
A Simple Fast Exact Density Calculation Algorithm

Hua Xiang Chris Chu Ruchir Puri
IBM T.J. Watson Iowa State University IBM T.J. Watson

Yorktown Heights NY Ames IA Yorktown Heights NY

Abstract
VLSI technology is facing an extreme challenge due to the miniatur-
ization and complexity of leading-edge products. Density control is
a must step to ensure the yield and performance for the manufactur-
ing smaller, faster and cheaper chips. A fundamental problem in the
density control is how to calculate density correctly and efficiently. In
this paper, we propose a simple but efficient two-level hierarchical ap-
proach to exactly identify the maximum density window for a given
layout. Comparing with the latest work [7], the new algorithm shows
big runtime reductions on testcases which have a long runtime with [7].

1. Introduction
Achieving high-yielding designs in the state of the art, VLSI technol-
ogy is facing an extreme challenge due to the miniaturization and com-
plexity of leading-edge products. In order to produce smaller, faster
and cheaper chips, manufacturing issues are catching more and more
attention. Density control is no doubt an unavoidable step to reduce the
process variations and improve performance predictability and yield. A
fundamental problem in the density control is how to calculate density
correctly and efficiently.

The density calculation problem is first addressed in [1] as “Extremal
- Density Window Analysis” problem.

Extremal Density Window Analysis (EDWA): Given a fixed window
sizeW and anMxN layout withK non-overlap rectangles, find aWxW
density window which has the maximum (minimum) density.

[1, 3] proposed exact algorithms to address the EDWA problem.
However, the running time is very long measured by hours or days.
[2, 3] also proposed approximate algorithms such that the difference
between the reported maximum density and the actual maximumden-
sity is within the given error bound. However, the algorithms are unable
to report the exact solutions. Recently, [7] proposed a fastexact density
calculation algorithm which shortens the running time fromhours/days
to seconds/minutes. [7] uses a recursive approach. At each iteration, the
pruning technique is used to narrow down the regions that maycontain
the maximum density windows.

In this paper, we propose a simple two-level hierarchical approach
to exactly identify the maximum density window for a given EDWA
problem. (To simplify the presentation, we will focus on identifying
the maximum density windows. The minimum density window canbe
handled in the similar way.) Comparing with [7], the new algorithm can
report the exact maximum window density with equivalent or shorter
running time. Especially for the long runtime test cases, our new al-
gorithm shows big runtime reductions. For example, as shownin the
experimental results, the runtime of the testcase Test5 with a window
size 24,000 is reduced from 23.7s to 2.8s.

The paper is organized as follows. In Section 2, we briefly review the
density theorems presented in the literature and propose a new theorem.
All these theorems are used to prune regions so that the density calcu-
lation algorithm can efficiently focus on the regions that might contain
the maximum density windows. Section 3 outlines the two-level hier-
archical exact density calculation algorithm. In Section 4, a dynamic
programming based approach is presented to efficiently calculate the
window density for a given density map. And in Section 5, a hash-table
based method is proposed to facilitate the exact density calculation for
a given region. Then a discussion of the tradeoff on the sliding steps is
presented in Section 6. Experimental results are given in Section 7 and
Section 8 concludes the paper.

2. Theorems for Density Bound
In industry, most commercial tools use fix-dissection approach [4, 5,
6]. In this approach, a layout is partitioned into non-overlappingRxR
tiles. UsuallyW is multiple times ofR. Then only windows whose
boundaries fall on theR-grid are checked for density. As pointed out
in [7], this approach only checks a very limited number of windows.
And it cannot produce the exact density numbers untilR reaches the
minimum feature size. However, the fix-dissection approachprovides

basic information on density distribution which can guide us to identify
regions that might contain the maximum density windows.

The density bound theorems reveal the window density relationship
between a window on the fix-dissection grid and any window within
a certain region. (For convenience, a window on a fix-dissection grid
is called sliding window.) These theorems play an importantrole in
the density calculation algorithm such that they could be used to prune
regions which do not contain the maximum density windows. Inthis
section, we first review the theorems addressed in the literature [3] and
[7]. Then one new theorem is proposed and proved.
Lemma 1 [7] For any window, it can be fully covered by four sliding
windows on the fix-dissection grid.

As shown in Figure 1 (a), (b), (c) and (d), the red window can befully
covered by four sliding windowsWLB, WRB, WLU andWUB. Suppose
their densities areDLB, DRB, DLU andDUB, and letR be the grid size
for the fix-dissection grid.
Theorem 1 [7] For any windowWin, its densityDWin satisfies that
DWin ≤DCmax +(R

W −(R
2W)2), whereDCmax = max{DLB,DRB, DLU ,DRU}.

Meanwhile, it is easy to conclude that any window can be fullycov-
ered by a(W +R)x(W +R) window which is shown asWout in Figure
1 (e).

Theorem 2 [3] For any windowWin, its densityDWin satisfies that
DWin ≤ DWout , whereDWout is the total feature area in the window
Wout overW 2.

Furthermore, any window covers a(W −R)x(W −R) windowW center
as illustrated in Figure 1 (f).
Theorem3For any windowWin, its densityDWin satisfies thatDWin ≤
DWcenter + (W 2 − (W −R)2)/W 2, whereDWcenter is the total feature
area in the windowW center overW 2.

The proof of Theorem 3 is straightforward. Any window insideWout
coversW center. The maximum feature area difference betweenWout
andWcenter is (W 2− (W −R)2). SinceDWout ≥ DWin ≥ DW center, we
get(W 2− (W −R)2)/W 2 ≥ (DWout −DW center) ≥ DWin −DW center.

3. Two-level Calculation Algorithm
In this section, we outline our two-level density calculation algorithm.
The basic observation is that the fix-dissection approach isvery fast.
Also the memory in today’s computers is quite large. Therefore, this
motives us to start the first level with a fine-grid fix-dissection approach.
Based on the fix-dissection results, the three theorems are applied to
narrow down the interested regions which may potentially contain a
maximum density window. In the second level, each selected region is
checked to get the maximum window density. The algorithm is outlined
as TwoLevel Density Calculation.COLS andROW S are thex andy
dimensions of the given input, respectively.

In the following algorithm, Lines 1∼ 3 are to apply the fix-dissection
approach, and get the maximum sliding window density from the fix-
dissection grid. In the following section, we present an efficient al-
gorithm (DCWG) to calculate the maximum sliding window density
from a fix-dissection grid. SinceWin, W center andWout are on the
same grid, the values ofDWin, DW center andDWout can be obtained in
a single pass of DCWG. Lines 8∼ 14 are to loop on eachWout to
check if the three theorems are satisfied or not againstmaxdens. If all
the threeIF checks are passed, it means that theWout might contain
a maximum density window, and CalWout Dens is applied to get the
maximum window density in theWout. Cal Wout Dens works on a
(W +R)x(W +R) region. By appropriately setting up the grid, DCDM
algorithm can be used to get the exact maximum window densityfor
the givenWout region as well. The details of CalWout Dens are pre-
sented in Section 5.

WLB

R

WRB

R

WUL

R

WUR

R

Wout

R

Wcenter

R

(a) (b) (c) (d) (e) (f)

Figure 1: (a) Sliding windowWLB (b) Sliding windowWRB (c) Sliding windowWLU (d) Sliding windowWRU (e) A (W +R)x(W +R) windowWout
(f) A (W −R)x(W −R) windowW center

Algorithm Two Level DensityCalculation()
1. Apply the fix-dissection approach with a fine grid size R;
2. Get DWin, DW center, DWout for all sliding windows;
3. maxdens=max{DWin for all sliding windows };
4.
5. wdiff = 1− (W −R)2/W 2;
6. sdiff = 1

R · (1− 1
4R);

7.
8. for(i=0; i < COLS−W −1; i++)
9. for(j=0; j < ROWS−W −1; j++)
10. if(DWout [i][j] > maxdens)
11. if(DWcenter[i+1][j +1] + wdiff > maxdens)
12. maxlocal=max{DWout [i][j],DWout[i][j +1],

DWout [i+1][j],DWout [i+1][j +1]};
13. if (maxlocal + sdiff > maxdens)
14. maxdens = max{maxdens,Cal Wout Dens(Wout[i][j])};
15. return maxdens;

4. Density Calculation on W-Grid (DCWG)
In this section, we address the density calculation problemfor a given
W-grid. A W-grid is defined as follows.

W-Grid Given a window sizeW , if an MxN grid satisfies the
constraint that if one of the window corners is on the grid, then its other
three corners must be on the grid except that the window covers regions
that are outside the grid, then such a grid is called W-Grid.

Density Calculation on W-Grid (DCWG) Given a W-Grid,
Assume that the feature area of each grid tile is given, find the maxi-
mum density for windows which are on the given W-Grid.

As we notice that the grid tile sizes of a W-Grid can be different.
For convenience, we still call the windows on the W-Grid as sliding
windows. Figure 2 shows an example. Figure 2 (a) is a 8x7 W-Grid.
For any window, if its left-bottom corner is on the grid, thenits right-
upper corner must be on the grid as well. On the other hand, Figure 2
(b) is not a W-Grid. The right-upper corner of the window is not on the
grid.

Obviously, the fix-dissection density calculation is just aspecial case
of DCWG such that the tile sizes of the W-Grid are the same.

W

W

X[0] X[1] X[2] X[3] X[4] X[5] X[6] X[7] X[8]
Y[0]

Y[1]

Y[2]

Y[3]

Y[4]

Y[5]

Y[6]

Y[7]

W

W

X[0] X[1] X[2] X[3] X[4] X[5] X[6] X[7] X[8]
Y[0]

Y[1]

Y[2]

Y[3]

Y[4]

Y[5]

Y[6]

Y[7]

(a) (b)

Figure 2: (a) An 8x7 W-Grid. (b) An invalid 8x7 W-Grid.

Once the area map of a W-Grid is given, our target is to find the max-
imum density of the sliding windows on the W-Grid. In this section, we
propose a dynamic programming based approach to solve the DCWG
problem.

Let X [i] (i = 0, ...,m) andY [j] (j = 0, ...,n) be the coordinates of the
ith vertical grid andjth horizontal grid, separately. According to the
W-Grid property, we get that for anyi, if X [i]+W ≤ X [m], there must
exist iw such thatX [i]+W = X [iw]. Similar forY [j].

Since our target is to get the density for on-grid windows, wecal-
culate the density for windows from bottom to top, and from left to
right. To get the density of the window which is on the left-bottom
corner of the given grid, we need to sum the feature areas of all the
tiles covered by the window. As shown in Figure 3 (a), supposeA[i][j]
is the feature area of tile[i][j]. The density of the blue window is
∑A[k][p]/W 2 (k = 0, ...,2; p = 0, ...,3). Similarly, the density of the
red window in Figure 3 (b) is∑A[k][q]/W 2 (k = 0, ...,2;q = 1, ...,4).
It is easy to see that the two adjacent windows share the tilesA[k][l]
(k = 0, ...,2;l = 1, ...,3). Therefore, if we know the density of the
blue window, we only need to subtract the bottom row in the blue
window and add the upper row in the red window. This motivates
us to develop a dynamic programming approach to get the window
density on a W-Grid. The main idea is summarized in the algorithm
DCWG Window Density.COLS andROW S are thex andy dimensions
of the given input, respectively.

X[0]

A[0][0]
X[1] X[2] X[3] X[4] X[5]

Y[0]

Y[1]
Y[2]

Y[3]

Y[4]

Y[5]

Y[6]

Y[7]

A[1][0] A[2][0] A[3][0] A[4][0]

A[0][1] A[1][1] A[2][1] A[3][1] A[4][1]
A[0][2] A[1][2] A[2][2] A[3][2] A[4][2]

A[0][3] A[1][3] A[2][3] A[3][3] A[4][3]

A[0][4] A[1][4] A[2][4] A[3][4] A[4][4]

A[0][5] A[1][5] A[2][5] A[3][5] A[4][5]
A[0][6] A[1][6] A[2][6] A[3][6] A[4][6]

X[0]

A[0][0]
X[1] X[2] X[3] X[4] X[5]

Y[0]

Y[1]
Y[2]

Y[3]

Y[4]

Y[5]

Y[6]

Y[7]

A[1][0] A[2][0] A[3][0] A[4][0]

A[0][1] A[1][1] A[2][1] A[3][1] A[4][1]
A[0][2] A[1][2] A[2][2] A[3][2] A[4][2]

A[0][3] A[1][3] A[2][3] A[3][3] A[4][3]

A[0][4] A[1][4] A[2][4] A[3][4] A[4][4]

A[0][5] A[1][5] A[2][5] A[3][5] A[4][5]
A[0][6] A[1][6] A[2][6] A[3][6] A[4][6]

(a) (b)

Figure 3: Two neighbor windows share the shadow region.

Figure 4 shows the flow of the algorithm. In Figure 4 (a), rowarea
is calculated from bottom to top as Line 1∼ 2. Line 3 is to get the
total feature area of the first window by adding rowarea as illustrated
in Figure 4 (b). The second window gets its feature area by adding
rowarea[3] and subtracting rowarea[0]. This process continues until all
the windows on the first column are processed (Line 5∼ 9). Then move
to the next column. Each rowarea is updated by one sum operation and
one subtract operation as Line 12∼ 14. Once rowarea update is done,
the window feature area can be calculated from bottom to top (Line
16 ∼ 21). maxarea records the maximum feature area for all sliding
windows on W-Grid, and maxarea/W 2 is the maximum window density
for the given W-Grid.

X[0] X[1] X[2] X[3] X[4] X[5] X[6]

Y[0]

Y[1]

Y[2]

Y[3]

Y[4]

Y[5]
rowarea[4]

rowarea[3]

rowarea[2]

rowarea[1]

rowarea[0]

W

X[0] X[1] X[2] X[3] X[4] X[5] X[6]

Y[0]

Y[1]

Y[2]

Y[3]

Y[4]

Y[5]
rowarea[4]

rowarea[3]

rowarea[2]

rowarea[1]

rowarea[0]

winarea =
 rowarea[0]
 +rowarea[1]
 +rowarea[2]

X[0] X[1] X[2] X[3] X[4] X[5] X[6]

Y[0]

Y[1]

Y[2]

Y[3]

Y[4]

Y[5]
rowarea[4]

rowarea[3]

rowarea[2]

rowarea[1]

rowarea[0]

winarea =
 winarea

 + rowarea[3]
 - rowarea[0]

(a) (b) (c)

Figure 4: (a) rowdens is calculated for each row. (b) The firstwindow
on the left bottom corner is calculated. (c) Calculate the total feature
area of the windows along the first column.

In the DCWGWindow Density algorithm, the calculations are to
get the values of rowarea and winarea. To calculate rowarea,each
A[i][j] involves at most one add and one subtract operations. There-

fore, rowarea calculation time can be bounded byO(M ·N), whereM
andN are the number of columns and rows, respectively. winarea are
derived from rowarea. And each rowarea gets at most one add and one
subtract operations in order to calculate the values for winarea. Totally
there are at mostM ·N rowarea. So the calculation time for winarea
can be bounded byO(M ·N). Finally, there are at mostM ·N sliding
windows and maxarea calculation can be bounded byM · N as well.
Based on the above analysis, the runtime of DCGWWindow Density
algorithm can be tightly bounded byO(M ·N).

Algorithm DCWG Window Density(COLS, ROWS, W , A)
1. for(j=0; j < ROWS; j++)
2. rowarea[j] = ∑p−1

i=0 A[i][j], where X [p] = X [0]+W ;

3. winarea = ∑q−1
i=0 rowarea[i], where Y [q] = Y [0]+W ;

4.
5. maxarea = winarea;
6. for(j=1; q < ROWS; j++, q++)
7. winarea += rowarea[q];
8. winarea -= rowarea[j-1];
9. maxarea = MAX(winarea, maxarea);
10.
11. for(i=1; p < COLS; i++, p++)
12. for(j=0; j < ROWS; j++)
13. rowarea[j] += A[p][j];
14. rowarea[j] -= A[i-1][j];
15.
16. winarea = ∑q−1

k=0 rowarea[k], where Y [q] = Y [0]+W ;
17. maxarea = MAX(winarea, maxarea);
18. for(j=1; q < ROWS; j++, q++)
19. winarea += rowarea[q];
20. winarea -= rowarea[j-1];
21. maxarea = MAX(winarea, maxarea);
22. return maxarea/W2;

Finally, since the fix-dissection approach is a special caseof DCGW
with all grid tiles having the same size, the fix-dissection approach can
get the maximum density of all sliding windows inO(M ·N).

5. Exact Calculation on aWout region
In Two Level DensityCalculation, the first level is to apply the fix-
dissection approach on the whole layout. The maximum density of
the sliding windows can be efficiently derived with DCWG algorithm.
Then a certain amount ofWout regions are pruned based on the three
theorems. For the rest of theWout regions, CalWout Dens is called to
find the exact maximum window density for eachWout region.

In [7], a theorem is presented that helps to identify an exactmaxi-
mum density window.
Theorem 4 [7] Given a region withk rectangles, there exists a maxi-
mum density window that has two adjacent window edges overlap two
rectangle edges. Furthermore, the overlapped window edgesand rect-
angle edges are in the same directions. (The edge directionsof win-
dows/rectangles are defined as the clockwise direction.)

R1

R2 R3

R9

R4

R8

R7

R5

R10

R6

R1

R4

R2

R3

R6

R7 R8

R9
R10

R11

W+R

W
+R

R5

W

W+R

W
+R

W-R

W
-R

(a) (b) (c)

Figure 5: (a) A maximum density window has its upper edge and right
edge overlapping with the upper edge ofR2 and the right edge ofR5, re-
spectively. (b) AWout window with 11 rectangles. (c) The constructed
grid for the givenWout window.

For a given region, the maximum density window may not be unique.
But according to Theorem 4, we can always find a maximum density
window whose two adjacent edges are on two rectangles. For example,
in Fig 5 (a), the window is a maximum density window. The upperwin-
dow edge overlaps with the upper edge ofR2 and the right edge ofR5 is
on the right window edge. Therefore, we can narrow down the search-
ing space to only consider the windows that satisfies the constraints in

Theorem.
In Cal Wout Dens, we first construct a grid on the givenWout region

based on the above theorem such that at least one maximum density
window is on the grid. We further show that the constructed grid is a
W-Grid. Therefore, the DCWG algorithm can be applied on the grid to
get the maximum window density efficiently.

According to Theorem 4, we only need to focus on windows whose
edges have overlap with rectangles. Furthermore, since theinput is
a Wout, which is a (W + R)x(W + R) Region, anyWxW windows
inside the given region share the center(W − R)x(W − R) part, i.e.,
Wcenter. Therefore, we only need to consider the rectangle edges out-
sideWcenter. Figure 5 shows an example. Figure 5 (b) is aWout region
with 11 rectangles. The blue solid lines are generated for the rectangles
outsideWcenter. Furthermore, a dashed green line is created for each
solid blue line such that the distance between the two lines is W . In
this way, it guarantees that the four edges of a window can be on the
constructed grid. Figure 5 (c) shows the constructed grid. It is easy to
conclude that the grid in Figure 5 (c) is a W-Grid.

To complete the grid construction, an important step is to find the x-
coordinate (y-coordinate) of each vertical (horizontal) grid line. In this
section, we propose a hash table based method to efficiently achieve
this goal. To simplify the presentation, we only show how to calculate
the y-coordinate of each horizontal grid line.

Since the input is aWout region, its size is(W +R)x(W +R). Fur-
thermore, we know that the center regionWcenter is shared by all win-
dows insideWout. Therefore, only y-coordinates outsideW center need
to be considered. In this case, two hash tables withR + 1 entries are
enough to hold all y-coordinates. The first hash table corresponds to
the y-coordinates within [Wout.yl ,Wout.yl + R], and the second one
records the y-coordinates [Wout.yr − R,Wout.yr]. The hash table in-
cludes two items: coord and index. coord is used to record thecoor-
dinates of rectangle edges, while index is used to speed building the
density map. The coord field of the two hash tables is initially assigned
a value that is lower thanWout.yl .

R1

R2
R3

R6

R4

R7

R5

10 1213 14 22 24 25 26
25

27

28

29

37

39

40

41

25 yHash1[0]

coord index

1
-1 -1
27 2

3
4

coord index
5

-1 -1
6
7
8

28
29

37

39
40
41

tile [4,6]

10

1

-1

-1

12

2

13

3

14

4

22

5

-1

-1

24

6

25

7

26

8

coord

index

coord

index

yHash1[1]

yHash1[2]

yHash1[3]
yHash1[4]

yHash2[0]

yHash2[1]
yHash2[2]

yHash2[3]
yHash2[4]

tile [4,5]

Figure 6: Two hash tables are constructed in order to identify the x/y-
coordinates of the vertical/horizontal grid lines, respectively.

Figure 6 gives an example. The window sizeW is 12, andR is 4.
Wout is bounded by[(10,25)(26,41)], i.e.,Wout.xl = 10, Wout.yl =
25, Wout.xh = 26 andWout.yh = 41. The bottom edge of the rectan-
gle R7 falls in the range [Wout.yl ,Wout.yl + R]. A horizontal edge
should be created. Therefore,yHash1[27− 25].coord is marked as
27. At the same time, another horizontal line with the y-coordinate
39 should be created as shown by a dashed green line. Accordingly,
yHash2[39−(41−R)].coord is marked as 39. Similarly, the upper edge
of the rectangleR1 also corresponds to two horizontal grid lines, and
we getyHash2[3].coord = 40 andyHash1[3].coord = 29. By travers-
ing all the related rectangles once, the coord field of the twohash tables
is done. Then going through the two hash tables from bottom totop
to determine the index field. For example, the index ofyHash1[3] is 3
since it is the third horizontal line from the bottom.

Once the grid is constructed as shown in Figure 6, the next step is
to calculate the feature area for each grid tile. Obviously,the grid tile
Wcenter could get its feature area from the previous fix-dissection cal-
culation. For the rest of the tiles, we need to traverse all the related
rectangles and find their overlap with the grid tiles. With the help of
the index field, this step can be easily accomplished. For example,
for the rectangleR1, the y-coordinate of its upper edge is 40. Since
yHash2[40-(41-R)].index = 7, it means that the rectangle isbelow the
7th horizontal line. Meanwhile, by checking the left and right edges of
R1, we know that the rectangle falls between the 4th and 5th vertical
lines. Therefore, we only need to calculate the overlap areas between
R1 and tile[4,6] and tile[4,5].

Since the constructed grid for the givenWout is a W-Grid, the DCWG
algorithm can be applied to get the maximum window density. The
Cal Wout Dens algorithm can be summarized as follows.

Algorithm Cal Wout Dens(Wout)
1. Construct the W-Grid with the Hash table structure;
2. Calculate the feature area for each grid tile;
3. Apply the DCWG algorithm;
4. return the maximum window density;

In Cal Wout Dens, by traversing all the related rectangles once, the
W-Grid can be constructed. Then another traverse of all the related
rectangles can finish step two. The runtime of Step three is bounded
by O(M · N) whereM and N are the number of rows and columns,
respectively. Therefore, the runtime of CalWout Dens isO(M ·N +K)
whereK is the number of the related rectangles.

6. Tradeoff
In Two Level DensityCalculation, the first level is to apply the fix-
dissection approach on the whole layout with a fine sliding step, and
the second level is to calculation the exact maximum window density
on each identifiedWout region from the first stage.

As we notice that, for some test cases, after the pruning step, there
are still manyWout regions. One reason is that some high density re-
gions cover a relative large space. Since the sliding step issmall, the
high density regions may generate manyWout as shown in Figure 7. In
Figure 7 (a), the white rectangle is an identifiedWout region in the first
stage. Shifting the rectangle left/right a little bit, we can still get high
density regions as shown by the purple rectangle and the green rectan-
gle. In this case, the two neighboringWouts share a large portion of the
area and it is not efficient to calculate thoseWouts one by one.

(a) (b)

Figure 7: (a) The white rectangle outlines an identifiedWout region
from the first stage. (b) The neighboringWout regions such as the
regions outlined by the purple rectangle and the green rectangle also
have a high density.

Based on the above consideration, we introduce aWout threshold
to control the number of the identifiedWout regions. After applying
the first round of fix-dissection, if the number of identifiedWout re-
gions is larger than the threshold, then redo the fix-dissection step with
a large sliding step, and the rest of the steps are applied on theWout
regions from the second fix-dissection. Of course, in this case, the
Wout regions are larger and it may take longer time to calculate the
exact maximum window density. However, since the number ofWout
regions is greatly reduced, the short runtime can be guaranteed. The
Two Level Density Calculation algorithm in Section 3 is modified as
follows. The first step is extended into 1.1∼ 1.5.

Algorithm Two Level DensityCalculation()
1.1 Apply the fix-dissection approach with a fine grid size R;
1.2 Apply the three theorems to prune regions;
1.3 If the number of the identified Wout > T hreshold
1.4 Redo the fix-dissection with a large grid size R′;
1.5 R = R′;
2. ...

7. Experimental Results
We implemented our algorithm in C on a linux machine (3.2GHz)with
3.5GB memory. We use the same test set as [7]. Two window sizes
24,000nm and 32,000nm are used for testing, separately.

The algorithm starts the fix-dissection approach with a fine sliding
stepW/100. By applying the three pruning theorems, a lot ofWout
regions are discarded. Table 1 shows the effectiveness of the pruning
technique. In this paper, a new pruning theorem (Theorem 3) is pro-

posed. “Theorem 1-2” refers to the number ofWout regions after ap-
plying only Theorem 1 and 2. While “Theorem 1-3” shows the number
of Wout after applying the three theorems. It is clear that Theorem 3
also helps a lot in pruning regions. Especially, for Test4, the number of
Wout is reduced from 175,151 to 25,831 with Theorem 3.

Table 1: Number ofWout after applying pruning theorems
Testcase W = 24,000

TotalWout Theorem 1-2 Theorem 1-3
Test1 5,294,601 9,147 (0.17%) 6,270 (0.12%)
Test2 5,294,601 13,107 (0.25%) 11,567 (0.22%)
Test3 4,137,156 1,351 (0.03%) 1,351 (0.03%)
Test4 25,335,557 175,151 (0.69%) 25,831 (0.10%)
Test5 4,137,156 180 (0.00%) 180 (0.00%)
Test6 16,273,156 94 (0.00%) 42 (0.00%)
Test7 16,273,156 3,953 (0.02%) 3,741 (0.02%)
Test8 16,273,156 1,364 (0.01%) 1364 (0.01%)
Test9 24,671,089 1,396 (0.00%) 562 (0.00%)
Test10 16,273,156 527 (0.00%) 527 (0.00%)

Table 2 shows the runtime comparison between the algorithm in [7]
and the proposed two-level algorithm. The first stage sliding step is set
asW/100, and theWout threshold is 5000. If the number of identified
Wout regions is larger than 5000, then the sliding step is set asW/8.
Comparing to [7], for testcases which have a short runtime with [7], our
algorithm also achieves equivalent runtime. For testcaseswhich have a
long runtime with [7], the proposed two-level algorithm shows advan-
tages on the runtime. For example, for Test5, the runtime is reduced
by more than 20s. For these 10 test cases, on average, our proposed
algorithm shorts the runtime by 4.5s with the window size 24,000 and
6.7s with the window size 32,000.

Table 2: Runtime Comparison
Testcase W = 24,000 W = 32,000

[7](s) Ours(s) Diff(s) [7](s) Ours(s) Diff(s)
Test1 0.553 1.849 +1.296 0.601 1.115 0.514
Test2 1.518 3.371 +1.853 1.832 1.627 -0.205
Test3 12.302 8.042 -4.260 15.727 19.361 +3.634
Test4 2.275 5.592 +3.317 1.586 3.608 +2.022
Test5 23.725 2.841 -20.884 42.788 16.851 -25.937
Test6 12.420 8.515 -3.905 13.349 7.199 -6.150
Test7 35.509 25.835 -9.674 61.886 42.269 -19.617
Test8 29.159 18.267 -10.892 27.554 13.427 -14.127
Test9 7.737 11.550 +3.813 7.757 9.863 2.106
Test10 20.225 13.887 -6.338 24.745 14.961 -9.784
Ave - - -4.567 - - -6.754

8. Conclusion
In this paper, we propose a simple but efficient two-level hierarchical
approach to exactly identify the maximum density window fora given
EDWA problem. Comparing with the latest work [7], the new algorithm
can report the exact maximum window density with equivalentor even
shorter running time. Especially for the long runtime test cases, our
new algorithm shows big runtime reductions.

9. References
[1] A. B. Kahng, G. Robins, A. Singh, H. Wang and A. Zelikovsky, Filling

and Slotting: Analysis and Algorithm, ISPD, 1998.
[2] A. B. Kahng, G. Robins, A. Singh and A. Zelikovsky, New Multilevel

and Hierarchical Algorithms for Layout Density Control, Proc. Asia and
South Pacific Design Automation Conf., pp. 221-224, Jan. 1999.

[3] A. B. Kahng, G. Robins, A. Singh and A. Zelikovsky, Filling Algo-
rithms and Analyses for Layout Density Control, IEEE Transactions on
Computer-Aided Design 18(4), pp. 445-462, 1999.

[4] Y. Chen, A. B. Kahng, G. Robins, and A. Zelikovsky, Monte-Carlo Algo-
rithms for Layout Density Control, Proc. Asia and South Pacific Design
Automation Conf., pp. 523-528, Jan. 2000.

[5] R. Tian, D. F. Wong, R. Boone, Model-based Dummy Feature Placement
for Oxide Chemical-Mechanical Polishing Manufacturability, Proc. De-
sign Automation Conf, pp 667-670, 2000.

[6] X. Wang, C. C. Chiang, J. Kawa and Q. Su, A Min-Variance Iterative
Method for Fast Smart Dummy Feature Density Assignment in Chemical-
Mechanical Polishing, ISQED, pp. 258-263, 2005.

[7] H. Xiang, K. Chao, R. Puri and M. D. F. Wong, Is your layout density
verification exact? – a fast exact algorithm for density calculation. Proc.
ACM/IEEE Intl. Symp. on Physical Design, pp 19-26, March 2007.

