
Analog Placement with Symmetry and
Other Placement Constraints ∗

Yiu-Cheong Tam Evangeline F.Y. Young Chris Chu
Department of CSE Department of ECE

The Chinese University of Hong Kong Iowa State University
02654543@alumni.cse.cuhk.edu.hk fyyoung@cse.cuhk.edu.hk cnchu@iastate.edu

ABSTRACT
In order to handle device matching in analog circuits, some
pairs of modules are required to be placed symmetrically. This
paper addresses this device-level placement problem for analog
circuits and our approach can handle symmetry constraint and
other placement constraints simultaneously. The problem of
placing devices with symmetry constraint has been extensively
studied but none of the previous works has considered symme-
try constraint with other placement constraints simultaneously.
Instead of handling the constraints by having a penalty term
in the cost function to penalize violations, a unified method is
proposed that, by adjusting the edge weights in a pair of con-
straint graphs, can try to satisfy all the placement and symme-
try constraints simultaneously in a candidate floorplan solution.
The maximum distance of the modules in a symmetry group
from the corresponding symmetry axis will be minimized in this
weight adjusting step, in order to minimize the total packing
area. We have compared our method with the most updated
results on this problem [2] when there are only symmetry con-
straints and results show that our approach can give solutions
of better quality, in an acceptable amount of run time. We will
also demonstrate the effectiveness of our approach in handling
different types of constraints simultaneously by testing on data
sets with both symmetry and other placement constraints, and
the results are very promising.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids - Layout, Placement
and routing; J.6 [Computer-Aided Engineering]: Computer-
aided design(CAD)

General Terms
Algorithms, Design, Theory

Keywords
Analog circuits, Placement, Symmetry constraints, Sequence-
Pair

∗This work was supported by the Direct Grant for Research of
the Chinese University of Hong Kong, under Project 2050321.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD’06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011 ...$5.00.

1. INTRODUCTION
In the design of analog circuits, it is often required to have

some devices (modules) to be placed symmetrically with re-
spect to one or several common axes. The main reason is to
match the layout-induced parasitics. Failure to do so may lead
to higher offset voltages and degraded power-supply rejection
ratio [5]. Placing devices symmetrically can also reduce the
circuit sensitivity to thermal gradients.

The problem of placing devices with symmetry constraint has
been extensively studied [6, 8, 10, 1, 12, 2]. Most of them used
simulated annealing as an optimization engine based on a pack-
ing representation. We can classify these representations into
two categories: (1) absolute representation, and (2) topological
representations. In absolute representation [6, 8, 10], modules
are represented by their absolute coordinates on the chip plane.
Since no restrictions is made to the relative positions between
modules, illegal overlaps will occur. A penalty term in the cost
function will be associated with those infeasible overlaps, which
will be driven to zero in the optimization process. However the
size of the solution space is huge in this absolute representation,
which will affect the solution quality given a limited amount of
search time. In topological representation, the relative posi-
tions between the modules are encoded. The solution space
is much smaller in comparison with that of absolute represen-
tation, but complicated computations are needed for checking
symmetry feasibility and adjusting the module positions to sat-
isfy the constraints. Topological representations like sequence-
pairs [11], O-tree [4], B*-trees [3] have been applied to handle
symmetry constraints in [1, 12, 2]. Comparisons in [2] have
shown that the segment tree approach [2] has out-performed
others in both solution quality and run time. TCG-S [9] has
also been applied to handle symmetry constraints in [13] and
the comparisons in [13] have shown that this TCG-S approach
is comparable with the segment tree approach in solution qual-
ity but the run time is longer especially when the size of the
data set increases.

None of the previous works has considered symmetry con-
straints and other general placement constraints simultane-
ously. In placement of analog circuits, there are also other
placement constraints like device separation constraint (an up-
per bound on the separation distance between pairs of criti-
cally matched devices), alignment constraint, abutment con-
straint, boundary constraint, preplaced constraints and range
constraint, etc. In this paper, we try to address this ana-
log placement problem with both symmetry and other general
placement constraints simultaneously. Sequence pair is used
as the representation in the simulated annealing engine, but
the approach can be applied to any other representations as
long as they pack by constructing constraint graphs. Instead
of handling the constraints by having a penalty term in the
cost function to penalize violations, we will try to adjust the

edge weights in the constraint graphs in a unified way so that
all the placement and symmetry constraints can be satisfied si-
multaneously During this process, we will try to minimize the
maximum distance of the modules in a symmetry group from
the corresponding symmetry axis, in order to minimize the total
packing area. We have compared our method with the segment
tree approach [2] when there are only symmetry constraints
and results show that our approach can give solutions of bet-
ter quality. We have also demonstrated the effectiveness of our
approach in handling different types of constraints by testing
on some data sets with both symmetry and other placement
constraints, and the results are all very promising.

In the following, we will first define the problem (section 2),
then we will discuss the methodology used in our system (sec-
tion 3). In section 4, we will describe the simulated annealing
process employed, and the experimental results will be reported
in section 5.

2. PROBLEM FORMULATION
Given a set of n blocks of areas Ai and aspect ratio bounds

[li, ui] where i = 1 . . . n, a set of m nets N1, N2 . . . Nm between
the n blocks, a set of p symmetry groups G1, G2 . . . Gp where
each symmetry group Gi is consisted of self(Gi) self-symmetry
blocks and pair(Gi) symmetry pairs, and a set of q placement
constraints C1, C2 . . . , Cq where each placement constraint Ci

denotes a constraint in placement between two arbitrary blocks,
the objective is to construct a floorplan F satisfying all the sym-
metry and placement constraints and minimizing a cost func-
tion cost(F) = area(F) + α × wire(F) where α is a user given
weight, area(F) is the total area of F and wire(F) is the total
wire length of F measured by the half-perimeter estimation.
Placement constraint can be alignment, abutment, maximum
separation, boundary, preplace or range constraint and their
detailed definitions will be given in the next section. Please
note that each symmetry group can be symmetric horizontally
or vertically, unless stated specifically by the users.

3. METHODOLOGY
In our approach, sequence pair [11] is used to represent a

placement. In sequence pair, a packing is represented by a pair
of permutations of the module names (s1, s2). If the relative
positions of two modules A and B in s1 and s2 are . . . A . . . B . . .
and . . . A . . . B . . . (. . . A . . . B . . . and . . . B . . . A . . .) respectively,
A is on the left of B (A is below B). In each step of the anneal-
ing process, a candidate solution x = (s1, s2) will be generated.
We will first have an initial scan to check if x will be a feasible
solution satisfying all the constraints. Details of this scanning
process to check the feasibility of a sequence pair will be given
in a later section. After this initial scan, a pair of constraint
graphs (Hh, Hv) will be built according to the sequence pair to
represent the relative positions between the modules. In the
horizontal (vertical) constraint graph Hh (Hv), the vertices
represent the modules and the edges represent the relation-
ship between the modules in the horizontal (vertical) direction,
e.g., if A is on the left of B (A is below B), there will be an
edge from A to B in Hh (Hv) with weight w(A) (h(A)) where
w(A) (h(A)) is the width (height) of module A. Additional
nodes and constraint edges will be inserted into Hh and Hv

to enforce the required symmetry and placement constraints
in some later stages. Some of those newly inserted edges have
variable weights and we need to determine their weights to min-
imize the packing area and to ensure that no positive cycles will
be created. Finally, if no positive cycles exist in the graphs, all
constraints can be satisfied simultaneously and we will pack ac-
cordingly to obtain one feasible candidate solution. The whole

Positive cycles?

Feasible? and evaluate its cost.
Generate the packing

Construct an
initial SP

Finish?
new solution
Generate a

Infeasible

Feasible

Yes

No

No

Yes

No Yes

placement constraints
edges for other

Call procedure

Fast Initial
Scan

Decide to accept or reject.
‘‘symmetry()’’

graphs and insert
Construct constraint

Figure 1: An Overview of Our Floorplanner.

flow of our system is shown in fig. 1 and details of each step
will be given in the following sections.

3.1 Fast Initial Scan
The purpose of this fast initial scan is to identify those in-

feasible solutions early by just looking at the sequence pair
representation. Notice that these checkings are only used to
screen out some infeasible solutions but those remaining may
still be infeasible and we cannot identify them until the con-
straint graphs are built. In our implementation, we will only
generate those sequence pairs satisfying the symmetry condi-
tion Q4 because this is the most complicated one while check-
ings for violation of the other conditions can be done very ef-
fectively.

• Alignment Condition Q1 - If block A is required to
align with block B horizontally (vertically), the order of
A and B in s1 and s2 must be the same (reversed).

• Abutment Condition Q2 - If block A is required to
abut with block B horizontally with A on the left (right),
s1 and s2 must be of the form s1 =. . . A . . . B . . . (. . . B
. . . A . . .) and s2 = . . . A . . . B . . . (. . . B . . . A . . .) respec-
tively. Similarly, we can derive the condition for vertical
abutment.

• Boundary Condition Q3 - If block A is required to abut
with the left (right) boundary of the chip, there should
not be any block B such that B is before (after) A in
both s1 and s2. Similarly, if block A is required to abut
with the bottom (top) boundary, there should not be any
block B such that B is before (after) A in s1 and after
(before) A in s2.

• Symmetry Condition Q4 - It has been given in [1] that
a sufficient symmetry feasible condition [7] in sequence
pair (s1, s2) is:

s−1

1 (A) < s−1

1 (B) ⇔ s−1

2 (sym(B)) < s−1

2 (sym(A))

for horizontal symmetric groups where A and B are any
two distinct blocks in the group, s−1

1
(X) (s−1

2
(X)) de-

notes the position of block X in s1 (s2) and sym(X) de-
notes the symmetry block of X (sym(X) of a self sym-

align(l, A, B)

align(t, A, B)

align(r, A, B)

align(b, A, B)

B

A

B

A

B B
A

A

Figure 2: Alignment Constraints.

A B
B

A
abut(h, A, B)

abut(v, A, B)

Figure 3: Abutment Constraints.

metry block X is X itself). Notice that the above condi-
tion holds for any two blocks in the group, e.g., we can
put B as sym(A) and the condition requires that A is
on the left of sym(A). According to this symmetry con-
dition, the blocks of a horizontal symmetry group will
appear in a mirror form in a sequence pair, e.g., s1 =
. . . A1 . . . A2 . . . Ax . . . and s2 =. . . sym(Ax) . . . sym(A2)
. . . sym(A1) Similarly, a sufficient symmetry feasible
condition for vertical symmetric groups is:

s−1

1 (A) < s−1

1 (B) ⇔ s−1

2 (sym(A)) < s−1

2 (sym(B))

where A and B are any two distinct blocks in the group.
According to this symmetry condition, the blocks of a
vertical symmetry group will appear in an ordered form
in a sequence pair, e.g., s1 = . . . A1 . . . A2 . . . Ax . . . and
s2 = . . . sym(A1) . . . sym(A2) . . . sym(Ax)

3.2 Handling General Placement Constraints
In our problem, we will handle the following placement con-

straints:

• Alignment - We use the notation align(x, A, B) where
x ∈ {l, r, t, b} to denote that two blocks A and B are
required to align vertically along the left (x = l) or the
right (x = r) side, or to align horizontally along the top
(x = t) or the bottom (x = b) side (fig. 2).

• Abutment - We use the notation abut(x, A, B) where
x ∈ {v, h} to denote that two blocks A and B are required
to abut horizontally (x = h) with A on the left and B
on the right, or to abut vertically (x = v) with A at
the bottom and B on top (fig. 3). In our definition of
abutment constraint, the shorter abuting side must abut
completely with the longer abuting side.

• Maximum Separation - We use the notation
maxsep(x, A, B, y) where x ∈ {v, h} and y is a positive
real number to denote that two blocks A and B can at
most be separated by a distance y horizontally (x = h)
or vertically (x = v).

• Boundary - We use the notation boundary(x, A) where
x ∈ {l, r, t, b} to denote that block A is required to abut
with the left (x = l), right (x = r), top (x = t) or bottom
(x = b) boundary of the whole chip.

• Preplace - We use the notation preplace(x, y, A) where
x, y are real numbers to denote that block A is required
to be placed with its lower left corner at the coordinates
(x, y).

• Range - We use the notation range(x, y, x1, y1, A) where
x, x1, y, y1 are real numbers and x1 ≥ x and y1 ≥ y to
denote that block A is required to be placed with its lower
left corner lying in the range from (x, y) to (x1, y1).

We will make use of the approach in [14] of adding pairs
of edges in the constraint graphs to handle these placement
constraints. Details can be found in [14] and the methodology
will not be repeated here again.

3.3 Handling Symmetry Constraint
In order to handle symmetry constraint and other placement

constraints simultaneously in a unified framework, we will also
augment the constraint graphs to enforce symmetry constraint.
For each symmetry group Gi containing ri = self(Gi) self sym-
metry blocks Z1, Z2 . . . Zri

and si = pair(Gi) symmetry pairs
(X1, Y1), (X2, Y2) . . . (Xsi

, Ysi
), we will first check if Gi should

be symmetric horizontally or vertically in a candidate sequence
pair solution, according to the Q4 condition as stated in sec-
tion 3.1. W.l.o.g., we assume that Gi should be symmetric
horizontally in the following discussion. First of all, we need to
add constraint edges to the vertical constraint graph to align
the symmetry pairs in Gi horizontally. A dummy node di will
then be added to the horizontal constraint graph to represent
the symmetry axis of Gi. In order to enforce the equidistant
constraint between the symmetry pairs, four edges, e(Xj , di),
e(di, Xj), e(di, Yj) and e(Yj , di), will be added with weights
xij , −xij , xij −w(Yj) and −(xij −w(Yj)) respectively for each
j = 1 . . . si where w(Yj) is the width of block Yj (notice that
w(Xj) = w(Yj)) and xij ≥ w(Yj) is a positive real number. For
each self symmetry block Zj where j = 1 . . . ri, a pair of edges,
e(Zj , di) and e(di, Zj) of weights w(Zj)/2 and −w(Zj)/2 will
be added to ensure that Zj will be lying symmetrically on the
axis. After adding these dummy nodes and constraint edges,
we will determine the value of xij for j = 1 . . . si such that no
positive cycles exists in the graph and max1≤j≤si

xij is mini-
mized.

3.3.1 Bounds on the Variable Edge Weights

Fig. 4 shows the scenario of a simple symmetry group Gi

with only two symmetry pairs (X1, Y1) and (X2, Y2), and one
self symmetry block Z1. Now, we want to determine the val-
ues of xi1 and xi2 such that no positive cycles will be created
and the value max{xi1, xi2} is minimized in order to obtain a
more compacted solution. Consider any positive cycle possibly

forming, the cycle must contain the dummy node di. In the
following, we will enumerate all these potential positive cycles.
The variable dist(A, B) denotes the longest path length (can
be negative) from node A to node B in the original constraint
graph before adding those dummy nodes and additional con-
straint edges for symmetry groups and is equal to −∞ if there
is no such paths. There are totally four types of positive cycles
possibly forming as enumerated as follows:

• A cycle Xj → Yj → di → Xj (Yj → Xj → di → Yj)
for some j = 1 . . . si of total weight dist(Xj , Yj) − (xij −
w(Yj)) − xij (dist(Yj , Xj) + xij + (xij − w(Yj))) may be

x -w(Y)

-x -x +w(Y)

i2

-x

i1

x -w(Y)

-x +w(Y)

w(Z)/2

x

i1 1

1

2

2
i2 2

1
1

i1

i2

1

i2

-w(Z)/21

i1

d i

X Y

YX

Z

1

2

x

Figure 4: Dummy Nodes and Additional Constraint
Edges for a Symmetry Group.

formed. To avoid positive cycles, it is required to have
2xij ≥ dist(Xj , Yj)+w(Yj) (2xij ≤ w(Yj)−dist(Yj , Xj)).

• A cycle Xj → Yk → di → Xj (Yk → Xj → di →
Yk) for some j, k = 1 . . . si and j 6= k of total weight
dist(Xj , Yk) − (xik − w(Yk)) − xij (dist(Yk, Xj) + xij +
(xik − w(Yk))) may be formed. To avoid positive cycles,
it is required to have xij + xik ≥ dist(Xj , Yk) + w(Yk)
(xij + xik ≤ w(Yk) − dist(Yk, Xj)).

• A cycle Xj → Zk → di → Xj (Zk → Xj → di → Zk)
for some j = 1 . . . si and k = 1 . . . ri of total weight
dist(Xj , Zk)+w(Zk)/2−xij (dist(Zk, Xj)+xij−w(Zk)/2)
may be formed. To avoid positive cycles, it is required to
have xij ≥ dist(Xj , Zk) + w(Zk)/2 (xij ≤ w(Zk)/2 −
dist(Zk, Xj)). Similarly, there may be cycles between Yj

and Zk resulting in the constraints xij ≥ dist(Zk, Yj) −
w(Zk)/2+w(Yj) and xij ≤ w(Yj)−w(Zk)/2−dist(Yj , Zk).

• A cycle Xj → di → Xk → Xj (Yj → di → Yk → Yj) for
some j, k = 1 . . . si and j 6= k of total weight xij − xik +
dist(Xk, Xj) (−xij + w(Yj) + xik −w(Yk) + dist(Yk, Yj))
may be formed. To avoid positive cycles, it is required
to have xik − xij ≥ dist(Xk, Xj) (xij − xik ≥ w(Yj) −
w(Yk) + dist(Yk, Yj)).

3.3.2 Computations of the Variable Edge Weights

From the above analysis, we can obtain upper and lower
bounds for a single variable xij , for the sum of two variables
xij + xik and for the difference of two variables xij − xik. The
bounds involve some pair-wise longest paths in the original
acyclic constraint graph and the widths of some blocks, and
they can be computed effectively. Our goal is to evaluate all
xij ’s satisfying these bounds and minimizing max1≤j≤si

xij .
This can of course be solved optimally by a linear solver but
it will be too expensive to invoke a solver in every iteration
of the annealing process. Therefore, we will solve this system
of linear equation directly. Our approach can obtain the opti-
mal solution when there are only lower bound constraints, e.g.,
when there are only symmetry constraints and no other general
placement constraints. When there are both upper and lower
bound constraints as in general cases, the solution obtained by
our method may be sub-optimal sometimes but this occurs very
rarely as verified by the experiments (8 out of 2626 trials).

When there are only lower bounds, we can basically increase
the values of the variables until all the lower bounds are satis-
fied. Now we also want to minimize the value max1≤j≤si

xij .
This can be achieved by carefully accounting a slack for each
variable (how much a variable can be increased without in-
creasing the value of the objective function). When there are
both upper and lower bounds, we will keep account of a largest

possible slack for each variable due to the upper bound con-
straints. For example, consider two upper bound constraints

xij ≤ a and xij + xik ≤ b (notice that a difference constraint
can always be written as a lower bound constraint), the largest
possible slack of xij will be min{a − x′

ij , b − x′
ij − x′

ik} where
x′

ij and x′
ik are the current values of xij and xik respectively.

Then by adjusting the values of the variables according to the
slacks and the largest possible slacks (which are updated dy-
namically), we can obtain a solution for the system of linear
equation efficiently.

3.3.3 Summary

The pseudocode below shows a summary of the steps to han-
dle symmetry constraint.

Pseudocode Symmetry()
// Given a pair of acyclic constraint graphs (H ′

h
, H′

v) which are
// already augmented with edges to handle other types of place-
// ment constraints, this procedure either announces that the
// symmetry constraints cannot be satisfied simultaneously or
// further augments them to take into account the symmetry
// constraints.

1. For each symmetry group Gi

2. Determine the longest path between every pair of blocks
in Gi in the constraint graphs (H ′

h
, H′

v).
3. For each symmetry group Gi

4. Insert a dummy node di to H′
h

(H′
v).

/* Assume that Gi is symmetric horizontally (vertically). */
5. Insert additional constraint edges between di and the blocks

in Gi according to section 3.3.
6. Determine the weights of the additional constraint edges.
7. If no solutions is obtained, return(fail).
8. Check for positive cycles in (H ′

h
, H′

v).
9. If positive cycles found in (H ′

h
, H′

v), return(fail).
10. Return(H ′

h
, H′

v).

Notice that step 9 above is needed since there may be cycles
formed between different symmetry groups after inserting those
dummy nodes and additional constraint edges. For efficiency
purpose, we have chosen to determine the edge weights of each
group separately and check for positive cycles once at the end.
An alternative will be solving a system of linear equation in-
volving all the variable edge weights. In that case, we must
invoke a solver since the upper and lower bound constraints
will be very general, e.g., involving many variables. Notice
that if different symmetry groups do not interleave and no neg-
atively weighted paths exist between different symmetry groups
in (H ′

h, H ′
v), e.g., no other placement constraints between sym-

metry groups, the two approaches are the same, i.e., the vari-
able edge weights in different groups will not affect each other.

4. ANNEALING PROCESS

4.1 Set of Moves
We employ the following set of moves that, starting with

a sequence pair satisfying the symmetry condition Q4 in sec-
tion 3.1, can generate another candidate sequence pair satisfy-
ing Q4:

1. Swapping two symmetry groups - Two symmetry
groups are picked randomly and swapped, For example,
if group Gi has three blocks occupying positions 15, 17
and 20 in s1 and group Gj has two blocks occupying po-
sitions 26 and 28 in s1. After the swap, the blocks in Gj

will occupy the positions 15 and 17 in s1, and the blocks
in G1 will occupy the positions 20, 26 and 28 in s1, with-
out changing the relative ordering between the blocks of
the same group. We will do similarly for the blocks of G1

and G2 in s2. Notice that we do not consider interleav-
ing of symmetry groups in our implementation, so this
operation is well-defined.

2. Swapping two blocks of the same symmetry group
- Two blocks A and B which are not symmetry pair of
each other are picked randomly from a symmetry group.
Then we swap A and B in s1 and swap sym(A) and
sym(B) in s2. Notice that the blocks A and B can be
self symmetry or belong to a symmetry pair.

3. Moving an asymmetric block - Since the positions
of the asymmetry blocks do not affect the symmetry-
feasibility of a sequence pair and they can be moved freely.
In this move, an asymmetry block is picked randomly and
its position in the sequence s1 or s2 is modified.

4. Rotating a symmetry group - A symmetry group is
picked randomly and its orientation is changed (from hori-
zontal to vertical, or vice versa). To perform this rotation,
we only need to reverse the order of the related blocks in
s2.

5. Changing the shape of a soft block - A soft block
A is picked randomly and its aspect ratio is changed. If
A belongs to a symmetry pair, we also need to make the
corresponding change to sym(A).

4.2 Initial Solution
The initial solution of the annealing process is obtained by

first generating sub-sequences of s1 and s2 for the blocks in a
symmetry group according to the condition Q4 in section 3.1.
This sub-sequences of s1 and s2 are then concatenated with the
remaining asymmetric blocks appended at the end to form an
initial sequence pair candidate solution.

4.3 Annealing Schedule
In our annealing engine, the initial temperature is set to 106

and will drop at a rate of 0.9. At each temperature, an IterNum

number of iterations are performed.

4.4 Cost Function
As stated in the problem formulation in section 2, the objec-

tive is to construct a floorplan F satisfying all the symmetry
constraints and placement constraints and minimizing a cost
function cost(F) = area(F) + α × wire(F) where α is a user
given weight, area(F) is the total area of F and wire(F) is the
total wire length of F measured by the half-perimeter estima-
tion.

5. EXPERIMENTAL RESULTS
We have done two sets of experiments. In the first set, we

want to compare our approach with previous works. Since most
of the previous works on analog placement do not consider other
general placement constraints, we only have symmetry con-
straints in the first set of data. According to the comparisons
in [2] and [13], the segment tree approach [2] has out-performed
the SP approach in [1] and the O-tree approach in [12] in both
run time and solution quality, while the TCG-S approach in [13]
is comparable with the segment tree approach in solution qual-
ity but the run time is longer especially when the size of the
data set increases. Therefore, we have chosen to implement
and compare with the segment tree approach. In the second
set of experiments, we want to demonstrate the effectiveness
of our approach in handling both symmetry and other general
placement constraints simultaneously.

5.1 Comparisons with Previous Approach
Simulated annealing is used in both the segment tree ap-

proach and our floorplanner as the optimization engine. All
the experiments are performed on a Sun Ultra 5/270 with a

Table 1: Comparisons with the Segment Tree Ap-
proach

Data Block Symmetry Our Approach Segment Tree

Set No. Groups Time (s) Area Time (s) Area

D50 50 8,7,7,4,6 100.4 18576 122.4 20100

D70 70 9,4,9,5,9 212.5 22575 270.7 25730

D100 100 4,12,4,11,12 475.4 45540 518.5 53424

D120 120 5,4,4,7,8 510.3 49126 726.4 46530

270MHz CPU and 128MB RAM. In order to have a fair com-
parison, the cost functions (α is set to 0) and the annealing
schedules are all the same, except that the variable IterNum

(as described in section 4.3) in our floorplanner is set to 5 while
it is set to 50 in the segment tree approach since the segment
tree approach can run faster for each iteration and we want
to make sure that the total time spent are the same in both
methods so that a fair evaluation can be made. The data sets
are randomly generated with block areas uniformly distributed
from 4 to 1271 and all are soft blocks with aspect ratio bounds
[0.5, 2].

Table 1 displays the results of this first set of experiments.
The third column shows the number of symmetry groups and
the number of blocks in each group, e.g., the first data set has
5 symmetry groups with 8, 7, 7, 4 and 6 blocks respectively.
Column 4 and 6 show the run times in second while column 5
and 7 show the areas. We can see from this table that our
floorplanner can perform better than the segment tree approach
in three out of the four cases when given a similar amount of run
time. Fig. 5 shows the placement of one of the four data sets
in Table 1. If we allow the annealing process to run for about
an hour, very good results can be obtained and an example is
shown in fig. 6.

5.2 Symmetry Constraint with Other Placement
Constraints

In this second set of experiments, we want to study the
performance of our floorplanner when there are both symme-
try and other general placement constraints. All the exper-
iments are performed on a P4 machine with a 2.6GHz CPU
and 1024MB RAM. Table 2 displays the results of this sec-
ond set of experiments. The third column shows the number
of symmetry groups and the number of blocks in each group
as in table 1 while the fourth column shows the number and
types of other placement constraints, e.g., the first data set
has one symmetry group with five blocks and four alignment
constraints. Column 5 and 6 show the run time in second and
the dead space percentage. We can see from this table that
our floorplanner can handle both the symmetry constraint and
the other general placement constraints very effectively. Fig. 7
shows one result packing of these data sets.

6. REFERENCES
[1] F. Balasa and K. Lampaert. Symmetry within the Sequence-Pair

Representation in the Context of Placement for Analog Design.
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 19(7):712–731, 2000.

[2] F. Balasa, S. C. Maruvada, and K. Krishnamoorthy. On the
Exploration of the Solution Space in Analog Placement with
Symmetry Constraints. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 23(2):177–191, 2004.

[3] Y. C. Chang, Y. W. Chang, G. M. Wu, and S. W. Wu. B*-Trees:
A New Representation for Non-Slicing Floorplans. Proceedings of
the 37th ACM/IEEE Design Automation Conference, 2000.

[4] Pei-Ning Guo, Chung-Kuan Cheng, and Takeshi Yoshimura. An
O-Tree Representation of Non-Slicing Floorplan and Its
Applications. Proceedings of the 36th ACM/IEEE Design
Automation Conference, pages 268–273, 1999.

Table 2: Results with Both Symmetry and Other Placement Constraints

Data Block Symmetry Other Constraints Time Dead
Set No. Groups (s) Space (%)

D40a 40 5 4 align 92.4 8.84
D40b 40 5 4 align 95.7 7.33
D40c 40 5 4 boundary 102.1 9.37
D70a 70 9,4,9,5,9 1 range, 2 align, 2 abut, 1 maxsep 127 7.81
D70b 70 9,4,9,5,9 1 preplace, 2 boundary, 2 align, 1 maxsep 123 11.12
D70c 70 9,4,9,5,9 10 align 90 7.43
D70d 70 9,4,9,5,9 1 align, 1 preplace, 1 abut, 1 maxsep, 1 boundary 117 8.95
D70e 70 9,4,9,5,9 10 abut 114 11.85
D70f 70 9,4,9,5,9 3 boundary, 3 maxsep, 3 range 200 5.69
D70g 70 9,4,9,5,9 10 range 282 6.61

00

0 0

1

1

1 1

1 1

11

1 1

1 1

2 2

2 2

3

3

3

3 3
33

3 3 33

4

4

44 44

444 4

44

Figure 5: D100 with 100 Blocks and 5 Symmetry
Groups.

0 0

00

1

1

1 1

1 1

11

11

1 1

2 2

2 2

33 3

3

33

3
3

3

3

3

4 4

4

4
4

4

4

4

4

4
4

4

Figure 6: D100 with 100 Blocks and 5 Symmetry
Groups (anneal for about an hour).

0

0 0

0 0

0 0

00

11
1 1

2

22

22

22

2 2

3
33

33

4

4

4

4

4

4

4

4

4
5

6

7

8 9

10

11

12

13

Figure 7: Result Packing of D70d (5 symmetry groups,
align(t,8,9), preplace(10,50,50), range(11,0,0,100,100),
maxsep(v,12,13,50), boundary(b,7), abut(v,5,6)).

[5] J. Cohn and D. Garrod and R. Rutenbar and L. Carley. Analog
Device-level Automation. Kluwer Acad. Publi., 1994.

[6] J. Cohn, et al. KOAN/ANAGRAMII: New Tools for Device-Level
Analog Layout. IEEE J. Solid-State Circuits, 26(3):330–342,
1991.

[7] Shinichi Kouda, Chikaaki Kodama, and Kunihiro Fujiyoshi.
Improved Method of Cell Placement with Symmetry Constraints
for Analog IC Layout Design. International Symposium on
Physical Design, pages 192–199, 2006.

[8] K. Lampaert, G. Gielen, and W. Sansen. A Performance-driven
Placement Tool for Analog Integrated Circuits. IEEE J.
Solid-State Circuits, 30(7):773–780, 1995.

[9] J. M. Lin and Y. W. Chang. TCG-S: Orthogonal Coupling of
P*-admissible Representations for General Floorplans. IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 24(6), 2004.

[10] E. Malavasi, E. Charbon, E. Felt, and A. Sangiovanni-Vincentelli.
Automation of IC Layout with Analog Constraints. IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 15(8):923–942, 1996.

[11] H. Murata, K. Fujiyoushi, S. Nakatake, and Y. Kajitani.
Rectangle-Packing-Based Module Placement. Proceedings IEEE
International Conference on Computer-Aided Design, pages
472–479, 1995.

[12] Y. X. Pang, F. Balasa, K. Lampaert, and C. K. Cheng. Block
Placement with Symmetry Constraints based on the O-tree
Nonslicing Representation. Proceedings of the 37th ACM/IEEE
Design Automation Conference, pages 464–467, 2000.

[13] G. M. Wu, J. M. Lin, Y. W. Chang, and R. H. Chuang. Placement
with Symmetry Constraints for Analog Layout Design. IEEE Asia
and South Pacific Design Automation Conference, pages
1135–1138, 2005.

[14] Evangeline F. Y. Young, Chris C. N. Chu, and M. L. Ho.
Placement Constraints in Floorplan Design. IEEE Transactions
on Very Large Scale Integration Systems, 12(7):735–745, 2004.

