
The Coming of Age of Physical Synthesis
Charles J. Alpert

Manager
Design Productivity Group

IBM Research
Austin, TX 78758

Chris Chu
Associate Professor
Department of ECE

Iowa State University
Ames, IA 50011

Paul G. Villarrubia
Senior Technical Staff Member
Server and Technology Group

IBM Corp.
Austin, TX 78758

Abstract— Physical synthesis, the integration of logic syn-
thesis with physical design information, was born in the mid
to late 1990s, which means it is about to enter its teenage
years. Today, physical synthesis tools are a major part of the
EDA industry, accounting for hundreds of millions of dollars
in revenue. This work looks at how technology and design
trends have affected physical synthesis over the last decade
and also how physical synthesis will continue to evolve on its
way to adulthood.

I. INTRODUCTION

Physical synthesis is motivated by the technology trend
that is driving the increasing magnitude of wire delay as a
percentage of total circuit performance. Several technology
generations ago, when wire delays were insignificant, the
timing of a placed circuit for the most part matched the
timing of an unplaced circuit. As wire delays became more
significant, there emerged a mismatch in timing between
the unplaced and physical implementation of the design.
Developers realized early on that wire characteristics could
be predicted based on a known placement and looked
for ways to combine placement technology with synthesis
technology to achieve timing closure. This process drove
new requirements into placement, synthesis and timing
tools.

Today, deep sub-micron effects have necessitated that
physical synthesis evolve from timing to design closure.
Here multi-faceted objectives in routability, area, yield,
clock skew, and power must all be managed. This paper be-
gins by outlining the fundamental components of physical
synthesis and how they can be a timing closure flow. Next
it will explore how various aspects of physical synthesis
have matured and morphed as physical synthesis has come
of age.

II. OVERVIEW OF PHYSICAL SYNTHESIS

An example fundamental physical synthesis flow is as
follows (see [1] for more details):

1. Netlist preparation. Before placement, gates may
need to be sized to fit into the image space, buffers
may need to be removed, clock trees hidden, etc. In
addition, timing information can be extracted from either
an unplaced or a previously optimized netlist to generate
netweights for timing driven placement.

2. Placement. Besides just traditional minimum wire-
length optimization, placement needs to address density

targets, designer cell movement constraints, and routability
directives.

3. Timing Analysis. After placement, one can run static
timing analysis to see how much timing degradation has
occurred and identify nets with signal integrity problems.

4. Electrical Correction. After placement, one may find
gates which drive load above the allowed specification and
long wires for which the signal exceeds the designer spec-
ified slew rate. Electrical correction fixes these problems,
typically through buffering and gate sizing, thereby getting
the design into a reasonably good timing state. One can
also employ a logical effort [2] type of approach to get
the design into a reasonably good global state in terms of
timing closure.

5. Legalization. Fixing electrical violations may insert
hundreds of thousands of buffers into the design, and
potentially every gate in the design may be resized. This
certainly will introduce cell overlaps and make the design
illegal. Legalization fixes these overlaps. Ideally, a legal-
ization approach should fix problems without moving cells
too far from their intended location since big movements
can potentially undo the work from the previous stage.

6. Critical Path Optimization. At this point the design
is legal and in a reasonable state to begin identifying
the set of most critical paths to work on and fix with
incremental synthesis techniques [3]. This phase can be
run with incremental timing analysis to give feedback as to
whether a given logic transformation really did improve the
path in question. These optimizations can also be followed
by intermittent calls to legalization.

7. Compression. Critical path optimizations may be-
come stuck rather quickly, when it reaches a certain set of
paths that are the most critical yet cannot be fixed without
manual design intervention. However, there still could be
thousands of failed timing points that exist that could
be fixed with light weight optimization (e.g., incremental
buffering and gate sizing). The purpose of this phase
is to “compress” the remaining negative portion of the
timing histogram to leave as little work as possible for
the designer. As in the previous step, incremental timing
analysis and legalization needs to be incorporated where
appropriate.

After these steps, the design may still be far from closing
on timing constraints. At this point, a designer could
intervene manually or re-run the flow to get a better timing-



driven placement now that the real timing problems have
been identified. If the design is close enough to closing,
one can enter a phase of more fine grained optimizations,
including post-routing timing correction.

Note that this flow is just a template and may be missing
several key components of an industrial strength tool. For
example, one needs to deploy techniques that recover when
the design goes off into a poor state. When certain portions
of the design get full, there may be no room left for
optimizations to make changes to improve timing. One can
deploy area recovery techniques (such as sizing down non-
critical gates) to free up space for optimizations to make
progress. One can also apply local recovery techniques
when certain areas get too hot or too congested for routing.

III. COMING OF AGE

This section discusses various aspects or components of
physical synthesis in the context of how the problems have
changed over the preceding decade.

A. Global Placement
When physical synthesis was young, improvements in

netlist partitioning emerged to drive new algorithms for
min-cut placement [4]. Around the same time, quadratic
and force-directed methods started coming onto the aca-
demic scene [5] though may have been used in industry
long before.

Only recently has the design automation community
begun to understand the advantages and limitations of the
different algorithms, in large part due to recent placement
contests [6] [7]. One trend that emerged is that analytical
techniques do a better job in managing the free space for
fragmented top-level ASIC designs as shown in Figure 1.
Another is that it was shown that high-quality results can
be obtained with significantly less run time [8]. There is
no question that placement tools have improved greatly in
terms of pure wirelength and also speed and scalability.
Today there is widespread use of force directed techniques
due to the algorithmic efficiency of these approaches as
well as the ability to readily adapt to a netlist that is
changing during the synthesis process itself.

The fact that now it may take multiple cycles to cross
the chip is breaking down traditional placement objectives.
Figure 2 shows two placements of a latch with the same
wirelength, but only placement (b) will meet its cycle
time if it takes two cycles to cross the chip. Current
placement algorithms will not distinguish between these
solutions, and timing-driven placement may not help either.
For example, a lower net weight for the rightmost net could
simply force the latch to slam its way to the other side.

B. Legalization
One can represent the placement region as a series of

bins, each of which contains its local density information.
Then incremental optimization could query a bin to see if
it had space before making a change, such as increasing
the gate size. After enough optimization had taken place,

Fig. 1. Solution by APlace (top) and Capo (bottom) for adaptec2 in
ISPD 2005 placement contest.

Fig. 2. Placement of latch in (a) has worse timing than the placement
in (b) though they have equal wirelength.

legalization could then reconcile the changes in each bin
and once again have a legal placement. As long as the bins
did not get overfilled, this was not a problem.

Interconnect delays increasing relative to gate delays
has caused the number of netlist changes (especially in
terms of buffering) to increase dramatically, which causes
the bin-based model to break down. Today, a new model
for early optimization is to allow cells to be placed at
their desired locations and ignore bins entirely. Then,
modern legalization techniques that smoothly spread such
as diffusion [9] or cell shifting [8] can be used to legalize
the design without too much disruption.

Physical synthesis is also moving away from legaliza-
tion entirely and instead relying on an incremental mode
whereby legal locations are found for cells the moment
that they are inserted. This way, the design is always legal
after any transformation has occurred. Consider increasing
the size of a cell that no longer fits in its current space.
The “legalization” engine could find a new nearby location



or try and slide its neighbors out of the way, creating
a rippling effect that may affect other paths. This kind
of pin-point surgical precision is emerging as extremely
critical for successful late post-routing optimization and
ECOs where one can ill-afford for legalization to disrupt
carefully tuned paths.

C. Buffering
In the early days of physical synthesis, topology-aware

buffering emerged for load considerations and critical path
optimization; the newly inserted buffers could be absorbed
into the placement image fairly easily. Today, a large
ASIC could require hundreds of thousands of buffers
[10] because highly resistive wires create signal integrity
problems in just a short distance. This means one must
emphasize algorithms that are extremely fast and power
efficient, potentially at the expense of delay.

While this trend causes a headache for legalization,
it also severely restricts the ability to route. For a long
unbuffered net, the router has a lot of flexibility to choose
the topology for the net. But if the net has a buffer inserted
every millimeter, then the flexibility is eliminated. The
router can only choose the routes for the short connections
between buffers. If buffers are placed in highly congested
routing regions, the router has no choice but to route to the
buffers and congestion cannot be alleviated. Consequently,
buffering has forced routability to be considered even
earlier in the flow.

Crossing the chip in multiple cycles is also forcing
buffering and latch placement to become integrated. While
algorithmically this is fairly simple, making sure all the
latches are globally placed well is certainly a challenge
(as discussed in Section III-A).

D. Routability
When physical synthesis was a toddler, global routing

was an afterthought. One could perform timing closure
and generally route the design without too much difficulty.
Of course, this is no longer the case. Not only does
global buffering restrict a router’s flexibility, but having
routes go scenic to avoid congestion can cause nasty
timing surprises. Complex design rules and DFM effects
for 65 nanometer technologies and beyond only exacerbate
congestion problems.

Fast and accurate routing and congestion estimation
techniques are emerging to aid with optimization. For ex-
ample, FastRoute [11] is a new, high-quality global router
which is two orders of magnitude faster than previous
global routers, thereby enabling it to be embedded into
congestion mitigation algorithms. It utilizes an extremely
fast and accurate rectilinear Steiner minimal tree algorithm
called FLUTE [12] that makes use of pre-computed lookup
table to efficiently handle nets with up to nine pins (and
uses recursive techniques for larger nets). This router has
also been incorporated into FastPlace and is effective at
significantly reducing routing congestion without sacrific-
ing much wirelength or runtime [13].

We anticipate seeing other optimizations such as buffer-
ing, legalization, and wire synthesis also become more
congestion driven in the future. In addition, pre-routing
based optimizations will need to keep a closer eye on noise
and signal integrity to make sure they do not force the
router to place competing aggressor wires next to each
other.

E. Wire Synthesis
The wire sizing literature was actually quite active in

the 1990s (e.g., [14] [15]); however, industry regards these
works as somewhat impractical because routers cannot
easily support topologies with multiple and/or continuous
wire widths. Instead, one could simply use uniform wire
sizing to achieve most of the performance benefit [16].
However, physical synthesis has always had to use wire
sizing cautiously since it could have a detrimental effect
on the ability to route. For example, sizing a wire up to
three routing tracks from one routing track may reduce
wire delay significantly, but it also removes two potentially
precious routing tracks. Since routing is more difficult than
ever, one cannot afford to just size up too many wires.

With 65 nanometer technologies and beyond, there are
new “wire sizing” problems that really fall under the
category of layer assignment. Figure 3 shows a cross
section of a routing tile with 14 routing tracks, of which
eight belong to a single 1x thickness layer, four belong
to a double 2x thickness layer, and two belong to top 4x
metal. If one wants to assign a wire in this tile to the
thickest metal to get the best performance, there are two
tracks of thickest metal available to choose from, and this
assignment does not consume any extra routing resources!

Fig. 3. Layer assignment for 65nm and beyond.

The problem now becomes to perform a global layer
assignment of wires to each level of metal, and the delays
incurred by this assignment need to be taken into account
during physical synthesis, which means they need to hap-
pen before routing. Further, there needs to be a mechanism
through which this assignment is communicated to the
router, e.g., as a hard constraint (this net must be on top
metal) or a soft constraint (this net is preferred to be on
top metal). One must also be careful not to ignore the high
via cost of going up to thick metal, both in terms of delay
and its effect on blocking routes on lower metal layers.

Physical synthesis is just beginning to scratch the surface
in this space. Moving forward the trend is towards a world



where there are no more wires, just strings and trees of
buffers, all motivated by the physical characteristics of
wiring as well as the physical topology of the wire sink
placement.

F. Gate Sizing
Gate sizing is a core component of physical synthesis.

Incremental timing closure becomes much easier if one
begins from a reasonably good starting state. One well-
known technique for coarse gate sizing is logical effort
[2]. In the last decade, this sizing problem has not changed
too significantly, except that now it is more important to
achieve timing closure with minimum area and power.

Advanced technologies have more than one voltage
threshold (Vt) library available. Soon libraries with three
or four levels will be common. By changing the Vt assign-
ment of a gate from a high Vt to a low Vt gate, one can
sacrifice power for a performance gain. Of course, using all
low Vt gates will give the best timing performance while
completely blow through any reasonable power budget.

The assignment of gates to different Vt libraries needs to
be managed throughout physical synthesis. After electrical
correction, one can perform a global Vt assignment but as
more paths close on timing, this assignment can become
stale. One needs to be able to recover power by moving
low Vt cells back to high Vt. There are many different
strategies one could use to manage the power budget; at the
extremes, one could start by assigning all gates to low Vt
and recovering as much power as possible or alternatively
starting from all high Vt and only deploying low Vt when
absolutely required.

G. Timing Analysis
The underlying timing technology is also driven by

deep-submicron trends. While fast incremental timing has
always been a core component of physical synthesis,
incremental timing needs to work in modes of variable
accuracy and variable detail. In the early phases, one can
use fast, abstracted models such as table lookup circuit
delay models and Elmore delay model. In the later stages
of physical synthesis, more detailed timing simulations
and interconnect analysis that matches SPICE accuracy
are deployed. Optimizations that use extracted information
from routing and statistical timing are emerging.

H. Clock Tree Synthesis
In the early days of physical synthesis, clock tree synthe-

sis could occur outside the core flow. It could be inserted
after timing closure, followed by incremental optimization
to clean up any new paths created via clock skew.

Today, to conserve clock tree power, latches can be
placed into local clumps so that there is minimal wire
and skew at the final stages of the clock tree. Further,
useful skew trees have become commonplace. One could
potentially fix critical paths through adjustments on the
clock tree as well as on the logic of the critical paths itself.
The future will likely see richer sets of incremental clock

tree synthesis as well as non-tree clock topologies such as
grid-trees to reduce variability.

IV. FROM ADOLESCENCE TO ADULTHOOD

Over the next decade, physical synthesis will grow from
an adolescent into an adult and continue to evolve. In the
next generation of physical synthesis, it will be possible
to drive routers to be timing aware, to put critical nets
and connections onto preferred wiring planes, and to select
preferred wire topologies. Wire synthesis is also motivated
by signal integrity issues that can cause timing and func-
tional fails in a circuit. Routers are being driven into an
incremental functional footprint so that they can be driven
by higher level optimization algorithms. In this new phase
of physical synthesis, one can expect to see timing driven
routing and re-routing, incremental re-placement and re-
routing, and re-routing to avoid signal integrity issues.
In summary, we see that the industry has accomplished
much in the area of placement based physical synthesis.
Going forward we see that there is much to be gained by
integrating wiring into the process.

REFERENCES

[1] C. J. Alpert, S. K. Karandikar, Z. Li, G.-J. Nam, S. T. Quay, H. Ren,
C. N. Sze, P. G. Villarrubia, and M. C. Yildiz. Techniques for fast
physical synthesis. Proc. of IEEE, 95(3):573–599, March 2007.

[2] Ivan Sutherland, Robert F. Sproull, and David Harris. Logical
Effort: Designing Fast CMOS Circuits. Morgan Kauffman, 1999.

[3] L. Trevillyan, D. Kung, R. Puri, L. N. Reddy, and M. A. Kazda. An
integrated environment for technology closure of deep-submicron
IC designs. IEEE Design and Test of Computers, 21(1):14–22, Jan-
Feb 2004.

[4] A. E. Caldwell, A. B. Kahng, and I. L. Markov. Can recursive
bisection produce routable placements. In Proc. ACM/IEEE DAC,
pages 477–482, 2000.

[5] H. Eisenmann and F. Johannes. Generic global placement and
floorplanning. In Proc. ACM/IEEE DAC, pages 269–274, 1998.

[6] G.-J. Nam, C. J. Alpert, P. Villarubbia, B. Winter, and M. Yildiz.
The ISPD2005 placement contest and benchmark suite. In Proc.
ISPD, pages 216–220, 2005.

[7] G.-J. Nam. ISPD 2006 placement contest: Benchmark suite and
results. In Proc. ISPD, page 167, 2006.

[8] Natarajan Viswanathan and Chris Chu. FastPlace: Efficient analyt-
ical placement using cell shifting, iterative local refinement and a
hybrid net model. In Proc. ISPD, pages 26–33, 2004.

[9] H. Ren, D. Z. Pan, C. J. Alpert, and P. Villarrubia. Diffusion-based
placement migration. In Proc. ACM/IEEE DAC, pages 515–520,
2007.

[10] Pete Osler. Placement driven synthesis case studies on two sets of
two chips: hierarchical and flat. In Proc. ISPD, pages 190–197,
2004.

[11] Min Pan and Chris Chu. FastRoute 2.0: A high-quality and efficient
global router. In Proc. ASPDAC, pages 250–255, 2007.

[12] Chris Chu and Yiu-Chung Wong. FLUTE: Fast lookup table base
rectilinear Steiner minimal tree algorithm for VLSI design. IEEE
TCAD, 2007.

[13] Min Pan and Chris Chu. IPR: An integrated placement and routing
algorithm. In Proc. ACM/IEEE DAC, pages 59–62, 2007.

[14] Jason Cong and Kwok-Shing Leung. Optimal wiresizing under the
distributed Elmore delay model. In Proc. IEEE/ACM ICCAD, pages
634–639, 1993.

[15] J. P. Fishburn. Shaping a VLSI wire to minimize Elmore delay. In
Proc. European Design and Test Conference, 1997.

[16] Charles J. Alpert, Anirudh Devgan, John Fishburn, and Stephen T.
Quay. Interconnect synthesis without wire tapering. IEEE TCAD,
20(1):90–104, January 2000.


