
CROP: Fast and Effective Congestion Refinement of Placement
∗

Yanheng Zhang and Chris Chu
Electrical and Computer Engineering

Iowa State University
Ames, IA 50010

email: {zyh,cnchu}@iastate.edu

ABSTRACT

Modern circuits become harder to route with the ever decreasing design
features. Previous routability-driven placement techniques are usually
tightly coupled with the underlying placers. So usually they cannot be
easily integrated into various placement tools. In this paper, we propose
a tool called CROP (Congestion Refinement of Placement) for mixed-
size placement solutions. CROP is independent of any placer. It takes
a legalized placement solution and then relocates the modules to im-
prove routability without significantly disturbing the original placement
solution.

CROP interleaves a congestion-driven module shifting technique and
a congestion-driven detailed placement technique. Basically the shift-
ing technique targets at better allocating the routing resources. Shifting
in each direction can be formulated as a linear program (LP) for re-
sizing each G-Cell. Instead of solving the computationally expensive
LP, we discover that the LP formulation could be relaxed and solved by
a very efficient longest-path computation. Then the congestion-driven
detailed placement technique is proposed to better distribute the rout-
ing demands. Congestion reduction is realized by weighting the HPWL
with congestion coefficient during detailed placement.

The experimental results show that CROP is capable of effectively
alleviating the congestion for unroutable placement solutions. We ap-
ply it to placement solutions generated by four different placers on the
ISPD05/06 placement benchmarks [1] [2]. Within a very short runtime,
CROP greatly improves the routability and saves execution time for the
routing stage after refinement.

1. INTRODUCTION

The routing problem has become more difficult with the decreasing
design features. Nowdays, the mixed-size SOC contains up to millions
of standard cells and thousands of big macros in one single design. The
existence of big macros and large problem size make the routability is-
sue more and more challenging.

In traditional design flow, routing and placement are separated. In
the placement stage, usually HPWL (Half Perimeter Wirelength) is set
as primary objective for optimization. Nevertheless, such placement
solution is very likely unroutable partially because the HPWL emphasis
in the placement stage may not be a direct indicator for hardness of
routing that follows. Hence, many people turn to develop congestion-

∗This work was partially supported by IBM Faculty Award and NSF
under grant CCF-0540998

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD’09, November 2-5, 2009, San Jose, California, USA.
Copyright 2009 ACM 978-1-60558-800-1/09/11 ...$10.00.

Less than
minimum space

Equal to
minimum space

Figure 1: Basic idea of congestion-driven module shifting.

driven placement techniques for probing better routability at placement
stage.

There have been many works proposed for routability-driven place-
ment. In general, previous techniques could be categorized into four
groups: the first group incorporates routability components into place-
ment optimizing objective. Spindler and Johannes [3] proposed RUDY
congestion estimation technique and modified the density term to con-
tain both the routing density and module density. In [4], Jiang et al.
applied Lagrangian relaxation to relax the routability constraints. Sim-
ilarly, [5] integrated the wire density term into the analytical placement
framework. The second group applies implicit or explicit White Space
Alllocation (WSA) technique inside or after the placement flow. Yang
et al. of [6] proposed three WSA methods and integrated one of them
in the detailed placement flow of Dragon. mPL-R with WSA [7] dis-
tributes the white space by adjusting the cut-lines of hierarchically sliced
placement based on the available white space and congestion. In [8], the
authors proposed inflating the cells inside the congested region, which
is an implicit manner for allocating white space. The third group guides
placement by global routing. IPR [9] integrates FastRoute2.0 [10] into
FastPlace [11] and performs full global routing to guide the placement
flow. The fourth group mixes some of the above three features. For
instance, ROOSTER [12] proposed to optimize RSMT in their global
placement objective and apply WSA in their detailed placement flow.

In this work, we propose a fast and effective mixed-size placement
refinement tool called CROP for routability improvement. CROP in-
terleaves congestion-driven module shifting technique and congestion-
driven detailed placement technique. Both techniques are guided by
congestion information obtained by global routing. The congestion-
driven shifting technique targets at better allocating the routing resources.
It is achieved by adjusting the boundary of each G-Cell and shifting the
modules according to the new G-Cell shape. Figure 1 illustrates the
basic idea. In the figure, the G-Cell has insufficient capacity for acco-
modating the routing tracks. As we know, the global routing capacity
is directly related to the length of the G-Cell boundary. If the G-Cell is
enlarged proportional to the demand of routing tracks, theoretically no
routing overflow would occur. We will show that the resizing of G-Cell
can be formulated as two LPs for vertical and horizontal shifting respec-
tively. Instead of solving the computational expensive LP, we relax the
LP and solve it by an efficient longest-path computation, which is the

major factor contributing to our fast runtime when shifting the modules.
After performing module shifting, we will legalize the placement solu-
tion. Then we will apply our second technique, the congestion-driven
detailed placement (DP) to probe better routability. It aims at better dis-
tributing routing demands. Congestion reduction is realized by weight-
ing the HPWL with a congestion coefficient during detailed placement.
The Shifting-Legalization-DP procedure forms one iteration of refine-
ment. We will call the refinement repeatedly until the solution is good
enough. Practically only a small number of iterations (usually 2-3) is
sufficient to achieve good routability.

CROP is a fast and effective refinement tool for mixed-size placement
solution. First, CROP is independent of any placer. Congestion-driven
techniques proposed by [3], [4], [5], etc. are very tightly coupled with
the underlying placer. Their proposed methods cannot be easily inte-
grated into various placement tools. Second, CROP shows good perfor-
mance in improving the routability. The difference of our model of mod-
ule shifting from previous works (e.g. mPL-R+WSA [7]) is that ours is
more refined. Instead of shifting the cut-lines of a hierarchically sliced
layout, CROP shifts the boundary of each G-Cell. Moreover, previous
techniques usually lump vertical and horizontal congestion together. Yet
our congestion shifting model differentiates the vertical and horizontal
directions. Third, CROP runs very fast. For instance, the design with
800k modules and 800k nets (adaptec5) takes less than 10 minutes to
execute.

For achieving the advantages we mentioned above, we propose the
following techniques:

• A placement routability refinement flow which is independent of
any placer and router

• A more refined and directional module shifting model

• A longest-path computation method aiding fast runtime of module
shifting

• A congestion-driven global swap technique by weighting HPWL
with congestion.

We apply CROP to refine placement solutions obtained from Fast-
Place 3.1 [13], NTUplace3 [14], mPL6 [15] and R-NTUplace3 [4], on
ISPD05/06 benchmarks [1] [2]. The results reveal that CROP effec-
tively reduces congestion within a very short runtime. For instance,
before applying refinement, there are 6, 11, 13 and 11 unroutable place-
ment solutions for FastPlace3.1, NTUplace3, mPL6 and R-NTUplace
respectively. With CROP, the number is reduced to 1, 1, 4 and 1.

The rest of paper is organized as follows: Section 2 provides prelimi-
naries on global routing and general flow of CROP. Section 3 introduces
the details of congestion-driven module shifting technique. Section 4
explains congestion-driven detailed placement. In Section 5, we make
comparison for results on ISPD05/06 Benchmarks and conclusion will
be made in Section 6.

2. PRELIMINARIES

In this section we will introduce some terminology and present the
overview of CROP. We will also talk about the congestion estimation
method that guides CROP.

2.1 Motivation

The placement region is partitioned into a set of G-Cells to perform
global routing. The G-Cells are illustrated in Figure 2. The global rout-
ing will be performed across the boundaries between adjacent G-Cells.
In the global routing grid graph, each G-Cell will be represented by
a node and each G-Cell boundary will be represented by an edge be-
tween two nodes, which is referred to as global routing edge. If the
usage Ue is over capacity Ce for any edge e, the overflow is calculated
as Oe = Ue − Ce. If there is no congested edge, then the design is
routable in global routing stage.

To improve the routability, the first method is to supply more routing
resources, or in other words, to increase global routing capacities. The

hTile
=10

w=1 s=1

(a) (b)

Figure 2: An illustration of G-Cells and global routing across G-Cell

boundary.

global routing edge capacity is proportional to the length of the G-Cell
boundary. For instance, in Figure 2, the highlighted G-Cell boundary
has a capacity of 5. The capacity equals hTile

w+s
, where hT ile, w and s

denote the height of G-Cell, wire width and wire spacing respectively. It
motivates our congestion-driven module shifting technique by reshaping
each G-Cell for better allocating routing resources. The second method
for routability improvement is to reduce routing demands. We proposed
the congestion-driven detailed placement to compensate the wirelength
loss at the module shifting stage and further improve routability. The
two techniques will be discussed in Section 3 and Section 4 respectively.

2.2 CROP Flow

Congestion-Driven
Module Shifting

Congestion-Driven
Detailed Placement

Vertical Shifting

Horizontal Shifting

Vertical Shifting

Horizontal Shifting

Congestion-Driven
Global Swap

Overflow
Improved?

Y

N

Input
Legalized
Placement

Output
Legalized
Placement

Legalization

Vertical Swap

Local Reordering

Figure 3: Algorithm flow.

The flow of CROP is illustrated in Figure 3. The input design is a le-
galized mixed-size placement solution. We first apply congestion-driven
module shifting to adjust the position of modules by resizing G-Cells.
The module shifting is performed in a directional manner, which means
X and Y direction is individually processed. After two rounds of mod-
ule shifting, the post-shifting placement solution will be legalized. Then
congestion-driven detailed placement will be called to further improve
the solution quality. The above process will be repeatedly applied until
the solution gets stable. Normally it only takes two to three iterations to
end the process.

2.3 Congestion Estimation

Previous congestion estimation methods could be roughly grouped
into two categories, bounding box based or global routing based. Usu-
ally the bounding box method is a very rough way for measuring con-
gestion since no routing structure is constructed. The global routing
based estimation, on the other hand, constructs routing topology. So it

is sometimes referred to as topology based estimation. Usually simple
pattern routing such as L/Z routing is applied.

In this paper, we use global routing as congestion estimator. Never-
theless, in addition to using the simple L/Z pattern routing, we incor-
porate the fast and more accurate 3-bend routing. The 3-bend routing
technique was proposed in FastRoute 4.0 [16]. It has been shown in [16]
that the time complexity of 3-bend routing is O(mn) for a net spanning
a region of m×n G-Cells, which is as fast as Z routing. Besides the fast
computing time, it is more flexible in choosing routing paths as it allows
necessary detours. The rendered routing solution will be more close to
the final solution and thus more accurate.

In CROP, both congestion-driven module shifting and congestion-
driven detailed placement are guided by global routing. It is applied be-
fore each round of vertical shifting, horizontal shifting and congestion-
driven global swap.

3. CONGESTION-DRIVEN MODULE SHIFTING

In this section, we will discuss the congestion-driven module shifting
method for moving standard cells and big macros. As discussed before,
we first shift the boundary of each G-Cell, and then update the module
positions accordingly. In the following subsections, we first formulate
LPs of X and Y directions for resizing each G-Cell. Then we show
that the LPs can be relaxed and solved by a more efficient longest-path
computation. Module updating method and our approach to handle big
macros will also be discussed in details.

3.1 Resizing G-Cells by Linear Programming

We will formulate linear program for resizing G-Cells to accomodate
routing usage. To facilitate the formulation, let’s first assume each mod-
ule (Mk) is a standard cell (with smaller area than G-Cell) for the time
being.

Figure 4: Notation for the LP formulation.

We first partition the placement region into m × n G-Cells. Let Bi,j

represents each G-Cell, where i (i ∈ {1, ..., m}) denotes the row and
j (j ∈ {1, ..., n}) denotes the column. We introduce coordinate vari-
ables for each of the G-Cell boundary. For Bi,j , let xi,j and xi,j+1

denote the x-coordinate for left boundary and right boundary respec-
tively. And likewise yi,j and yi+1,j denote the y-coordinate for bottom

boundary and top boundary respectively. There are m × (n + 1) x-
variables and (m + 1) × n y-variables. We use ul

i,j , ur
i,j , ub

i,j and
ut

i,j to represent the global routing usage across left, right, bottom and
top boundary for Bi,j . We also introduce H , W , hT ile and wTile to
denote height of placement region, width of placement region, original
height of G-Cell and original width of G-Cell.

Without loss of generality, we only consider the horizontal shifting
of vertical boundaries. Similar equations can be derived for the vertical
shifting case.

max : σ
s.t.

xi,j+1 − xi,j ≥ σ × MAX(f−1(ub
i,j), f

−1(ut
i,j)) ∀i, j (1)

0 ≤ σ ≤ 1 (2)

xi,j+1 − xi,j ≥
P

k∈Bi,j
area(Mk)

hT ile
∀i, j (3)

|xi,j − xi+1,j | ≤ C ∀i, j (4)

0 ≤ xi,1 ∀i (5)
xi,n+1 ≤ W ∀i (6)

Then we will explain each of the constraints.
• Routability Constraints (Equations 1 and 2)

As we mentioned in Section 2, routing capacity is proportional to the
length of G-Cell boundary. Ideally, if each G-Cell is sufficiently large,
there would be no congestion because each G-Cell boundary is capa-
ble of holding the crossing routing wires. In the routability constraints,
xi,j+1 − xi,j represents the width of Bi,j . On the right hand side,
f−1(u) is the inverse function of f(l), which maps G-Cell boundary
length l to routing capacity. So f−1(u) is the function translating the
given usage to sufficient length of boundary. In particular, f(l) is given
in Equation 7.

f(l) = gB × (
l

p
× gL +

l

p
× (layer − 1)) (7)

p is wire pitch (width plus spacing), layer represents number of 3D
routing layers for vertical direction. gB is the guard band coefficient
and gL is the ground layer reduction coefficient. Our Length-Capacity
model is borrowed from the ISPD07/08 Global Routing Contest [17]
[18].

However, if the placement solution is very congested, the routability
constraints may be too hard to satisfy. In other words, the formulated
LP might be infeasible. Therefore we place a relaxing variable σ in
the routability constraints. σ here can be viewed as a scaling factor
over original constraint. The value of σ is bounded between 0 and 1.
When σ is 1, we do not relax the constraints. With smaller σ value, the
routability constraints become less restrictive.

• G-Cell Area Constraints (Equation 3)
These constraints ensure that each G-Cell has enough space to hold the
modules inside. Otherwise, it would create huge overlaps between mod-
ules when the non-congested G-Cells shrink excessively. In the formu-
lation, since we consider shifting in X direction, the height of G-Cell is
fixed.

• Movement Constraints (Equation 4)
The input design has already been a legalized placement solution. It is
necessary not to disturb the original placement too much. Hence we in-
troduce movement constraints to restrict the shifting between adjacent
G-Cell boundaries. In the equations, C is a constant which represents
the degree of flexibility of moving adjacent G-Cell boundaries. In ex-
periment we set C to be 0.5×wTile. Because of the absolute sign, it
can be expanded as follows,

xi+1,j − xi,j ≥ −C ∀i, j (8)
xi,j − xi+1,j ≥ −C ∀i, j (9)

• Placement Region Constraints (Equations 5 and 6)
Finally, these constraints ensure that all the boundaries should be within
the placement region. Note that the other constraints (e.g., G-Cell area
constraints) implicitly guarantee that xi,j ≤ xi,j+1 for j ∈ {1, . . . , n}.

3.2 Longest Path based Solution

The LP is expensive in terms of solving time. Next we will introduce
a technique based on longest path to solve it efficiently.

When we investigate the proposed LP in Section 3.1, we find that if
σ is fixed, the LP becomes a feasibility check problem (only has con-
straints). Since Equations 1,3,8 and 9 are all difference constraints, we
propose the following strategy to solve the LP. We use an outer loop
which keeps decreasing σ until the LP is feasible. Inside the loop, for a
fixed σ, we check feasibility by longest path computation. If infeasible,
the longest path solution will suggests how σ should be decreased.

Let’s first assume σ is fixed. The feasibility of the constraints can be
checked by performing a longest path computation on a directed graph
called G-Cell boundary graph(B-graph) G(V, E). Each G-Cell bound-
ary associated with xi,j is represented by a vertex vi,j ∈ V . Each dif-
ference constraint in the form xd − xs ≥ Q is represented by a directed
edge e ∈ E pointing from vs to vd with a cost ‖e‖ of Q. To distinguish

different edge types, we name Er , Ea and Em for the set of edges in-
curred by routability constraints, G-Cell area constraints and movement
constraints respectively. Figure 5 illustrates an example of B-graph with
the three types of edges. The longest path distance to vi,j from the ver-
tices associated with the leftmost boundaries of the placement region is
the minimum value of xi,j that satisfies Equations 1,3,5,8 and 9. So
the feasibility of the constraints can be determined by checking whether
xj,n+1 ≤ W for all i (Equation 6).

Figure 5: Convert the G-Cell boundary into B-graph.

We observe that the proposed B-graph contains directed cycles. The
directed cycles are caused by movement edges (Em), which are used
to control the disturbance of original placement. However, as suggested
by [19] , it’s NP-Complete to find the longest path for a graph with
directed cycles. The neat longest path algorithm cannot be applied in
this case.

The issue can be resolved by introducing the diagonal edges Ed to
replace the hard-to-handle movement edges. Diagonal edges are an al-
ternative method of maintaining original placement solution. Figure 6
illustrates the idea. We merge the perpendicular edges (e1 and e2) and
replace e1 with the diagonal edge (e3). Note that here e2 represents the
longer one of area edge and the routability edge. The cost of a diag-
onal edge is the total cost of the perpendicular edges, which is to say,
‖e3‖ = ‖e1‖ + ‖e2‖.

e1

e2

e3

Figure 6: Replace movement edges with diagonal edges to facilitate longest

path computation.

After replacing the movement edges with diagonal edges, the B-graph
has become a DAG. Now we are able to perform longest path computa-
tion. It can be done very effecitvely by a fast scanning of each vertex in
B-graph according to the topological order.

Next we will discuss the outer loop for determining the maximized σ
to solve the LP. Initially σ is set to 1. If the resulting longest path length
Lp = MAXi=1,...,m(xi,n+1) is larger than W, we reduce σ to scale the
current longest path into placement region. Suppose L represents set of
edges along the longest path. We divide the edges along the longest
path L into two parts: hard edge EL

h = (Ea ∪ Ed) ∩ L; and soft edge
EL

s = Er ∩ L. Lh =
P

e∈EL
h
‖e‖ and Ls =

P
e∈EL

s
‖e‖. To scale

Lp inside fixed outline W , we have s × Ls + Lh = W . Therefore
s = (W − Lh)/Ls. Each iteration σ will be scaled by a scaling factor
s to configure the soft edges into fixed outline. But we may not be able
to compact all paths into fixed outline at one time. Some other path may
still be longer than W even after scaling. Hence the scaling in the outer
loop will be performed iteratively until all the paths fit into the fixed
outline (Lp = W). The algorithm terminates in at most m iterations
because xi,n+1 for at least one more i will become less than or equal to
W in each iteration. In practice, it usually takes less than 10 iterations.
Figure 7 shows our complete algorithm to solve the LP.

Algorithm for solving the LP
Input: B-graph G(V,E)
Output: Maximized σ
begin

σ = 1
while(1)

Perform Longest-path algorithm
Lp = MAX(xi,n+1) ∀i
if(Lp ≤ W)

Break
else

σ = σ × W−Lh
Ls

end while
end

Figure 7: The longest path algorithm and iterative scaling for deciding

boundary locations

Up till now, we have discussed the algorithm for solving the resizing
problem by longest path based solutions. And our algorithm assumes
xi,1 = 0 ∀ i. However, the potential problem for such assumption is
it will result in packing the design to left bound. Please refer in Fig-
ure 8, the front curve of spreading G-Cell boundaries under the longest
path computation would be maintained after the scaling. The placement
will be compacted excessively for less congested regions. To resolve
this problem, we assume xi,n+1 = W ∀i, and make xi,1 ≥ 0 as the
feasibility check. In this way, we could obtain two sets of x-coordinate
for each G-Cell boundary, let’s say xl

i,j and xr
i,j . Actually the two sets

of solution represents the two extreme cases in which the design is ei-
ther packed to left or right. We thus name the two coordinates as valid
range and the valid range will be used in determining the new boundary
coordinates. Let Xi,j denote the original G-Cell boundary coordinate
(Xi,j = (j − 1) × wTile). If Xi,j is within the valid range, it means
the resulting packing is not too tight for both cases, and we will not
move the boundaries (xi,j = Xi,j). Otherwise, we move boundaries to
the closer of xl

i,j or xr
i,j .

xi,j =

(
xr

i,j if Xi,j > xr
i,j

xl
i,j if Xi,j < xl

i,j
Xi,j otherwise

(10)

Figure 8: Problem of compacting design to left

3.3 Module Relocation

After adjusting each G-Cell boundary, the modules inside each G-Cell
will be shifted based on the new G-Cell boundary coordinates. CROP
updates the module location by maintaining the same raio of distance
to both boundaries after G-Cell boundary adjustment. As illustrated in
Figure 9, L1 and R1 is the original distance between center of module
m to left boundary and right boundary respectively. The module will be
relocated such that L1/R1 = L2/R2.

Figure 9: Module shifting illustration.

3.4 Macro Block Handling

In the traditional design flow, macro blocks and IP blockages are first
placed and fixed. Then the standard cells are filled within the "gaps"
between the blockages. Usually, certain amount of routing resources
will be reserved for inner routing. The existence of big macros make
the routability issue more complicated. Hence we need to extend our
method of handling standard cells to handling mixed-size placement so-
lution. In order to explore larger possibility of congestion reduction, in
this paper we will assume all the macros are movable

The way we handle big macro shifting is similar as what we have
discussed for standard cells. As in Figure 10, CROP merges the G-Cells
that are covered or partially covered by the big macro M . The merged
G-Cell is named super G-Cell. Likewise, in the B-graph, we merge
vertex along the super G-Cell boundary and delete those inner nodes.
Two factors need be considered for the macro shifting.

Figure 10: Merging of G-Cells for macro blocks.

First, in VLSI routing, certain amount of routing resources above big
macros will be reserved for inner routing purpose. This is also referred
to as block porosity effect. To cope with block porosity, we increase the
cost of the corresponding routability edges (Er) in B-graph to compen-
sate the capacity loss. In our experiment, we stick with the porosity re-
duction ratio used in generating ISPD07/08 global routing benchmarks.

Second, although the overlapping between standard cells is permissi-
ble, big macros need be kept apart from each other. Therefore, we place
additional edges in the B-graph for guaranteeing the non-overlapping
property between big macros.

4. CONGESTION-DRIVEN DETAILED PLACE-

MENT

Detailed placement (DP) is commonly applied after global place-
ment to improve HPWL for legalized placement solution. We develop
a congestion-driven DP technique based on FastDP [20]. The flow of
our proposed DP is shown in Figure 3. We only make global swap to
be congestion-aware. The vertical swap and local reordering are very
local and contribute little to congestion reduction, so we still keep them
HPWL targeted.

4.1 Congestion-Driven Global Swap for 2-pin Nets

Global swap exchanges modules to improve HPWL based on a greedy
pairwise position exchange. In [20], global swap is the stage contributes
most to the reduction of HPWL. However, HPWL hardly reflects routabil-
ity, especially when cells are swapped into highly congested regions.
Hence, we change the swapping evaluation function incorporating the
congestion component. The HPWL is weighted by the congestion fac-
tor of αn for net n. Simply put,

rHPWLn = HPWLn × αn (11)

Then the global swap will be guided by the congestion weighted HPWL.
If we swap standard cell A with standard cell B, the gain after swap-
ping should be, GainA−B =

P
n∈NA

(rHPWLn − rHPWL′
n) +P

n∈NB
(rHPWLn − rHPWL′

n). where NA and NB are the sets
of nets that A and B are connecting to. rHPWL′

n is the new cost after
tentative swapping.

Now we discuss how to set αn in CROP. For simplicity, let’s first con-
sider 2-pin nets. The straightforward approach, for instance, is to cal-
culate the average congestion inside the bounding box. But this method
is too rough to be reliable. So alternatively, we turn to incorporate a
more accurate model instead of simply lumping congestion together.
The method we propose is to enumerate all possible Z routing paths in-
side the bounding box and calculate αn by the average congestion along
all the paths. Hence,

αn =
wtol

E
=

P
p∈P

P
e∈p w(e)

E
(12)

In the equation, P is the set of all Z routing paths inside the bounding
box. e represents each global routing edge along path p. E is the total
number of global edges for all paths, and w(e) is the weight of edge e.
wtol represents the sum of weight. w(e) is calculated by Equation 13. If
there is overflow, the weight will be increased quadratically. The fact we
set the weight to 1 for non-congested edges means we keep penalizing
wirelength. Or it may end up prolonging the wirelength significantly.

w(e) =

j
1 if Oe = 0

(Ue/Ce)
2 if Oe > 0

(13)

4.2 Speedup Technique based on Look-up Tables

The proposed method in Sec. 4.1 would be very expensive in terms
of runtime, since we need to add up edge weights along all Z paths.
For a p × q sized 2-pin net bounding box, the time complexity would
be O((p + q)2). In order to speed up the summing of total weight, we
propose a look-up table method.

12345

11111

11111

54321

Pin 1

Pin 2

(x1,y1)

(x2,y2)

Figure 11: Number of Z routing paths passing through each horizontal

global routing edge.

We let wtol = wh + wv , where wh is the total weight of horizontal
global edges and vice versa for wv . Without loss of generality, let’s
discuss the calculation of wh. Similar results can be derived for wv .
Figure 11 illustrates a 2-pin net in global routing grid graph. Let eh

i,j

denotes each horizontal global routing edge in the global routing grid
graph. We mark the number of Z routing paths passing through each
horizontal global routing edge. Suppose the coordinates are (x1, y1)
and (x2, y2) for pin 1 and pin2 respectively. As suggested by Figure
11, wh = w1 + w2 + w3, where w1 =

Px2−1
j=x1((x2 − j) × w(eh

y1,j),
w2 =

Py2−1
i=y1+1 w(eh

i,j), and w3 = (j − x1 + 1) × w(eh
y2,j).

We introduce five m× n tables, T1, T2, T3, T4 and T5. Each entry
in the table corresponds to one grid point in the routing grid graph. The
meaning of entry (r, c) for each table is summeried in Table 1.

T1 T1(r,c) =
P

j={1,...,c−1} w(eh
r,j)

T2 T2(r,c) =
P

j={c,...,n−1} w(eh
r,j)

T3 T3(r,c) =
P

j={1,...,c−1}(c − j) × w(eh
r,j)

T4 T4(r,c) =
P

j={c,...,n−1}(j − c + 1) × w(eh
r,j)

T5 T5(r,c) =
P

i={1,...,c−1},j={1,...,r} w(eh
i,j)

Table 1: Notation of look-up tables.

Based on the notations in Table 1, w1 = T4(x2,y1) − T4(x1,y1) −
(x2 − x1) × T2(x1,y1), w2 = T3(x1,y2) − T3(x2,y2) − (x2 − x1) ×
T1(x2,y2), and w3 = T5(x2,y2) − T5(x1,y2) − T5(x2,y1) + T5(x1,y1).

With the help of five look-up tables, the computing of wtol can be done
very efficiently. Now the time complexity is O(1).

All the proposed tables can be constructed very efficiently by dynamic
programming. In Table 2, we also show how dynamic programming is
performed. Basically, the computing of current entry can be broken into
subproblems using the value of entry that has already been computed.

T1 T1(r,c) = T1(r,c−1) + w(eh
r,c)

T2 T2(r,c) = T2(r,c+1) + w(eh
r,c)

T3 T3(r,c) = T3(r,c−1) + T1(r,c)

T4 T4(r,c) = T4(r,c+1) + T2(r,c)

T5 T5(r,c) = T5(r,c−1) + T5(r−1,c) − T5(r−1,c−1) + w(eh
r,c)

Table 2: Apply dynamic programming to construct look-up tables.

4.3 Multi-pin Nets Handling

We have discussed our method for weighting congestion for 2-pin
nets. But in real design, many nets are multi-pin nets. Without knowing
the exact routing path and topology, it is not easy to weight the conges-
tion for a multi-pin net. Hence we derive the multi-pin net weighting
model in a simple way. Suppose the investigated module m has multi-
pin connection. Suppose the multi-pin net without m forms a bounding
box BBox. If m is within BBox, we igore weighting process. Other-
wise we just introduce a 2-pin net from m to the nearest pin in BBox.
With this simple method, module m will only has 2-pin connections.

5. EXPERIMENTAL RESULTS

All our experiments are performed on a machine with 2.4GHz AMD
Opteron processor and 4G of memory. We run the experiments on 14
ISPD05/06 Benchmarks [1] [2]. The way we derive the global routing
grid from the placement solution follows the rule of ISPD07/08 global
routing contest benchmarks [17] [18]. But we adjust some capacity pa-
rameters to make them harder to route.

5.1 Effectiveness of Proposed Techniques

In this subsection we show the effectiveness of our techniques for
routability improvement on design adaptec3 and bigblue1 generated by
routability-driven NTUplace (R-NTUplace) [4] in Table 3. The over-
flow is the global routing result obtained from the technique mentioned
in Section 2.3. First, the total overflow is consistently improved after
each round of shifting. Second, the shifting in one direction will in-
troduce congestion overhead. For instance, when we shift modules in
the X direction, the horizontal overflow becomes worse. The overhead
comes from the extra wirelength. However, the overhead is smaller than
the gain, which attributes to the movement constraints in our LP for-
mulation. Third, the placement solution during module shifting is not
legalized. The congestion data cannot be fully trusted. Hence, we also
show the overflow after congestion-driven global swap, when the de-
sign has been legalized. It shows that the congestion is improved over
the original one, which better indicates the effectiveness of congestion
reduction of proposed techniques in CROP.

adaptec3 bigblue1
H V Total H V Total

o.f. o.f. o.f. Legal? o.f. o.f. o.f. Legal?
Before 53428102804156232 Y 505313440984940 Y

Y shifting 40283103637143920 N 253204562870948 N
X shifting 41168 93149 134317 N 312752152552800 N
Y shifting 34239 96298 130537 N 233063170355009 N
X shifting 37295 90350 127645 N 270251941946444 N

Legalization 42548 93122 135670 Y 282232014548478 Y
Global Swap32335 81013 113348 Y 172381709434322 Y

Table 3: Congestion reduction during module shifting

5.2 ISPD05/06 Benchmarks

In this subsection we show the full experimental results on 14 sets
of ISPD05/06 mixed-size placement benchmarks. Most of these bench-
marks have a lot of fixed macros. As we mention in Section 3.4, in order
to explore a larger possibility of improving routability, we assume the
fixed macros are movable. However, we discover that the actual distur-
bance is not huge compared with the original design. We apply CROP
for the legalized placement solutions generated by FastPlace3.1 [13],
NTUplace3 [14], mPL6 [15], and R-NTUplace [4]. Note that here we
use the full global router to measure the routability, not the global rout-
ing mentioned in Section 2.3. FastRoute 4.0 [16] is utilized to do the
full routing. We also tried other routing tools such as NTHURouter [21]
etc. and they report similar results. The reason for choosing FastRoute
4.0 is it runs comparably faster than other available routing tools. It is
noted that the final evaluation of routability should be detailed routing.
In our paper, we just consider the global routing stage as the routability
indicator.

Table 4 shows our results in detail. For each placer, we show the
routing results before and after applying our tool. The entry with "/"
means the original placement has already been routable so we do not
apply CROP. Before applying our tool, there are 6, 11, 13, and 11 un-
routable cases for FastPlace3.1, NTUplace3, mPL6 and R-NTUplace
respectively. After applying CROP, the number is reduced to 1, 1, 4 and
1. Please note that newblue3 is proved to be unroutable. Hence, CROP
is very effecitve in reducing congestion.

We also report the CROP execution runtime in Table 4. The runtime
of our tool is trivial comparing with original placement runtime. For
instance, the total runtime to process 14 benchmarks by mPL6 on our
platform is more than 24 hours. While the total execution time of CROP
is around one hour. Noticeably, the saved runtime in the routing is sig-
nificant. For mPL6, the speed-up of routing time is 7× on average.

Another aspect for evaluating CROP is the routed wirelength. Af-
ter applying CROP, the total wirelength are 0.5% better, 1% better,
0.5%worse and 5% better for FP3.1, NTUplace3, mPL6 and R-NTUplace
respectively. Generally speaking, the routed wirelength is on the same
level with original design. But in many cases, we notice the routed
wirelength becomes better. The reason is the new placement solution is
easier to route, such that the router does not need to make huge detours
and eventually saves the wirelength.

In Figure 12, we show the congestion plot of bigblue1 generated by
NTUplace3 before and after applying CROP. The congested region is
shown by the red color. Obviously, CROP effectively alleviates the con-
gestion problem.

Figure 12: Congestion plot of bigblue1 before and after CROP

6. CONCLUSION

In this work, we have presented CROP to improve routability for
placement solution as a refinement process. Our tool is independent of
any placer and router. The main techniques involves congestion-driven
module shifting and congestion-driven detailed placement. CROP pro-
duces promising results for various placement tools. We will further
improve its performance and stability.

7. REFERENCES
[1] ISPD05 placement contest benchmarks.

http://www.sigda.org/ispd2005/contest.htm.

Metrics Tools a1 a2 a3 a4 a5 b1 b2 b3 n1 n2 n3 n4 n5 n6
w/o / 1260 4 / / 18755 769 / / / 9642 / 46 /

FP3.1 w / 0 0 / / 0 0 / / / 9019 / 0 /
w/o 2885 2369 1621 141 / 15896 19793 15259 / 60 9442 3394 / 8

Routing NTUPlace3 w 0 0 0 0 / 0 0 0 / 0 8480 0 / 0
Overflow w/o 20 18535 22539 5703 7307 46995 1736 4678 / 9 8835 5649 12475 4495

mPL6 w 0 11289 660 0 0 0 0 0 / 0 8405 285 0 0
w/o 51 2849 94 20 16 12887 38616 2264 / 898 10065 385 / /

R-NTUplace w 0 0 0 0 0 0 0 0 / 0 8551 0 / /
FP3.1 / 92 200 / / 73 193 / / / 297 / 406 /

CROP NTUplace3 70 98 238 227 / 70 308 453 / 203 270 198 / 487
CPU mPL6 75 143 374 279 506 92 229 472 / 216 366 272 630 292

(second) R-NTUplace 65 97 272 216 301 66 224 690 / 225 256 189 / /
FP3.1 / 2 2 / / 2 2 / / / 2 / 2 /

CROP NTUplace3 2 2 2 2 / 2 3 2 / 2 2 2 / 2
iterations mPL6 2 2 3 2 3 2 3 2 / 2 2 2 3 2

R-NTUplace 2 2 2 2 2 2 2 3 / 2 2 2 / /
w/o / 280 223 / / 1492 1042 / / / 13331 / 154 /

FP3.1 w / 34 107 / / 39 282 / / / 13832 / 32 /
w/o 2031 311 1096 389 / 1945 2517 2692 / 362 12726 1271 / 1088

Routing NTUplace3 w 144 20 101 26 / 46 87 80 / 28 13006 68 / 78
CPU w/o 420 1478 6795 2859 2927 1941 448 2397 / 131 13661 2329 5756 6085

(second) mPL6 w 58 974 1066 42 202 75 256 69 / 23 13554 1581 200 155
w/o 642 311 975 248 531 1619 3869 6439 / 933 12801 515 / /

R-NTUplace w 101 17 108 24 47 41 303 136 / 31 13079 25 / /
w/o / 0.31 0.85 / / 0.27 0.47 / / / 0.81 / 1.70 /

FP3.1 w / 0.31 0.85 / / 0.26 0.48 / / / 0.84 / 1.65 /
w/o 0.30 0.30 0.84 0.71 / 0.28 0.47 0.83 / 0.46 0.74 0.81 / 0.95

Routed NTUplace3 w 0.29 0.30 0.82 0.72 / 0.28 0.47 0.79 / 0.45 0.74 0.78 / 0.92
Wirelength w/o 0.27 0.32 0.89 0.71 0.79 0.27 0.52 0.79 / 0.45 0.77 0.77 1.29 1.0
(×10e7) mPL6 w 0.26 0.32 0.85 0.72 0.77 0.26 0.54 0.77 / 0.45 0.77 0.78 1.40 0.96

w/o 0.30 0.30 0.87 0.74 0.97 0.28 0.51 0.91 / 0.48 0.77 0.83 / /
R-NTUplace w 0.29 0.30 0.83 0.73 0.86 0.27 0.49 0.84 / 0.46 0.76 0.79 / /

Table 4: CROP results on ISPD05/06 Benchmarks

[2] ISPD06 placement contest benchmarks.
http://www.sigda.org/ispd2006/contest.htm.

[3] P.Spindler and F.M.Johannes. Fast and accurate routing demand
estimation for efficient routability-driven placement. In Proc.
Conf. on Design, Automation and Test in Europe, pages
1226–1231, 2007.

[4] Z.Jiang, B.Su, and Y.Chang. Routability-driven analytical
placement by net overlapping removal for large-scale mixed-size
designs. In Proc. ACM/IEEE Design Automation Conf., pages
167–172, 2008.

[5] K.Tsota, C.Koh, and V.Balakrishnan. Guiding global placement
with wire density. In Proc. Intl. Conf. on Computer-Aided Design,
pages 212–217, 2008.

[6] X.Yang, B.Choi, and M.Sarrafzadeh. Routability-driven white
space allocation for fixed-die standard-cell placement. IEEE
Trans. on Computer-Aided Design and Integrated Circuits and
Systems, 22(4):410–419, April 2003.

[7] C.Li, M.Xie, C.Koh, J.Cong, and P.Madden. Routability-driven
placement and white space allocation. IEEE Trans. on
Computer-Aided Design and Integrated Circuits and Systems,
26(5):167–172, May 2008.

[8] U.Brenner and A.Rohe. An effective congestion-driven placement
framework. In Proc. ACM/SIGDA Intl. Symp. on Physical Design,
pages 6–11, 2002.

[9] M.Pan and C.Chu. IPR: An integrated placement and routing
algorithm. In Proc. ACM/IEEE Design Automation Conf., pages
59–62, 2007.

[10] M.Pan and C.Chu. FastRoute 2.0: A high-quality and efficient
global router. In Proc. Asia and South Pacific Design Automation
Conf., pages 250–255, 2007.

[11] N.Viswanathan and C.Chu. FastPlace: efficient analytical
placement using cell shifting, iterative local refinement and a
hybrid net model. In Proc. ACM/SIGDA Intl. Symp. on Physical
Design, pages 26–33, 2004.

[12] J.Roy and I.L.Markov. Seeing the forest and the trees: Steiner
wirelength optimization in placement. IEEE Trans. on
Computer-Aided Design and Integrated Circuits and Systems,
26(4):632–644, April 2007.

[13] N.Viswanathan, M.Pan, and C.Chu. FastPlace 3.0: A fast
multilevel quadratic placement algorithm with placement
congestion control. In Proc. Asia and South Pacific Design
Automation Conf., pages 135–140, 2007.

[14] T.Chen, Z.Jiang, T.Hsu, H.Chen, and Y.Chang. NTUplace3: An
analytical placer for large-scale mixed-size designs with
preplaced blocks and density constraints. IEEE Trans. on
Computer-Aided Design and Integrated Circuits and Systems,
27(7):1228–1240, July 2008.

[15] T.F.Chan, J.Cong, M.Romesis, J.R.Shinnerl, K.Sze, and M.Xie.
mPL6: a robust multilevel mixed-size placement engine. In Proc.
ACM/SIGDA Intl. Symp. on Physical Design, pages 227–229,
2005.

[16] Y.Xu, Y.Zhang, and C.Chu. FastRoute 4.0: Global router with
efficient via minimization. In Proc. Asia and South Pacific Design
Automation Conf., pages 576–581, 2009.

[17] ISPD07 global routing contest benchmarks.
http://www.sigda.org/ispd2007/contest.htm.

[18] ISPD08 global routing contest benchmarks.
http://www.sigda.org/ispd2008/contest.htm.

[19] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. Freeman, NY, 1979.

[20] M.Pan, N.Viswanathan, and C.Chu. An efficient and effective
detailed placement algorithm. In Proc. Intl. Conf. on
Computer-Aided Design, pages 48–55, 2005.

[21] Y.Chang, Y.Lee, and T.Wang. NTHU-Route 2.0: A fast and stable
global router. In Proc. Intl. Conf. on Computer-Aided Design,
pages 338–343, 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

