points p,
q ∈ R, ||pq|| <max(||sp||,||sq||). A partition of space into a
finite set of disjoint regions is said to have the uniqueness
property if each of its regions has the uniqueness property.

Fig. 2(a) and Fig. 2(b) describes octant partition for a
pin vertex and an obstacle corner, respectively. It is proved
in [1] that octant partition exhibits the uniqueness property.
Imagine three points s, p and q such that ||sp|| < ||sq|| where
points p and q lie in Ri of s. As Ri has the uniqueness
property, it implies ||pq|| < ||sq||. Since the longest edge

(a) Pin vertex (b) Obstacle corner

Figure 2: Octant partition for a pin vertex and an
obstacle corner

of any cycle should not be included in a MST, we can still
guarantee that a MST exists in an OASG that does not
include edge (s, q).

Another interesting property of octant partition is that a
contour of equidistant points from any point forms a line seg-
ment in each region. In regions R1,R2,R5,R6, these segments
are captured by an equation of the form x+y = c; in regions
R3,R4,R7,R8, they are described by the form x − y = c.
Now this property can be exploited when we generate an
obstacle-avoiding spanning graph.

Algorithm: OASG generation for R1

1 Aactive = Abottom = Aleft = ∅
2 for all v ∈ V in increasing (x + y) order
3 S(v) = ∅
4 for all u ∈ Aactive which have v in their R1 do
5 Add u to S(v)
6 end for
7 Connect v to the nearest point u∗ ∈ S(v) such that

e(u∗, v) is not completely blocked
by obstacle boundaries in Abottom and Aleft

8 Delete all points in S(v) from Aactive

9 if v is a bottom left corner then
10 Add the bottom boundary containing v to Abottom

and the left boundary containing v to Aleft

11 else if v is a top left corner then
12 Delete the left boundary containing v from Aleft

13 else if v is a bottom right corner then
14 Determine the bottom boundary B containing v
15 Delete B from Abottom

16 Delete from Aactive all points which are
completely blocked by B

17 end if
18 Add v to Aactive

19 end for

Figure 3: Pseudo code for OASG generation algo-
rithm

The pseudo code for OASG generation for R1 is provided
in Fig. 3. As R1 and R2 both follow the same sweep se-
quence we process them together in one pass. It is worth
noting that our algorithm is exactly symmetrical as it does
not depend on the direction of scanning. If any point v is
the nearest neighbor of u in R1, it implies that u is the near-
est neighbor of v in R5 which reduces our sweep iterations.
For any point, we only need to sweep twice to determine
its connectivity information once for R1/R2 and once for

R3/R4.
For octants R1 and R2, we sweep on a list of vertices in

V which contains both pins as well as obstacle corners with
respect to increasing (x + y). During sweeping we maintain
an active vertex list Aactive. An active vertex is a vertex
whose nearest neighbor in R1 still needs to be discovered.

For the currently scanned vertex v, while looking in R5

of v we extract a subset S(v) from Aactive. Any node u

in this subset S(v) has v in R1 (lines 3 to 6). We connect
v to its nearest neighbor u∗ in S(v) for which, e(u∗, v) is
not completely blocked (line 7). After connecting with the
nearest point we delete all the points in S(v) from Aactive

(line 8) and add v to Aactive (line 18).
In order to determine if an edge is blocked by an obstacle,

we maintain two active obstacle boundary lists, Abottom for
the bottom boundaries and Aleft for the left boundaries. It
is evident that if an edge is blocked by an obstacle in R1,
it will intersect with either its bottom or its left boundary.
Next, if our scanned vertex is the bottom left corner of an
obstacle, its bottom boundary is added to Abottom and its
left boundary is added to Aleft. It implies that both the left
and the bottom boundaries of that obstacle become active.
When we come across the top left (bottom right) corner,
the corresponding boundary is removed from Aleft (Abottom)
implying that the left (bottom) boundary for that obstacle
becomes inactive at that point (lines 12 and 15).

Figure 4: Completely blocked vertices

To explain lines 13 to 17, let us refer to Fig. 4 where ver-
tex b is the bottom right corner of an obstacle. It is easy to
see that if any vertex u lying within the 45−45−90 triangle
shown is still in Aactive after scanning b, it can be removed
from Aactive. Since in this case all vertices in R1 of u are
completely blocked from u by the obstacle.

Lemma 1 Zhou et al’s algorithm [1] is a special case of
our OASG generation algorithm

If we consider a case which has no obstacle, then we can
simply ignore the blockage check in line 7 and lines 9 to 17
from the algorithm in Fig. 3. The resulting algorithm would
be exactly the same as the algorithm in [1].

3.3 An O(n log n) Implementation
We first show how to perform the following fundamental

operations in the OASG generation algorithm in O(log n)
time: 1) Given a vertex v, find the subset of points in Aactive

which have v in their R1; 2) given an edge, check if it is
completely blocked by any obstacle boundary in Abottom or
Aleft; and 3) given a bottom boundary of an obstacle, find

all points in Aactive which are completely blocked by the
boundary. We address these issues one by one in the follow-
ing paragraphs.

To find the subset of Aactive which have a given point in
their R1, we need the following lemma.

Lemma 2 [1] For any two points p and q in the active
set, we have xp 6= xq, and if xp < xq then xp −yp ≤ xq −yq.

We arrange Av1 in increasing order of x. Utilizing Lemma
2, to find the subset of points which have v in their R1, we
first find largest x such that x ≤ xv. We then proceed in
decreasing order of x until x − y < xv − yv. Any point in
between has x ≤ xv and x − y ≥ xv − yv, and hence has v

in its R1. We use balanced binary search tree to implement
Aactive in order to have O(log n) query operation.

An edge e(u, v) formed by points (xu, yu) and (xv, yv) is
completely blocked by a bottom obstacle boundary (a, b)
formed by the points (xa, yh) and (xb, yh), if and only if,
yu < yh < yv, xa < xu, and xb > xv. Note that at line 7, all
bottom boundaries satisfying the condition must present in
the list Abottom. We use the balance binary search tree data
structure for Abottom with the y-coordinate of a boundary as
a key value. Every attempt to search for an obstacle bound-
ary between yu and yv in Ab takes O(log n) time. Checking
if an edge is completely blocked by a left boundary can be
done similarly.

To determine all the completely blocked vertices u in Aactive

by a horizontal boundary (a, b) in line 16, we need to check
if yu < yh, xa < xu and xu − yu + yh ≤ xb (the lightly
shaded regions in Fig. 4). Since we already have Aactive as
a sorted list in increasing x we can check all points which lie
between xa and xb and test for the above conditions to see
if they are completely blocked.

The loop from line 2 to line 19 will repeat n times. Lines
2–6 and 8–18 can all be performed in O(log n) time. To
analyze the total run time of line 7, note that each u ∈ V

will only be added to some S(v) at most once in line 5.
Then it will be removed from future consideration in line
8. Corresponding to each u added, the blocking of one edge
needs to be checked in line 7. Hence totally n edges are
checked. In conclusion, the total run time of the algorithm
is O(n log n).

4. OPMST GENERATION

4.1 MTST Generation
After capturing the initial connectivity amongst pin ver-

tices, the next logical step is to extract a minimum terminal
spanning tree (MTST) from the OASG that connects all
pin vertices and avoid obstacles. Shen et al. [5] and Lin et
al. [2] both use an indirect approach for this step. They first
construct a complete graph over all pin vertices where the
edge weight is the shortest path length between the two pin
vertices. On this complete graph they use either Prim’s or
Kruskal’s algorithm to obtain a MST. Although it is effec-
tive, the approach described above seems to be an overkill
as it is unnecessary to construct a complete graph when we
already have OASG. Back in 80’s, Wu et al. [15] suggested a
method using Dijkstra’s and Kruskal’s algorithms on a graph
similar to an OASG to obtain a MTST. Recently, Long et
al. [3] adopted their approach to solve the problem on the
OASG.

In this paper, we adopt the approach based on the ex-
tended Dijkstra’s algorithm and the extended Kruskal’s al-
gorithm as defined in [3]. For every corner vertex in the
OASG, we want to connect it with the nearest pin vertex.
This can be easily done using Dijkstra’s shortest path algo-
rithm considering every pin vertex as a source. After run-
ning the extended Dijkstra’s algorithm we are left with a
forest of m trees, m being the number of pin vertices. The
root of every tree in the forest obtained above is a pin ver-
tex. In order to connect all disjoint trees we use the extended
Kruskal’s algorithm on the forest. A priority queue Q is used
to store the weights of all possible edges termed as bridge
edges in [3] which can be used for linking the trees.

Definition 4 [3] An edge e(u, v) is called a bridge edge
if its two end vertices belong to different terminal trees.

From Definition 4, it can be deduced that if each tree was
a single vertex in the graph then bridge edges will be the
edges connecting these vertices and we can use Kruskal’s al-
gorithm to obtain a MST in such a graph. The extended
Kruskal’s algorithm is simply an extended version of the
original Kruskal’s algorithm tailored to obtain a MST in
a forest. It is important to note that in case we do not
have any obstacle, the extended Dijkstra’s algorithm will
not make any change in the graph and the extended Kruskal
will simply work on a spanning graph.

4.2 OPMST Construction
We note that a sparse OASG does not always have direct

connections between the pin vertices even if one is allowed.
This is due to a neighboring corner vertex being nearer than
the other pin vertex in the same region. These indirect de-
tour paths are unnecessary and if not taken care of can lead
to a significant loss of quality. We note that the algorithm
proposed by [3] failed to address this issue. On the other
hand, we address this problem by constructing an obstacle
penalized minimal spanning tree (OPMST) from the MTST
by removing all the corner vertices and storing detour infor-
mation as the weight of an edge.

To construct an OPMST, we follow a simple strategy. For
any corner vertex v, we find the nearest neighboring pin ver-
tex u. We connect all the pin vertices originally connected
with v to u and delete v. We update their weights as their
original weight plus the weight of e(u, v). This method guar-
antees that in case we have a major detour between two pin
vertices due to an obstacle, the weight of that edge will cor-
roborate this fact. In other words we can say that the edge
would be penalized for the obstacles in its path.

5. OAST GENERATION
This step differentiates our algorithm from [2,3,5,9]. We

exploit the extremely fast and efficient Steiner tree genera-
tion capability of FLUTE [14] for low degree nets. In order
to embed FLUTE in our problem we designed an obstacle
aware version of FLUTE, OA-FLUTE. As OA-FLUTE is
less efficient for high degree nets and dense obstacle region,
we partition a high degree net into subnets guided by the
OPMST obtained from the previous step. The subproblems
obtained after partitioning are passed on to OA-FLUTE for
obstacle aware topology generation. It is termed as obsta-
cle aware because the nodes of the tree are placed in their
appropriate location considering obstacles around them.

Function: Partition(T)
Input: An OPMST T
Output: An OAST

1 If(∃ a completely blocked edge e)
2 /∗ Refer to Fig. 7 ∗/
3 e(u, v) is to be routed around obstacle edge e(a, b)
4 Let T = T1 + e(u, v) + T2

5 T1 = T1 + e(u, a)
6 T2 = T2 + e(u, b)
7 T ′ = Partition(T1) ∪ Partition(T2)
8 Else if(|T | > HIGH THRESHOLD)
10 /∗ Refer to Fig. 8(a) ∗/
11 Let e(u, v) be the longest edge s.t.

T = T1 + e(u, v) + T2 with |T1| ≥ 2 and |T2| ≥ 2
12 T ′ = Partition(T1) ∪ Partition(T2)
13 /∗ Refer to Fig. 8(b) ∗/
14 Refine T’ using OA-FLUTE(N”) where,
15 N” is a set of pin vertices around e(u, v) in T’
16 Else
17 T ′ = OA-FLUTE(N) where,
18 N is set of all pin vertices in T’
19 Return T’

Figure 5: Pseudo code for the Partition function

Fig. 5 and Fig. 6 describe the pseudo codes for the Par-
tition and OA-FLUTE functions. It is evident that both
functions are recursive functions. Let us first explain the
Partition function.

5.1 Partition
The input to the Partition function is an OPMST ob-

tained from the last step and the output is an obstacle-aware
Steiner tree (OAST). An OAST is a Steiner tree in which
the Steiner nodes have been placed considering the obstacles
present in the routing region to minimize the overall wire-
length. The following two criteria are set for partitioning
pin vertices. The first criterion is to determine if any edge
is completely blocked by an obstacle. The second criterion
is to check if the size of OPMST is more than the HIGH
THRESHOLD defined.

As can be clearly seen in Fig. 7 that for an overlap free
solution, we have to route around the obstacle. Therefore, it
seems logical to break the tree at edge (u, v). We know that
OA-FLUTE can efficiently construct a tree when the number
of nodes is less than the HIGH THRESHOLD value. If the
size of the tree is still more than the HIGH THRESHOLD
after breaking at the blocking obstacles, we need to break
the tree further. In this case, we look for the edge with the
largest weight on the tree and delete that edge, refer to Fig.
8(a).

Based on the above mentioned criterion, if we break an
obstacle edge, we simply include corner vertices in the tree
and divide the two trees as shown in Fig. 7. Else, if we
break at the edge with largest weight, we delete that edge
and make sure that it does not contain any leaf of the tree
as shown in Fig. 8(a).

After breaking an edge, we make recursive calls to the
Partition function using two subtrees. When the size of the
tree becomes less than the HIGH THRESHOLD, we pass
the nodes of the tree to OA-FLUTE function. The OA-
FLUTE function returns an OAST. After returning from

Function: OA-FLUTE(N)
Input: A Set of nodes N
Output: An OAST

1 T ′ = FLUTE(N)
2 If(∃ a completely blocked edge e)
3 e(u, v) is to be routed around obstacle edge e(a, b)
4 /∗ Refer to Fig. 9 ∗/
5 Let N = N1 ∪ N2

6 N1 = N1 ∪ {a}
7 N2 = N2 ∪ {b}
8 T ′ = OA-FLUTE(N1) ∪ OA-FLUTE(N2)
9 Else If(∃ Steiner Node S on top of an obstacle)
10 /∗ Refer to Fig. 10 ∗/
11 Let a1, a2, ... , aD be the intersection points with the

obstacle ordered in anti-clockwise direction
12 Let N = N1 ∪ N2 ∪ ... ∪ ND ∪ {S}
13 Let (au, av) be the segment with largest weight
14 For(i = av to au in anti-clockwise order)
15 Ni = Ni∪ corner vertex along the path
16 End For
17 T ′ = OA-FLUTE(N1) ∪ ∪ OA-FLUTE(ND)
18 Return T’

Figure 6: Pseudo code for the OA-FLUTE function

Figure 7: An example illustrating first criterion for
partitioning

OA-FLUTE in Partition, if the partition was performed on
an obstacle edge, we simply merge two Steiner trees using
the same obstacle edge. In case the partition was performed
on the longest edge, we explore an opportunity to further
optimize wirelength. We merge the two trees on the longest
edge and then search the region around the longest edge
to extract neighboring pin vertices, refer to lines 12-15 in
Fig. 5 and Fig. 8(b). This refinement is same as the local
refinement proposed in [14]. We pass this set of nodes to
OA-FLUTE for further optimization.

5.2 OA-FLUTE
The purpose of OA-FLUTE function is to form an OAST.

It begins by calling FLUTE on the set of input nodes. FLUTE
constructs a Steiner tree without considering obstacles. This
tree can have two kinds of overlap 1) an edge completely
blocked by an obstacle, 2) a Steiner node on top of an ob-
stacle. We handle both of these cases differently.

To handle the first case, refer to Fig. 9, we break the
Steiner tree into two subtrees including corner points of the
obstacle and make recursive calls to OA-FLUTE. We selec-
tively prune the number of recursive calls based on the size
of the tree in order to strike a balance between run-time and
quality.

To handle the second case, we devised a special technique.

(a) Partitioning (b) Local refinement

Figure 8: An example illustrating second criterion
for partitioning

Figure 9: OA-FLUTE: An edge completely blocked
by an obstacle

We pick an obstacle which has a Steiner node on top of it.
For every boundary of this obstacle intersecting with the
Steiner tree, we extract a set of nodes Ni which includes the
pin vertices in the tree near to that boundary. In Fig. 10 we
have a single Steiner node inside the obstacle intersecting at
a1, a2 and a3, with the right, top and left boundary of the
obstacle, respectively. We extract three set of pin vertices
N1, N2 and N3 from the original Steiner tree for the right,
top and left boundary, respectively. The points a1, a2 and a3

divide the obstacle outline into three segments as shown in
Fig. 10. We then find the longest segment (the light shaded
segment (a3, a1) in Fig. 10). We then traverse from one
endpoint of the longest segment to the other endpoint via
other segments in an anti-clockwise direction, for example,
from a1 to c1 to a2 to c2 to a3 in Fig. 10. While moving
along the other segments, we keep adding corner vertices to
the corresponding Ni’s e.g. c1 gets added to both N1 and N2

and c2 gets added to both N2 and N3. We then recursively
call OA-FLUTE for all Ni’s thus formed.

As our goal with OA-FLUTE is to determine befitting lo-
cations for Steiner nodes we exclude all corner vertices while
merging1. Fig. 9 and Fig. 10, indicate Steiner tree after ex-
cluding corners while merging. The reason for not adding
corner vertices in this step is twofold. First, it is not desir-
able to further restrict the solution when we already did once
in Partition function. Second, we want our OA-FLUTE to
be a generic function which can preserve the number of pin-
vertices provided to it, adding corner vertices would increase
them.

6. OARSMT GENERATION
The OAST obtained from last step does not guarantee

that rectilinear path for a pin-to-pin connection is obstacle
free. In this step, we rectilinearize every pin-to-pin connec-
tion avoiding obstacles to generate an OARSMT. For every
Manhattan connection between two pins we can have two L-
shape paths. On the basis of the obstacles inside the bound-
ing box formed by an edge, we can divide all the possible
scenarios into four categories: 1) both L-paths are clean 2)

Wirelength Run time(s)
Benchmark m k Lin [2] Long [3] Liang [11] Liu [12] Ours Lin [2] Long [3] Liang [11] Ours

RC01 10 10 27790 26120 25980 26740 25980 0.00 0.00 0.01 0.00
RC02 30 10 42240 41630 42010 42070 42110 0.00 0.00 0.02 0.00
RC03 50 10 56140 55010 54390 54550 56030 0.00 0.00 0.00 0.00
RC04 70 10 60800 59250 59740 59390 59720 0.00 0.00 0.01 0.00
RC05 100 10 76760 76240 74650 75430 75000 0.00 0.00 0.01 0.00
RC06 100 500 84193 85976 81607 81903 81229 0.10 0.08 0.50 0.03
RC07 200 500 114173 116450 111542 111752 110764 0.18 0.09 0.60 0.04
RC08 200 800 120492 122390 115931 118349 116047 0.31 0.15 1.16 0.07
RC09 200 1000 117647 118700 113460 114928 115593 0.40 0.22 1.53 0.09
RC10 500 100 171519 168500 167620 167540 168280 0.20 0.03 0.18 0.02
RC11 1000 100 237794 234650 235283 234097 234416 0.74 0.06 0.83 0.04
RC12 1000 10000 803483 832780 761606 780528 756998 55.09 3.80 186.3 2.65

RT01 10 500 2289 2379 2231 2259 2191 0.03 0.06 0.19 0.01
RT02 50 500 48858 51274 47297 486884 48156 0.05 0.06 0.55 0.02
RT03 100 500 8508 8554 8187 8347 8282 0.10 0.06 0.21 0.03
RT04 100 1000 10459 10534 9914 10221 10330 0.22 0.23 0.37 0.09
RT05 200 2000 54683 55387 52473 53745 54598 0.96 0.66 3.18 0.26

IND1 10 32 632 639 619 626 604 0.00 0.00 0.00 0.00
IND2 10 43 9700 10000 9500 9500 9500 0.00 0.00 0.00 0.00
IND3 10 59 632 623 600 600 600 0.00 0.00 0.00 0.00
IND4 25 79 1121 1130 1096 1095 1129 0.00 0.00 0.00 0.00
IND5 33 71 1392 1379 1360 1364 1364 0.00 0.00 0.00 0.00

RL01 5000 5000 492865 491855 481813 - 483027 106.66 3.58 27.14 3.01
RL02 10000 500 648508 638487 638439 - 637753 159.09 1.27 29.45 1.07
RL03 10000 100 652241 641769 642380 - 640902 153.95 1.08 23.35 1.04
RL04 10000 10 709904 697595 699502 - 697125 195.25 0.97 22.00 1.39
RL05 10000 0 741697 728585 730857 - 728438 217.88 0.96 33.64 1.5

(1.023) (1.027) (0.995) (1.004) (1) 891.25(78.45) 13.36(1.196) 331.235(30) 11.36(1)

Table 1: Wirelength and run time comparison. m is the number of pin vertices and k is the number of
obstacles. The values in the last row are normalized over our results for both wirelength as well as run time

Figure 10: OA-FLUTE: Steiner node is on top of an
obstacle

both L-paths are blocked by the same obstacle 3) only one
L-path is blocked 4) both L-paths are blocked but not by
the same obstacle. We discuss these scenarios one by one in
the following paragraphs.

For the first case, even though we can rectilinearize using
any L-path, we instead create a slant edge at this stage to
leave the scope for improvement in V-shape refinement. For
the second case, we have no option but to go outside the
bounding box and pick the least possible detour.

For the third case, we route inside the bounding box, since
there exists a path. We break the edge into two sub problems
on the corner of an obstacle along the blocked L-path. We re-
cursively solve these sub problems to determine an obstacle-
avoiding path. If the wirelength of this path is same as the
Manhattan distance between the pins, we accept the solu-
tion, else we route along the unblocked L-path. It is note-
worthy that for this case we could have directly accepted the
unblocked L-path. In order to create more slant edges, and
hence, further scope for V-shape refinement, we searched
for a route along the blocked L-path avoiding obstacles. For

the last case where both L-paths are blocked but not by the
same obstacle, we determine obstacle-avoiding routes using
the same recursive approach as mentioned above for both
L-paths and pick the smallest one.

7. REFINEMENT
We perform a final V-shape refinement to improve total

wirelength. This refinement includes movement of Steiner
node in order to discard extra segments produced due to
previous steps. The concept of refinement is similar to the
one that determines a Steiner node for any three terminals.
The coordinates of the Steiner node are the median value
of the x-coordinates and median value of the y-coordinates.
Fig. 11 illustrates a potential case for V-shape refinement
and output after refinement. This refinement comes handy
in improving the overall wirelength by 1% to 2%.

Figure 11: V-shape refinement case and refined out-
put

8. EXPERIMENTAL RESULTS
We implemented our algorithm in C. The experiments

were performed on a 3GHz AMD Athlon 64 X2 Dual Core
machine. We requested for binaries from Long et al. [3], Lin
et al. [2], Liang et al. [11] and ran them on our platform.
We could not get binary from Liu et al. [12], which is the
most recent work, on time to include in the paper. We report
their results as provided in their paper. Table 1 shows Wire-
length and CPU run time comparison with them. There

are four sets of benchmarks. Five industrial test cases are
from Synopsys(IND1 - IND05), twelve circuits are from [2]
(RC01-RC12), five randomly generated benchmark circuits
(RT01-RT05) [2] and five large benchmark circuits (RL01-
RL05) generated by [3]. We determined experimentally that
HIGH THRESHOLD value of 20 works the best.

As shown in last row, column 4, 5 and 7, of Table 1,
on an average over all benchmarks, our wirelength results
outperform Lin et al. [2] by 2.3% and Long et al. [3] by 2.7%
and Liu et al. [12] by 0.4%. But column 6 indicates that our
results are 0.5% longer as compared to Liang et al. [11]. This
could be attributed to the fact that they use maze routing
approach.

Our results also indicate that our algorithm performs bet-
ter in terms of quality in all higher order (RC07 - RC12)(RL01
- RL05) benchmarks than Liu et al. and we are just 0.1%
longer than Liang et al. and 30 times more efficient in CPU
run time. We believe that larger benchmarks with more
number of pin vertices and more number of obstacles (similar
to RC12) are more scalable in industry and we outperform
all other existing approaches in these benchmarks due to our
highly efficient steiner tree generation tool, OA-FLUTE.

For the run time, we are 20% faster than Long et al. [3] on
average. We are 33 times faster than [11] and 88 times faster
than [2]. We could not make a direct comparison between
the run times of Liu et al. as we could not run their binary
on our platform.

We can conclude from the above discussion that exist-
ing heuristics improve either run time or wirelength but not
both. Our algorithm improves both in terms of quality and
run time as compared to the algorithms [5], [2] and [3], of its
kind. Also we have the best results both for wirelength and
run time for higher-order benchmarks(RC12, RL01-RL05),
when compared to [11] and [12] which indicates the applica-
bility of our algorithm to industrial standard circuits.

9. CONCLUSION
In this paper, we have presented FOARS, an efficient al-

gorithm to construct OARSMT based on extremely fast and
efficient Steiner tree generation tool called FLUTE. We pro-
pose a novel OASG algorithm with linear number of edges.
We also propose an obstacle aware version of FLUTE, which
generates OAST. Our top-down partition approach empow-
ers OA-FLUTE to handle high degree multi-terminal net
and dense obstacle region. Our results indicates that our
approach is the best tradeoff for quality and run time. Our
experiments prove that FOARS obtains good quality solu-
tion with excellent run-time as compared with its peers.

10. ACKNOWLEDGEMENT
We acknowledge Lin et. al [2], Liang et. al [11] and Long

et. al [3] for sending us their binaries for comparison and
clearing our doubts, if any, with respect to the results.

11. REFERENCES
[1] Hai Zhou, Narendra V. Shenoy, and William Nicholls.

Efficient minimum spanning tree construction without
delaunay triangulation. In Proc. of ASP-DAC, pages
192–197, 2001.

[2] Chung-Wei Lin, Szu-Yu Chen, Chi-Feng Li, Yao-Wen
Chang, and Chia-Lin Yang. Obstacle-avoiding
rectilinear Steiner tree construction based on spanning

graphs. In Proc.of IEEE Transactions on CAD of
Integrated Circuits and Systems, 27(4):643–653, 2008.

[3] Jieyi Long, Hai Zhou, and Seda Ogrenci Memik.
EBOARST: An efficient edge-based obstacle
avoiding-rectilinear Steiner tree construction
algorithm. In Proc. of IEEE Transactions on CAD of
Integrated Circuits and Systems, 27(12), 2008.

[4] Yu Hu, Zhe Feng, Tong Jing, Xianlong Hong, Yang
yang Ge, Xiaodong Hu, and Guiying Yan. FORst: A
3-step heuristic for obstacle-avoiding rectilinear
Steiner minimal tree construction. In Proc. of JICS,
pages 107–116, 2004.

[5] Zion Shen, Chris C. N. Chu, and Ying-Meng Li.
Efficient rectilinear Steiner tree construction with
rectilinear blockages. In Proc. of ICCD, pages 38–44,
2005.

[6] Yu Hu, Tong Jing, Xianlong Hong, Zhe Feng,
Xiaodong Hu, and Guiying Yan. An-OARSMan:
Obstacle-avoiding routing tree construction with good
length performance. In Proc. of ASP-DAC, pages
630–635, 2006.

[7] Yiyu Shi, Paul Mesa, Hao Yao, and Lei He. Circuit
simulation based obstacle-aware Steiner routing. In
Proc. of DAC, pages 385–388, 2006.

[8] Pei-Ci Wu, Jhih-Rong Gao, and Ting-Chi Wang. A
fast and stable algorithm for obstacle-avoiding
rectilinear Steiner minimal tree construction. In Proc.
of ASP-DAC, pages 262–267, 2007.

[9] Jieyi Long, Hai Zhou, and Seda Ogrenci Memik. An
O(n log n) edge-based algorithm for obstacle-avoiding
rectilinear Steiner tree construction. In Proc. of ISPD,
pages 126–133, 2008.

[10] Iris Hui-Ru Jiang, Shung-Wei Lin, and Yen-Ting Yu.
Unification of obstacle-avoiding rectilinear Steiner tree
construction. In Proc. of SoCC, pages 127–130, 2008.

[11] Liang Li and Evangeline F. Y. Young.
Obstacle-avoiding rectilinear Steiner tree construction.
In Proc. of ICCAD, pages 523–528, 2008.

[12] Chih-Hung Liu, Shih-Yi Yuan, Sy-Yen Kuo, and
Yao-Hsin Chou. An O(n log n) path-based
obstacle-avoiding algorithm for rectilinear Steiner tree
construction. In Proc. of DAC, pages 314–319, 2009.

[13] F. K. Hwang. On Steiner minimal trees with
rectilinear distance. In Proc. of SIAM J. Appl. Math,
30:104–114, 1976.

[14] Chris Chu and Yiu-Chung Wong. FLUTE: Fast
lookup table based rectilinear Steiner minimal tree
algorithm for VLSI design. In Proc. of IEEE
Transactions on CAD of Integrated Circuits and
Systems, 27(1):70–83, 2008.

[15] Y. F. Wu, P. Widmayer, and C. K. Wong. A faster
approximation algorithm for the Steiner problems in
graphs. In Proc. of Acta Informatica, 23:223–229,
1986.

