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ABSTRACT
In this paper, we propose an effective algorithm flow to handle large-
scale mixed-size placement. The basic idea is to use floorplanning to
guide the placement of objects at the global level. The flow consists
of four steps: 1) The objects in the original netlist are clustered into
blocks; 2) Floorplanning is performed on the blocks; 3) The blocks
are shifted within the chip region to further optimize the wirelength;
4) With big macro locations fixed, incremental placement is applied
to place the remaining objects. There are several advantages of han-
dling placement at the global level with a floorplanning technique.
First, the problem size can be significantly reduced. Second, exact
HPWL can be minimized. Third, precise object distribution can be
achieved so that legalization only needs to handle minor overlaps
among small objects in a block. Fourth, rotation and various place-
ment constraints on macros can be handled. To demonstrate the ef-
fectiveness of this new flow, we implement a high-quality floorplan-
guided placer calledFLOP. We also construct the Modern Mixed-
Size (MMS) placement benchmarks which can effectively represent
the complexities of modern mixed-size designs and the challenges
faced by modern mixed-size placers. Compared with state-of-the-art
mixed-size placers and leading macro placers, experimental results
show thatFLOP achieves the best wirelength, and easily obtains le-
gal solutions on all circuits.
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Figure 1: Previous two-stage approach.

In the nanometer scale era, placement has become an extremely
challenging stage in modern VLSI designs. Millions of objects need
to be placed legally within a chip region, while both the interconnec-
tion and object distribution have to be optimized simultaneously. As
an early step of VLSI physical design flow, the quality of the place-
ment solution has significant impacts on both routing and manufac-
turing. In modern System-on-Chip (SoC) designs, the usage of Intel-
lectual Property (IP) and embedded memory blocks becomes more
and more popular. As a result, a design usually contains tens or even
hundreds of big macros. A design with big movable macros and
numerous standard cells is known as mixed-size design, where the
placement of big macros plays a key role. Due to the big size differ-
ence between big macros and standard cells, the placement of mixed-
size designs is much more difficult than the standard-cell placement.
Existing placement algorithms usually cannot generate a legal solu-
tion by themselves. They have to rely on a post-placement legaliza-
tion process. However, legalizing big macros with wirelength mini-
mization has been considered very hard to solve for a long time.

1.1 Previous Work
Most mixed-size placement algorithms place both the macros and

the standard cells simultaneously. Examples are the annealing-based
placer Dragon [1], the partitioning-based placer Capo [2], and the an-
alytical placers FastPlace3 [3], APlace2 [4], Kraftwerk [5], mPL6 [6],
and NTUplace3 [7]. The analytical placers are the state-of-the-art
placement algorithms. They can produce the best result in the best
runtime. But, the analytical approach has two problems. First, only
an approximation (e.g., by log-sum-exp or quadratic function) of the
Half-Perimeter Wirelength (HPWL) is minimized. Second, the dis-
tribution of objects is also approximated and that usually results in a
large amount of overlaps. They have to rely on a legalization step to
resolve the overlaps. For mixed-size designs, such legalization pro-
cess is very difficult and is likely to significantly increase the HPWL.

Other researchers apply a two-stage approach as shown in Figure 1
to handle the mixed-size placement. An initial wirelength-driven
placement is first generated. Then a macro placement or legaliza-
tion algorithm is used to place only the macros, without considering
the standard cells. After that, the macros are fixed, and the standard
cells are re-placed in the remaining whitespace from scratch. As
the macro placement is a crucial stage in this flow, people propose
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Figure 2: New algorithm flow for mixed-size placement.

different techniques to improve the quality of result (QoR). Based
on the MP-tree representation, Chen et al. [8] used a packing-based
algorithm to place the macros around the four corners of the chip re-
gion. In [9], a transitive closure graph (TCG) based technique was
applied to enhance the quality of macro placement. One main prob-
lem with the above two approaches is that the initial placement is pro-
duced with large amount of overlaps. Thus, the initial solution may
not provide good indications on the locations of objects. However,
the following macro-placement stage still determines the macro lo-
cations by minimizing the displacement from the low-quality initial
placement. Alternatively, Adya et al. [10] used an annealing-based
floorplanner to directly minimize the HPWL among the macros and
clustered standard cells at the macro-placement stage. But, they still
have to rely on the illegal placement to determine the initial locations
of macros and clusters. For all of the above two-stage approaches,
after fixing the macros, the initial positions of standard cells have to
be discarded to reduce the overlaps.

1.2 Our Contributions
To effectively handle the complexities of mixed-size placement,

we present a new algorithm flow which efficiently integrates floor-
planning and incremental placement algorithms. As floorplanners
have a good capability of handling a small number of objects [2],
we apply floorplanning on the clustered circuit to generate a global
overlap-free layout, and use it to guide the subsequent placement al-
gorithm. This new flow is as follows (see Fig. 2).

1. Block Formation: The purpose of the first step is to cut down
the problem size. We define “small objects” as small macros
and standard cells. The small objects are clustered into soft
blocks, while each big macro is treated as a single hard block.

2. Floorplanning: In this step, a floorplanner is applied on the
blocks to directly minimize theexactHPWL. Simultaneously,
the objects are precisely distributed across the chip region to
guarantee an overlap-free layout.

3. Wirelength-driven Shifting : In order to further optimize the
HPWL, the blocks are shifted at the floorplan level. After shift-
ing, big macros are fixed. The remaining movable objects are
assumed to be at the center of the corresponding soft block.

4. Incremental Placement: Lastly, the placement algorithm will
place the remaining objects. The initial positions of such ob-
jects provided by the previous step are used to guide the incre-
mental placement.

Comparing this new methodology with the state-of-the-art analytical
placers, we can see that it is superior in several aspects: 1) The exact
HPWL is optimized in Steps 1–3; 2) The objects are more precisely

distributed in Step 2; 3) Placement constraints and macro orientation
optimization can be handled in Step 2. Compared with the previous
two-stage approach, instead of starting from an illegal initial place-
ment, we use the floorplanner to directly generate a global overlap-
free layout among the big macros,as well as between big macros and
small objects. In addition, the problem size has been significantly re-
duced by clustering. A good floorplanner should be able to produce
a high-quality global layout for the subsequent incremental placer.
Furthermore, the initial positions of the small objects are not dis-
carded. We keep such information as a starting point of incremental
placement. Since the big macros have already been fixed, the placer
avoids the difficulty of legalizing the big macros.

Based on the new algorithm flow, we implement a robust, effi-
cient and high-quality floorplan-guided placer calledFLOP. It can
effectively handle mixed-size placement with all movable objects in-
cluding both macros and standard cells.FLOPcan also optimize the
macro orientation respecting to packing and wirelength optimization.

To show the effectiveness ofFLOP, we derive the Modern Mixed-
Size (MMS) placement benchmarks from the original ISPD05/06
Placement Benchmarks. These new circuits can represent the chal-
lenges of modern large-scale mixed-size placement.

The rest of this paper is organized as follows. Section 2 describes
the overview ofFLOP. Section 3 introduces the block formation and
floorplanning algorithms. Section 4 presents the wirelength-driven
shifting technique. Section 5 describes the incremental placement
algorithm. Section 6 describes the MMS benchmarks. Section 7
presents the experimental results. Finally this paper ends with the
conclusion and future work.

2. OVERVIEW OF FLOP
FLOP follows the same algorithm flow as shown in Figure 2.
The block formation is based on the result of recursive partition-

ing of the original circuit. After partitioning, small objects in each
partition are clustered into a soft block and each big macro becomes
a single hard block.

In the floorplanning step,FLOP adopts a min-cut based fixed-
outline floorplanner similar toDeFer [11]. In DeFer, a hierarchy of
the blocks needs to be derived using recursive partitioning. Because
such a hierarchy has already been generated during the block for-
mation step, it will be passed down and will not be generated again.
Another way to look at the flow ofFLOP is that the block formation
step is merged into the floorplanning step as the first stage ofDeFer.

We formulate the wirelength-driven shifting problem as a linear
programming (LP) problem. Therefore, we can find theoptimal
block position in terms of the HPWL minimization among the blocks.
In the LP-based shifting we only ignore the local netlist among small
objects within each soft block.

Because analytical placers have the best capability in placing a
large number of small objects, we use an analytical placer as the
engine in the incremental placement step.

3. BLOCK FORMATION AND FLOORPLAN-
NING

A high-quality and non-stochastic fixed-outline floorplannerDe-
Fer was presented in [11]. It has been shown that, compared with
other fixed-outline floorplanners,DeFer achieves the best success
rate, the best wirelength and the best runtime on average.

Here is a brief description of the algorithm flow ofDeFer: Firstly
the original circuit is partitioned into several subcircuits, each of
which contains at most10 objects. After that, a high-level slicing
tree structure is built up. Secondly, for each subcircuit an associ-
ated shape curve is generated to represent all possible slicing layouts
within the subcircuit. Thirdly, the shape curves are combined from



bottom-up following the high-level slicing tree. In the final shape
curve at the root the points within the fixed outline are chosen for
further HPWL optimization. At the endDeFeroutputs a final layout.

In FLOP, we useDeFerin the floorplanning step. To make it more
robust and efficient for mixed-size placement, we propose some new
techniques and strategies, which are described in Sections 3.1–3.3.

3.1 Usage of Exact Net Model
We use the exact net model in [12] to improve the HPWL in par-

titioning. By applying this net model in partitioning, the cut value
becomes exactly the same as the placed HPWL, so that the parti-
tioner can directly minimize the HPWL instead of interconnections
between two partitions. InFLOPat the firstβ levels of the high-level
slicing tree (β = 3 by default), we apply two cuts on the original par-
tition. One is horizontal cut, and another is vertical cut. We compare
these two cuts and pick the one with less cost, i.e. HPWL.

However, for a vertical/horizontal cut, the cut value returned by the
net model is only equal the horizontal/vertical component of HPWL.
So for two cuts with different directions, it is incorrect to decide a
better cut direction based on the two cut values generated by these
two cuts. The authors in [12] avoided such comparison by fixing the
cut direction based on the dimension of the partition region. Nev-
ertheless, this may potentially lose the better cut direction. Here we
propose a simple heuristic to solve the cut value comparison between
the cuts from two different directions.

SupposeK is the total number of nets in one partition that we
are going to cut. For the horizontal cut (H-cut),Lx
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Thus, the correct way to make the comparison between H-cut and
V-cut should be:

if LH ≥ LV ⇒ V-cut is better
if LH < LV ⇒ H-cut is better

As the net model only returns
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for V-cut, we need find a way to estimate
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Let the aspect ratio (i.e. height/width) of the partition region beγ.
WhenK is very big, based on statistics we can have:
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Thus,

if Ly
H ≥ Lx

V · γ ⇒ V-cut is better
if Ly

H < Lx
V · γ ⇒ H-cut is better

Two reasons prevent us from applying the net model in lower
levels (> β): 1) As partitioning goes on,K becomes smaller and
smaller, which makes the approximation of
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inaccurate; 2) Using the net model, we restrict the combine direction
in the Generalized Slicing Tree [11], which hurts the packing quality.
To make a trade-off we only apply the net model in the firstβ levels.
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Figure 3: Generation of shape curves for blocks.

3.2 Block Formation
As mentioned earlier, sinceDeFerstarts with a min-cut partition-

ing, FLOP merges the block formation step into the floorplanning
step. After the original circuit is partitioned into multiple subcir-
cuits, in each subcircuit we treat a big macro as a hard block, and
cluster all small objects into a soft block.

However, inDeFerthe partitioning will not stop until each subcir-
cuit contains less than or equal to10 objects. If the same stopping
criteria is used inFLOP, then most subcircuits will contain at most
10 standard cells, which means by clustering we can only cut down
the problem size by at most90%. Nevertheless, for a typical place-
ment problem with millions of objects, the resulted circuit size is still
too big for the floorplanning algorithm. So here we propose a more
suitable stopping criteria. LetAo be the total area of all objects in
the design. In one partition there areNp objects of which the total
area isAp, α is the area bound (α = 0.15% by default). We will
stop cutting this partition, ifeitherone of the following conditions is
satisfied: 1)Ap

Ao
≤ α; 2) Np ≤ 10.

3.3 Generation of Shape Curve for Blocks
To capture the shape of the blocks, we generate an associated

shape curve for each block. For the hard block if a macro cannot
be rotated, only one point representing the user-specified rotation is
generated (see Fig. 3 (a)). Otherwise two points representing two dif-
ferent rotations are generated (see Fig. 3 (b)). For the soft block we
bound its aspect ratio from1/3 to 3, and sample multiple points on
the shape curve to represent its shape (see Fig. 3 (c)). Considering
the target density constraint in the placement, we add some white
space in each soft block. In some sense, we "inflate" the soft block
based on the target density.

A′

si
=

Asi

TD
× (max((TD − 0.93), 0) × 0.5 + 1) (1)

In Equation 1, for soft blocki, A′

si
is the “inflated area”,Asi

is the
total area of objects within soft blocki, andTD is the target density.
Based on this formula, if the target density is more than93%, we add
some white space into the soft block. The purpose is to leave some
space for the analytical placer to place the small objects.

4. WIRELENGTH-DRIVEN SHIFTING
In FLOP the wirelength-driven shifting process is formulated as a

linear programming (LP) problem, which is the same as in [13]. We
use the contour structure [14] to derive the horizontal and vertical
non-overlapping constraints among the blocks.

The LP-based shifting is an essential part inFLOP. In terms of the
HPWL minimization it can find the optimal position for each block,
and basically provides a globally optimized layout for the analyti-
cal placer. Since the LP-based shifting optimizes the HPWL at the
floorplan level, it only ignores the local nets among the small objects
within each soft block. The smaller the soft block is, the less nets it
ignores, and the better the HPWL we will get at last. However, if the



soft blocks become too small, numerous nets will be considered in
the shifting. This would slow down the whole algorithm. Because of
this, in the partition stopping criteria we set an area boundα, so that
the soft blocks would not become too small. On the other hand, we
only need the shifting step to generate a globally good layout. Re-
garding the local nets within the soft blocks, the following analytical
placer can handle them very efficiently and effectively.

5. INCREMENTAL PLACEMENT
As mentioned before, the output of the wirelength-driven shift-

ing step is a layout with legal, non-overlapping locations for the big
macros. These big macros are then fixed in place to prevent further
movement during any subsequent steps. But, there are multiple “soft
blocks” in the layout, each containing numerous “small objects” (i.e.,
small macros and standard cells). The shifting step assigns these
small objects to the center of the corresponding soft block. In this
respect, the placement step has two key tasks: 1) Spread the small
objects over the placement region and obtain a final overlap free
placement among all objects; 2) Use the initial locations of the small
objects as obtained by the shifting step.

To satisfy these two tasks, we use an efficient analytical incremen-
tal placement algorithm (see Algorithm1).

Algorithm 1 Analytical Incremental Placement
1: Phase 0: Physical and Netlist based clustering
2: initial_objects← number_of_small_objects
3: set locations of small objects to center of their soft blocks
4: while number_of_clusters> target_number_of_clustersdo
5: cluster netlist using Best-choice clustering [15]
6: use physical locations of small objects in clustering score
7: setcluster_location← center of gravity of the objects within cluster
8: end while
9: end
10: Phase 1: Coarse global placement
11: generate “fixing forces” for clusters based on their initial locations
12: solve initial quadratic program (QP)
13: repeat
14: performCell Shifting[3] on coarse-grain clusters
15: add spreading forces to QP formulation
16: solve the quadratic program
17: until placement is roughly even
18: repeat
19: performIterative Local Refinement[3] on coarse-grain clusters
20: until placement is quite even
21: uncluster movable macro-blocks
22: legalize and fix movable macro-blocks
23: end
24: Phase 2: Refinement of fine-grain clusters
25: while number_of_clusters< 0.5*number_of_small_objectsdo
26: uncluster netlist
27: end while
28: performIterative Local Refinementon fine-grain clusters
29: end
30: Phase 3: Refinement of flat netlist
31: while number_of_clusters< number_of_small_objectsdo
32: uncluster netlist
33: end while
34: performIterative Local Refinementon flat netlist
35: end
36: Phase 4: Legalization and detailed placement
37: Legalize the standard cells in the presence of fixed macros
38: Perform detailed placement [16] to further improve wirelength
39: end

6. MMS BENCHMARKS
The only publicly available benchmarks for mixed-size designs

are ISPD02 and ICCAD04 IBM-MS [10, 17] that are derived from
ISPD98 Placement Benchmarks. As pointed out in [18], these cir-
cuits can no longer be representative of modern VLSI physical de-
sign. To continue driving the progress of physical design for the

academic community, two suites of placement benchmarks [18, 19]
have been released recently. They are directly derived from modern
industrial ASICs design. Unfortunately, however, in the original cir-
cuits most macros have been fixed due to the difficulty of handling
movable macros for the existing placers. The authors in [8, 9] freed
all fixed objects in ISPD06 benchmarks and created new mixed-size
placement circuits. But seven out of eight circuitsdo nothave any
fixed I/O objects, which is not realistic in the real designs. In order to
recover the complexities of modern mixed-size designs, we modify
the original ISPD05/06 benchmarks and derive the Modern Mixed-
Size (MMS) placement benchmarks (see Table 1). Essentially, we
make the following changes on the original circuits.

I. Macros are freed from the original positions. In the GSRC
Bookshelf format that the original benchmarks use, both fixed macros
and fixed I/O objects are treated as fixed objects. There is no extra
specification to differentiate them. So we have to distinguish them
only based on the size differences. Basically, if the area of one fixed
object is more thanλ× the average area of the whole circuit, we
will recognize it as a macro. Otherwise, it is a fixed I/O object. Be-
cause for each circuit the average area is different, we need to use
a differentλ (see the last column in Table 1) to decide a reasonable
number and suitable threshold size for the macros. There is one ex-
ception: in both circuitsbigblue2andbigblue4, there is one macro
that does not connect with any other objects. If this macro is freed,
it may cause some trouble for quadratic-based analytical placers. So
we keep it fixed. Since this macro is also very small compared with
other macros, it would not affect the circuit property.

II. The sizes of all I/O objects are set to zero.In MMS bench-
marks there are two types of I/Os:perimeter I/Osaround the chip
boundary andarea-array I/Osspreading across the chip region. Gen-
erally, the area-array I/Os are allowed to be overlapped with other
movable objects in the design. But existing placers treat all fixed
I/Os as fixed objects, so that their algorithmsinternally do not allow
such overlaps during the legalization. Since the macros have already
been freed in MMS benchmarks, the placers should ignore the over-
laps between fixed I/O objects and movable objects, and concentrate
on the legalization of movable objects. As we cannot change the code
of other placers, one simple way to enforce this is to set the sizes of
all I/O objects to zero.

The target density constraints are the same as the original cir-
cuits. The same scoring function1 is used to calculate the scaled
HPWL. However, since the macros are movable in the MMS cir-
cuits, we need to modify the script used in [19] to get the correct
“scaled_overflow_factor”. The modification being: Any movable
macro that has a width or height greater than the bin dimension used
for scaled overflow calculation, is now treated as a fixed macro dur-
ing scaled overflow calculation. Note that, this was the method em-
ployed by the original script onnewblue1, which is the only design
that has big movable macros in the original circuits. It is required to
treat big movable macros as fixed, otherwise we will get an incorrect
picture of the placement density.

We have discussed the MMS benchmarks setup with the authors
in [18, 19]. To keep the original circuit properties as much as pos-
sible, the above changes are the best we can do without accessing
the original industrial data of the circuits. The MMS benchmarks are
publicly available at [20].

7. EXPERIMENTAL RESULTS
All experiments were performed on a Linux machine with AMD

Opteron 2.6 GHz CPU and 8GB memory. We usehMetis2.0[21]
as the partitioner andQSopt [22] as the LP solver. The seed of
hMetis2.0is set to5. Essentially, we set up four experiments.
1scaled_HPWL = HPWL * (1 + scaled_overflow_factor)



Circuit #Objects #Movable Objects #Standard Cells #Macros #Fixed I/O Objects #Net #Net Pins Target Density% λ

adaptec1 211447 210967 210904 63 480 221142 944053 100 70
adaptec2 255023 254584 254457 127 439 266009 1069482 100 160
adaptec3 451650 450985 450927 58 665 466758 1875039 100 650
adaptec4 496054 494785 494716 69 1260 515951 1912420 100 460
bigblue1 278164 277636 277604 32 528 284479 1144691 100 120
bigblue2 557866 535741 534782 959 22125 577235 2122282 100 30
bigblue3 1096812 1095583 1093034 2549 1229 1123170 3833218 100 470
bigblue4 2177353 2169382 2169183 199 7970 2229886 8900078 100 550
adaptec5 843128 842558 842482 76 570 867798 3493147 50 440
newblue1 330474 330137 330073 64 337 338901 1244342 80 2000
newblue2 441516 440264 436516 3748 1252 465219 1773855 90 190
newblue3 494011 482884 482833 51 11127 552199 1929892 80 170
newblue4 646139 642798 642717 81 3341 637051 2499178 50 400
newblue5 1233058 1228268 1228177 91 4790 1284251 4957843 50 570
newblue6 1255039 1248224 1248150 74 6815 1288443 5307594 80 650
newblue7 2507954 2481533 2481372 161 26421 2636820 10104920 80 650

Table 1: Statistics of the Modern Mixed-Size placement benchmarks.

I. To test the capability of handling the large-scale mixed-size
placement, we compareFLOP with five state-of-the-art mixed-size
placersAPlace2, NTUplace3, mPL6, Capo10.5and Kraftwerk on
MMS benchmarks.Before the experiments, we have contacted the
authors of each placer above, and they provided us their best-available
binary for MMS circuits.In Table 2, for the ISPD06 circuits (adaptec5
– newblue7) the reported HPWL is the scaled HPWL.FLOP is the
default mode ofFLOP with all macros rotatable, andFLOP-NRre-
stricts the rotation on all macros.APlace2crashed on every circuit,
so we do not report its results. For the default mode,FLOPgenerates
8%, 2%, 44% and26% better HPWL compared withNTUplace3,
mPL6, Capo10.5and Kraftwerk, respectively. About the runtime,
FLOP is 7× and3× faster thanCapo10.5andmPL6. Also FLOP
achieves legal solution on all circuits. Compared withFLOP-NR,
FLOPgenerates4% better HPWL by rotating the macros.

II. To show the importance of the initial positions of small objects
in the incremental placement step, we generate the results ofFLOP-
NI thatdiscardssuch information and places all small objects from
scratch. As shown in Table 2,FLOP-NIproduces5% worse HPWL
and17% slower thanFLOP.

III. We compareFLOP with leading macro placersCG, MPTand
XDP. Due to theIP issues, their binaries are not available. But
the authors sent us the benchmarks used in [9]. So in Table 3 the
other placers’ results are cited from [9]. These benchmarks allow
the rotation of macros and do not consider the target density. As
shown in Table 3,FLOP achieves1%, 12%, 7% and 14% better
HPWL compared withCG, MPT, XDPandNTUplace3, respectively.
To show which algorithm provides the best macro location, we use
NTUplace3to substitute the incremental placer insideFLOP (NTU-
place3does not support incremental placement). The results show
that FLOP+NTUplace3generates9% worse HPWL thanCG. But
this does not meanFLOP is weaker thanCG in terms of handling
the macros. We observe thatFLOP+NTUplace3produces signifi-
cantly worse HPWL onnewblue7. However, using thesamemacro
locations generated byFLOP, the incremental placer insideFLOP
achieves thebestHPWL on newblue7. We believe this is because
NTUplace3is not an incremental placer. As shown earlier, non-
incremental placement will significantly degradeFLOP’s result.

IV. The runtime breakdown ofFLOP is shown in Figure 4. We can
see that the LP-based shifting takes almost1/3 of the total runtime.
This is the main bottle neck of the runtime inFLOP.

8. CONCLUSION
This paper presents a new algorithm flow for large-scale mixed-

size placement. To show the effectiveness of such flow, a high-
quality mixed-size placerFLOP is proposed. Compared with state-
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Figure 4: Runtime breakdown of FLOP.

of-the-art mixed-size placers and leading macro placers,FLOPachieves
the best HPWL, and easily produces the legal layout for every circuit.

We believe there is much room to further improve the QoR of
FLOP. For example, we can use the min-cost flow algorithm to sub-
stitute the linear programming formulation in order to speed up the
LP-based shifting step. We also observe that the partitioning takes
around80% of the total runtime in the floorplanning step. Thus a
stand-alone clustering algorithm is needed in the block formation
step to cut down the problem size before partitioning. This will def-
initely improve both the runtime and HPWL. In the future, different
floorplanners and placers can be incorporated into this flow to handle
other problems, e.g. placement with geometry constraints.
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