
GREMA: Graph Reduction Based Efficient Mask
Assignment for Double Patterning Technology

Yue Xu
Electrical and Computer Engineering

Iowa State University
Ames, IA 50011

yuexu@iastate.edu

Chris Chu
Electrical and Computer Engineering

Iowa State University
Ames, IA 50011

cnchu@iastate.edu

ABSTRACT
Double patterning technology (DPT) has emerged as the
most hopeful candidate for the next technology node of the
ITRS roadmap [1]. The goal of a DPT decomposer is to
decompose the entire layout on each layer onto two masks.
It assigns two features to different masks if their spacing
is less than a predefined threshold. Besides, some features
must be sliced and put onto two masks so that there would
be a feasible solution for mask assignment. Such slicing will
cause stitches that affect yield. So decomposer needs to
minimize their number.

In this paper, we formulate the DPT decomposition prob-
lem as a maximum cut problem. We propose an extremely
efficient two-stage decomposition algorithm called GREMA.
The first stage of GREMA generates a set of candidate
stitches to ensure that feasible solutions exist for DPT de-
composition. The second stage uses maximum cut to find
the minimal set of stitches. Our decomposer is able to solve
much larger realistic design problems. Experiments demon-
strated that GREMA achieved great performance on resolv-
ing conflicts with greatly reduced runtime.

1. INTRODUCTION
As the feature size of modern VLSI design continues to

shrink and the image of photoresist patterns starts to blur
at 45nm technology, previous lithography technology be-
comes obsolete for sub-32nm technology. Due to the delay
of the high index fluids immersion technology and Extreme
Ultra Violet (EUV) technology, double patterning technol-
ogy (DPT) [2] [3] [4] [5] has become one of viable lithog-
raphy techniques for the 32nm node. Double patterning
process uses two independent rounds of exposure and etch-
ing to form patterns on silicon wafer for each layer. Patterns
on each layer are assigned to two masks. DPT can relax the
minimum pitch of a circuit layout for individual decomposed
exposure. This relaxation requires DPT decomposer to put

1This work was partially supported by IBM Faculty Award
and NSF under grant CCF-0540998.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD ’09, November 2-5, 2009, San Jose, California, USA
Copyright 2009 ACM 978-1-60558-800-1/09/11 ...$10.00.

a pair of patterns onto different masks if the minimum dis-
tance between them is less than a predefined DPT threshold,
which is commonly set as twice the minimum spacing. While
some works uses Euclidean distance spacing rules, some oth-
ers, [6] and [7], use Manhattan distance spacing rules. In this
paper, we use the latter type of rules.

We define DPT conflict between a pair of nearby pat-
terns as the necessity for putting the patterns onto different
masks. The entire set of conflicts needs to be resolved by as-
signing conflicting patterns onto different masks. However,
due to the complex geometric relationship among patterns,
successful decomposition usually could not be achieved. We
define it as infeasibility because the initial layout is infea-
sible for DPT decomposition. Usually, infeasibility can be
resolved by slicing single patterns and assigning sliced parts
on to different masks. We call each slicing a candidate stitch.
Resolving infeasibility by slicing patterns does not come free,
it may generate stitches. Stitches tend to induce pinching or
bridging that can affect yield so decomposition algorithms
should generate as few stitches as possible to keep yield at
a reasonable level. Thus, an optimal solution for double
patterning decomposer is a conflict-free decomposition with
minimal stitches.

DPT has already been successfully applied to DRAM man-
ufacturing [2]. However, for random logics, one critical stage
in the integration of DPT into current design flow is the
automation of double patterning decomposition. Chiou et
al. [8] categorize the DPT decomposition methodology into
two types: model-based approach and rule-based approach.
The more accurate model-based decomposition approach is
based on optical simulation. It suffers from the extreme long
runtime that makes it impractical for full-chip implementa-
tion. Meanwhile, the rule-based approach slices and assigns
patterns based on geometric relationship between patterns.
Thus it can achieve better efficiency.

There are limited works focusing on the decomposition al-
gorithms. Recent publications, [8] [7] [9] [10] and [11], all use
rule-based methods. [8], [7] and [9] use heuristics to greedily
slice and assign patterns to resolve local conflicts and infea-
sibility. We find that the previous heuristic methods tend
to narrowly focus on local pattern conflicts and overlook se-
quence of conflicts that exists on a larger scale. As a result,
they either suffer from the inability of resolving all conflicts
or lead to an unnecessarily large number of stitches.

On the other hand, Yuan et al. [10] formulate DPT de-
composition problem as a 2-coloring problem and pre-slice
patterns into squares with a side length of half pitch. The
slicing virtually turns the boundary of each touching square

pair into a candidate stitch. They employ ILP to resolve con-
flicts and minimize the number of stitches simultaneously.
The problem size is prohibitive so that [10] uses partition
heuristic to bring down the problem size. Although ILP-
based methods can achieve the optimal solution theoreti-
cally, the partition heuristic ruins the optimality. The main
contribution of [11] is a node splitting technique that focuses
on how to slice patterns to resolve infeasibility. Besides, the
work formulates an ILP to minimize design rule violations,
the number of stitches and to maximize the overlap length
of stitches. With a larger pre-sliced scale, it improves the
scalability of ILP-based coloring problem.

In this work, we develop a very efficient and optimal rule-
based two-stage double patterning layout decomposition tool
called GREMA. It can be integrated into current EDA tools
to generate double patterning solutions and notify designer
if infeasibility persists and requires design modification. In
the first stage, GREMA constructs a data structure called
conflict graph (CG) that captures all the DPT conflicts in
the layout. It then identifies all the infeasibility and gener-
ates candidate stitches to resolve infeasibility. By an analogy
between assigning patterns onto masks and assigning nodes
into two partitions, the second stage of GREMA models the
conflict resolving and stitch minimizing DPT decomposition
problem as a maximum cut problem in a data structure we
called decomposition graph (DG). Our key contributions are:

• We propose a two-stage scheme for DPT decompo-
sition that separates the stage generating candidate
stitches and the stage minimizing the number of stitches.

• GREMA does not use any pre-slicing technique so it
generates a smaller set of candidate stitches to resolve
the infeasibility.

• We abstract decomposition graph into a much simpli-
fied graph, called flipping graph (FG) that stores all
the information of candidate stitches.

• We propose ways to simplify FG, which greatly reduce
the problem size of our max-cut formulation.

The rest of this paper is organized as follows. Sec. 2 intro-
duces the general concepts in DPT and gives an overview of
GREMA. Sec. 3 describes the techniques to find and resolve
infeasibility. Sec. 4 shows the formulation of the mask as-
signment problem, the simplification methods and solution
for the problem. The experimental results are provided in
Sec. 5 and we conclude in Sec. 6.

2. OVERVIEW OF GREMA
As stated in Sec. 1, the primary goal of DPT decomposi-

tion is mask assignment. Due to the infeasibility in layouts,
decomposers have to introduce stitches to resolve the infeasi-
bility. The decomposition problem can be divided into infea-
sibility resolving and mask assignment. So a natural flow of
decomposer is to identify all the infeasibility, generate can-
didate stitches and do mask assignment for patterns. Fol-
lowing this nature flow, GREMA adopts a systematic two-
stage approach with careful selection of candidate stitches
and maximum cut based mask assignment.

The first stage of GREMA identifies and resolves infeasi-
bility. First, GREMA constructs conflict graph to capture
all the DPT conflicts in the layout. Then GREMA identifies

odd cycles in CG, which represents the infeasibility. Since
stitch is not necessary unless DPT decomposition infeasi-
bility exists in the layout, GREMA does not introduce any
pre-slicing that dramatically increases the problem size of
mask assignment. GREMA only generates candidate stitch
on patterns involved in infeasibility.

With candidate stitches and conflicts at hand, we formu-
late the mask assignment problem as a maximum-cut prob-
lem on decomposition graph. In DG, every node represents
a pattern or a part of sliced pattern in the layout. There are
two types of edges in DG: positively weighted conflict edge
that represent DPT conflict and negatively weighted stitch
edge that represent candidate stitch. As nodes are put into
two partitions, we want to find a cut that crosses all conflict
edges and as few stitch edges as possible. The cut we look
for is actually the maximum cut on DG. Cutting all conflict
edges is guaranteed by max-cut formulation because every
conflict edge is set to have a weight too large to ignore. With
the negative weight, the stitch edges would be avoided by
the max-cut. Hence, the number of stitches will be min-
imized. Generally, the max-cut problem for a graph with
both positively and negatively weighted edges is NP-hard.

In the second stage, GREMA optimizes the conflict re-
solving, stitch minimization mask assignment problem. Be-
cause all necessary candidate stitches are generated, nodes
connected with conflict edges can be sequentially assigned
to masks without two conflicting nodes residing on the same
mask. We denote each connected component after ignoring
all the stitch edges in DG as a cluster. GREMA abstracts
each cluster into a node and converts DG into flipping graph.
In FG, there only exists stitch edge. We call the graph flip-
ping graph because there is still freedom to flip the mask
assignment for each cluster. The cluster abstraction accom-
plishes conflict resolving and the only task left for GREMA
is stitch minimization, for which GREMA formulates a max-
imum cut problem on FG. GREMA simplifies the FG and
uses ILP to optimize the maximum cut problem.

It is worth noticing that in some situations, named as in-
trinsic infeasibility, the infeasibility persists no matter how
candidate stitches are generated. This indicates that under
design rules, the original layout cannot be DPT decomposed.
GREMA will report the patterns involved in intrinsic infea-
sibility to designers.

Conflict Graph Construction

Infeasibility Detection

Pattern Slicing

Flipping Graph Generation &
Simplification

Decomposition Output

Max-Cut Fomulation &
Optimization

Candidate Stitch Generation

Mask Assignment

Y

Infeasibility
Exists ?

N

Intrinsic Infeasibility Report

Figure 1: GREMA flow.

The flow of GREMA is illustrated in Fig. 1. First, GREMA
constructs the conflict graph based on the conflicts in the
layout. Then GREMA runs infeasibility detection algorithm
on the conflict graph, slices all suitable patterns involved in
the infeasibility and generates a set of candidate stitches. If
any intrinsic infeasibility exists, GREMA reports the pat-
terns that induce the intrinsic infeasibility. Once infeasibil-
ity is no longer an issue, GREMA generates and simplifies
the flipping graph and uses an ILP-based max-cut algorithm

to minimize the number of stitches in the final mask assign-
ment. Finally, GREMA outputs the decomposition results.

3. CANDIDATE STITCH GENERATION
We use conflict graph to capture all the DPT conflicts in

the original layout. In CG, every node represents a pattern
in the layout. Conflict edges are created between every pair
of DPT conflicting nodes. We can use CG to identify all the
infeasibility.

Looking into the conflict graph, we find that only one type
of structure represents the infeasibility. The structure is odd
cycle. We put one node in the odd cycle into one partition,
put its neighbors along the cycle into the other partition
and sequentially do the partition assignment for the rest of
the nodes in the cycle. To the end of this operation, the last
node will have its two cycle-neighbors in different partitions.
So no matter how we place the last node, there would be a
conflict edge with both of its endpoints in one partition. In
mask assignment, we would have two conflicting patterns
on the same mask, which is a violation of DPT rules. So
GREMA needs to break all the odd cycles in order to gen-
erate a valid DPT decomposition

We can break an odd cycle and resolve the infeasibility
by slicing one node in the cycle. Slicing generates two new
nodes to replace the sliced node and creates a stitch edge
between the newly created nodes. It converts a CG into
DG. Such operation represents the creation of a candidate
stitch so it is possible to assign two parts of a single pattern
onto different masks.

Ideally, we can slice just one node to break an odd cy-
cle. However, due to the lack of the entire view, randomly
choosing and slicing one pattern for each odd cycle cannot
guarantee the minimum number of stitches. For instance,
we can slice a shared node between two touching odd cycles
and the slicing will break the two odd cycles while creating
an even one. Meanwhile, the randomly choosing and slicing
method will most likely choose one node on each cycle and
slice two nodes. So the cycle-detection based heuristic de-
scribed above will generate a number of stitches up to two
times the optimal value. This is why GREMA does not use
the fast heuristic.

Because we cannot determine optimal stitches based on
the information derived from an odd cycle, we will slice all
the nodes along the odd cycle depending on their suitability
of slicing, modeled by the stitch shield.

A stitch shield will prohibit candidate stitch appearing
at certain locations because some slicing will not resolve
infeasibility at all. One example is pattern B in Fig. 2(a) and
Fig. 2(b). No matter how we slice pattern B, the sliced parts
will have conflict with the same region of pattern A. The two
sliced parts have to stay in the same mask, which makes
the slicing useless. In order to generate useful candidate
stitch, we take consideration of impacts from neighboring
patterns to choose which pattern and where in the pattern
to make the stitch and break the odd cycle. So part of
our stitch shield incorporates the idea of node projection
idea introduced in [11]. Furthermore, GREMA creates stitch
shield at places where slicing would introduce pattern parts
that violate minimum feature size design rule. In GREMA,
candidate stitches should not cross any stitch shield.

GREMA uses breadth first search (BFS) to find odd cy-
cles and choose all suitable candidate stitches. Unlike previ-
ous ILP based works, GREMA does not use any pre-slicing

technique so every candidate stitch is generated for the in-
feasibility in the original layout. Although pre-slicing may
break some odd cycles even before odd cycle detection, most
of the candidate stitches generated from pre-slicing are use-
less and they dramatically increase the problem size of the
mask assignment problem, which is NP-hard. Despite of the
fact that GREMA has to carry out more BFS without pre-
slicing, the total runtime would still be reduced. BFS has a
complexity proportional to the number of edges during the
search so the runtime for a few more rounds of BFS is negli-
gible. More importantly, GREMA generates a much smaller
candidate stitch set. In such a way, GREMA effectively
controls runtime by reducing the size of the computational
intensive mask assignment problem.

In Fig. 2(a), we have an example of intrinsic infeasibility.
The conflicting parts of odd cycle A ∼ B ∼ L ∼ A are all
stitch shielded so no candidate stitch could be introduced to
break the odd cycle. GREMA will report all three patterns
to designers. Moreover, the least connected pattern A would
be bypassed during the later mask assignment stage, in an
effort to resolve as many conflicts as possible. GREMA will
continue and check whether the layout has too many stitches
that bring down yield to an unacceptable level. If there are
too many stitches, designers might be forced to redesign the
entire layout.

An example of decomposition graph after conflict resolv-
ing is shown in Fig. 2(c). The decision on which stitches to
make in the final solution is left to mask assignment algo-
rithm, the second stage of GREMA.

4. MASK ASSIGNMENT
Once every infeasibility has been taken care of, as stated

in Sec. 3, GREMA needs to assign patterns to two masks
to form a DPT decomposition solution.

4.1 Initial Mask Assignment for Clusters
Since infeasibility has been resolved in the last stage, GREMA

can put one node in a partition, put all its conflict edge
connected neighbors in the other partition and sequentially
propagate the partition assignment for conflict edge con-
nected components with a property that no conflict edge
would have both of its endpoints assigned to the same par-
tition. We call each conflict edge connected component a
cluster and each cluster only have two choices during mask
assignment.

Instead of letting ILP decide mask assignment for each
node in clusters, GREMA carries out the partition prop-
agation discussed above so that ILP only needs to choose
between the two choices for each cluster. In such a manner,
we abstract linear complexity sub-problems from NP-hard
mask assignment. GREMA arbitrarily picks up a node in
each cluster and denotes the node as cluster head. Initially,
every cluster head is assigned to partition 1. After the par-
tition propagation, GREMA generates a bipartite cut for
each cluster, with the endpoints of conflict edges on the cut
assigned to different partitions, as shown in Fig. 3(a). Be-
sides, it actually generates the first mask assignment solu-
tion, though it probably would not be optimal in terms of
stitch minimization. Between clusters, there only exist stitch
edges and cutting across them will generate stitches. We
want to have a cut crossing as few stitch edges as possible.
For some stitch edges in the initial mask assignment solu-
tion, their two endpoints might reside on different masks,

F
B CA E

F

G
D

L DPT Conflict

H

L DPT Conflict

K
I

K
J

(a) Layout Example

F
B CA E

D
G

DPT Conflict

D

L DPT Conflict

Candidate
H

Stitch
K

I

Stitch ShieldJ

(b) Stitch Shield and Candidate Stitch

A B C D1 E2 F1

D2 E1L1 F2

H2H1 GH2H1L2 G

DPT C fli t
K2K1 I

J3

DPT Conflict

J1 J2

J3
Candidate
Stitch

(c) The DG Corresponding to (b)

Figure 2: Layout, Candidate Stitch Generation and Decomposition Graph

indicating that the candidate stitch is chosen and the spe-
cific stitch is made for the sliced pattern. For some stitch
edges with both of their endpoints in the same partition,
the candidate stitches are not chosen. To reduce the num-
ber of stitches, GREMA can generate subsequent solutions
by flipping the partitions for clusters. In Fig. 3(a), node A
is bypassed because it is the least connected component in
some intrinsic infeasibility.

A B C D1 E2
F1

Cluster

D2
E1

L1

Cluster

P titi 1F2E1

H2H1

Partition 1F2

H2H1L2
G Partition 2

K2K1 I

J3 Bypassed

J1 J2

J3

Cluster HeadCluster Head

(a) Cluster Initialization

Cluster 3: D2, E1,
F2 G H2 I J2 J3

Cluster1: B,
C D1 L1

1
F2, G, H2, I, J2, J3C, D1, L1

1 ‐11 0

Cluster 4:
J1 K2

Cluster 2:
H1 K1 L2

‐1 Cluster 5:
E2, F1J1, K2H1, K1, L2 E2, F1

(b) Flipping Graph

Figure 3: Flipping Graph Generation

4.2 Generation of Flipping Graph
We abstract each cluster in DG into a single node and

create a data structure called flipping graph, as shown in
Fig. 3(b). The edges in FG have a weight of flipping gain,
which we will describe later.

For two clusters Ci and Cj , we may have nd stitch edges
with the endpoints of each edge in different partitions and
ns stitch edges with their endpoints in the same partition.
If we flip the partition of either cluster, there would be nd

stitches before the flipping and ns stitches after the flipping.
We define flipping gain, i.e. fgi,j , as the difference nd − ns

for Ci and Cj . The flipping gain is the number of stitches
reduced by putting the cluster heads of Ci and Cj into dif-
ferent partitions, comparing to the initial solution that they
reside in the same partition.

GREMA formulates the stitch minimization mask assign-
ment problem as a maximum cut problem on FG. Each edge
being cut will have the cluster heads of its two endpoints as-

signed to different partitions. GREMA can change the cut
solutions by flipping the mask assignment of each cluster.
The cut solution will realize the flipping gain of the edges
on the cut. The larger the sum of realized flipping gain, the
more stitches GREMA will save, comparing to the initial so-
lution in which all the cluster heads are assigned to cluster
1.

4.3 Simplification of Flipping Graph
Even though the FG presented in 3(b) has greatly re-

duced the problem size of mask assignment, we can ignore or
greatly simplify certain structures in FG to further reduce
runtime.

C1

Level 1
Propagation

C1 C1C1
3‐2

C1
3‐2

C1
3‐2

C2C3

1
5

C3

1
5

C2 C2C3
5

C5C4

‐1

Level 2C5C4

‐1

C5C4

‐1
5

Individual Cut
Propagation

Partition Propagation

C5C4

(a) Tree Structure Partition Propagation

(b) Serial Edge Simplification

C1 C1

3 2 5

C2 C2

(c) Parallel Edge Simplification (d) An Irreducible FG

Figure 4: FG Simplification Examples

For subgraphs of FG in tree structure, if the flipping gain
of one edge is positive, GREMA will cut it, as shown in Fig.
4(a). Since cutting in tree structure can be made without

affecting cutting on other edges, GREMA can temporarily
ignore these subgraphs and propagate the partitions after
the partition for the rest of FG has been optimized, as shown
in Fig. 4(a).

For nodes in a cycle, the two edges connected to a degree-
two node can be merged into a single edge. As shown in
Fig. 4(b), if GREMA decides to cut the new edge, it has to
cut either one of the two original edges. It is obvious that
it should cut the higher weighted edge, realizing a flipping
gain of max(fge1, fge2). There are two cases if GREMA
decides not to cut the new edge. It can cut both of the
original edges, realizing a flipping gain of fge1 + fge2. Or it
can choose to cut neither of the original edges and realize a
flipping gain of 0. GREMA chooses the better result from
the two cases and realizes a flipping gain of max(fge1 +
fge2, 0). The flipping gain of the new edge turns out to be
max(fge1, fge2)−max(fge1 + fge2, 0).

Though parallel edges shown in Fig. 4(c) do not exist in
the initial FG, they may emerge after the serial edge sim-
plification. For parallel edges between two nodes, GREMA
either cuts or does not cut both of the edges, so the flipping
gain of the merged parallel edge is fge1 + fge2.

Figure 5: Simplification Procedure for the FG in
Fig. 3(b)

GREMA conducts simplification according to the follow-
ing procedure. At the beginning, GREMA detects all degree-
one node, removes them temporarily from the FG and con-
tinues this degree-one node removal until all the nodes in
FG is at least degree-two. This will remove all subgraphs in
tree structures. GREMA carries out serial edge simplifica-
tion and then parallel edge simplification. After the three
types of simplification, GREMA starts a new round of sim-
plification from tree structure removal because structures
that could be simplified may emerge after previous simplifi-
cations. The simplification process will stop for two cases.
In the first case, the simplified FG has only two nodes and
one edge. Based on the weight of the edge, GREMA decides
whether to cut the edge and flip the partition for one of the
node. In the second case, every node in the simplified FG

is at least degree three and GREMA formulates an ILP to
generate the optimized max cut. The simplification process
for the flipping graph in Fig. 3(b) is given in Fig. 5, the FG
is so greatly simplified that GREMA does not even need to
formulate an ILP.

After the max cut for the final simplified FG is optimized,
GREMA restores previously simplified structures and ex-
tends the cut decision onto these structures. For a new edge
generated from parallel edge simplification, the cut decision
on the new edge will be replicated for the original edges.
For a new edge generated from serial edge simplification,
if GREMA decides to cut it, GREMA will cut the larger
weighted edge of the original two edges. If GREMA decides
not to cut the new edge, it will cut both of the two original
edges if the sum of their weights is positive and will not cut
if the sum is negative. For tree structured subgraphs tem-
porarily removed, GREMA will recover them and carry out
the tree structure partition propagation shown in Fig. 4(a).
Fig. 5 also shows the structure restoration and decision ex-
tension process.

4.4 ILP Formulation for Max Cut Problem
Despite of the fact that GREMA simplifies FG in every

possible way, the stitch minimizing flipping problem is still
intrinsically NP-Hard and an irreducible example is given in
Fig. 4(d). To achieve the optimality of stitch minimization,
we formulate the flipping-gain maximization problem as an
ILP, as shown below:

OBJ : max
∑
i,j

ai,j

s.t. : ai,j ≤ fgi,j(4− (xi + xj)) ∀i, j
ai,j ≤ fgi,j((xi + xj)− 2) ∀i, j
xi ∈ {1, 2} ∀i (1)

In the ILP formulation, xi represents which partition the
cluster head of cluster Ci belongs to. fgi,j is the flipping gain
for the edge between clusters Ci and Cj . ai,j is the realized
flipping gain. We can see that when xi and xj are the same,
ai,j ≤ 0. When xi and xj are different, ai,j ≤ fgi,j .

From the optimized solution, GREMA infers the flipping
of cluster partitions and assigns patterns in each cluster to
masks according to their partition assignment. Fig. 6(a)
and Fig. 6(b) show the maximum cut on DG and mask
assignment for the layout given in Fig. 2(a) respectively.

A B C D1
E2

F1

D2
E1

L1
F2E1

H2H1

F2

H2H1L2
G

K2K1 I

J3

J1 J2

J3

The Final Cut

(a) Max Cut on DG

F
B CA

F

E

D
G

L

D

H

L

K
I

J

(b) Final Mask Assignment

Figure 6: Max Cut and Mask Assignment Solutions

5. EXPERIMENTAL RESULTS
We implement GREMA in C and use linear programming

solver QSopt [12]. All the experiments are performed on a

Linux machine with 2.8GHz Intel Xeon and 4GB RAM. We
run GREMA on the benchmarks in [11]. The statistics of
the benchmarks are shown in Table 1. These benchmarks
use cells from Artisan 90nm libraries with 140nm minimum
spacing and 100nm minimum line width. They are scaled
by 0.4× down to 56nm and 40nm respectively during the
experiment. In the five benchmarks, AES is a real design.
The artificial TOP-A, TOP-B, TOP-C and TOP-D instan-
tiate more types of cells to generate more DPT conflicts and
intrinsic infeasibility to test the full potential of GREMA.
The benchmarks are placed with row utilizations of 90%.
The DPT threshold is set to be 60nm.

Table 1: Experimental Results for GREMA
GREMA [11]

Design # Patterns # Stitches cpu(s) # Stitches cpu(s)

AES 90394 30 5.9 33 17.8
TOP-A 275650 6191 15.4 7903 155.0
TOP-B 545000 10265 32.2 15755 500.2
TOP-C 2725000 64385 310.7 78709 4655
TOP-D 1090000 24767 85.0

To demonstrate the effectiveness of various graph reduc-
tion techniques used in GREMA, Table 2 shows the average
number of nodes in the connected components in different
types of graphs during GREMA flow. We exclude the con-
nected components in CG with less than three nodes in Ta-
ble 2. They do not induce infeasibility and stay unchanged
throughout the flow of GREMA. When GREMA introduces
stitches to resolve infeasibility, the average number grows
2.94 times. The transformation of DG into FG reduces the
average number by 2.85 times and the simplification tech-
niques further bring down it by 2.06 times. Most of the
connected components are fully simplified by GREMA as
the final average number is approaching 2, where GREMA
does not need ILP to figure out a solution. Actually, less
than 10% of connected components need to go through ILP
to achieve a solution.

Table 2: Transition for the Number of Nodes in Con-
nected Component

Design CG → DG DG → FG FG Simplification

AES 3.23 → 5.61 5.61 → 2.13 2.13 → 2.00
TOP-A 4.28 → 13.89 13.89 → 4.81 4.81 → 2.08
TOP-B 4.26 → 13.73 13.73 → 4.66 4.66 → 2.05
TOP-C 4.26 → 14.02 14.02 → 4.85 4.85 → 2.08
TOP-D 4.27 → 13.77 13.77 → 4.79 4.79 → 2.06

We compare the performance of GREMA with [11] in Ta-
ble 1. # Stitches is number of stitches for the mask as-
signment solution and cpu is the total runtime. [11] did
not report its results for TOP-D. Due to the reason that
[11] considers the maximization of overlap length of stitches,
which may significantly increase the number of stitches, the
number of stitches from GREMA and [11] is not directly
comparable. However, we hold the believe that generating
less stitches is a much more desirable property for DPT de-
composer.

GREMA runs roughly one order of magnitude faster than
[11]. More importantly, GREMA shows bigger speed up for
larger benchmarks. As shown in Fig. 7, the runtime of
GREMA is almost linearly proportional to the number of
patterns in the benchmarks.

We also tried to solve the DPT decomposition problem
using the formulation presented in [10] to investigate the

0

50

100

150

200

250

300

350

0 500000 1000000 1500000 2000000 2500000 3000000

Ru
n
Ti
m
e
(s
)

Number of Patterns

Figure 7: GREMA Runtime vs. Number of Patterns

effectiveness of the techniques used in GREMA. Unfortu-
nately, all benchmarks except for AES consume too much
memory to run. For the only benchmark we can run, we
cannot achieve the solution after 24 hours of computation.

6. CONCLUSION
In this paper, we presented a new DPT decomposition tool

called GREMA. GREMA uses a two-stage flow that first re-
solves infeasibility and later assigns patterns onto masks to
minimize the number of stitches. Based on the avoidance
of pre-slicing, abstraction of decomposition graph into flip-
ping graph and the simplification of FG, GREMA achieves
greatly reduced run-time without loss of optimality, com-
paring to previously published works.

Our future work will be devoted to the refinement of this
work, an investigation into the probability to replace ILP
with other more efficient formulation and the automation of
DPT guided layout modification.

7. REFERENCES
[1] http://www.itrs.net/reports.html
[2] Chang-Moon Lim et al., “Positive and negative

tone double patterning lithography for 50nm flash
memory,” Proc. SPIE 6154, 2006

[3] Jungchul Park et al., “Application challenges with
double patterning technology (DPT) beyond 45
nm,” Proc. SPIE 6349, 2006

[4] Mircea Dusa, et al., “Pitch doubling through
dual-patterning lithography challenges in
integration and litho budgets,” Proc. SPIE 6520,
2007

[5] Martin Drapeau et al., “Double patterning design
split implementation and validation for the 32nm
node,” Proc. SPIE 6521, 2007

[6] Yuichi Inazuki et al., “Decomposition difficulty
analysis for double patterning and the impact on
photomask manufacturability,” Proc. SPIE 6925,
2008

[7] George E. Bailey et al., “Double pattern EDA
solutions for 32nm HP and beyond,” Proc. SPIE
6521, 2007

[8] Tsann-Bim Chiou et al., “Development of layout
split algorithms and printability evaluation for
double patterning technology,” Proc. SPIE 6924,
2008

[9] Anton van Oosten et al., “Pattern split rules! A
feasibility study of rule based pitch decomposition
for double patterning,” Proc. SPIE 6730, 2007

[10] Kun Yuan et al., “Double Patterning Layout
Decomposition for Simultaneous Conflict and
Stitch Minimization,” International Symposium on
Physical Design (ISPD), San Diego, March 2009

[11] A.B. Kahng et al., “Layout decomposition for
double patterning lithography,” ICCAD 2008, Nov.
2008

[12] http://www2.isye.gatech.edu/ wcook/qsopt/

