
Fast and Accurate Rectilinear Steiner Minimal Tree
Algorithm for VLSI Design

Chris Chu
Electrical and Computer Engineering

Iowa State University
Ames, IA 50010

Email: cnchu@iastate.edu

Yiu-Chung Wong
Rio Design Automation
Santa Clara, CA 95054

Email: ycwong@rio-da.com

Abstract

In this paper, we present a very fast and accurate rectilin-
ear Steiner minimal tree (RSMT)1 algorithm called FLUTE.
The algorithm is an extension of the wirelength estimation
approach by fast lookup table [1]. The main contribution of
this paper is a new net breaking technique which is much bet-
ter than the one in [1]. A scheme is also presented to allow
users to control the tradeoff between accuracy and runtime.

FLUTE is optimal for nets up to degree 9 and is still very
accurate for nets up to degree 100. So it is particularly suit-
able for VLSI applications in which most nets have a degree
30 or less. We show experimentally that over 18 industrial
circuits in the ISPD98 benchmark suite, FLUTE with
default accuracy is more accurate than the Batched 1-Steiner
heuristic and is almost as fast as a very efficient implemen-
tation of Prim’s rectilinear minimum spanning tree (RMST)
algorithm. By adjusting the accuracy parameter, the error
can be further reduced with only a small increase in run-
time (e.g.,2.7× error reduction with2.2× runtime increase).

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids – Placement and
Routing

General Terms
Algorithms, Performance, Design

Keywords
Rectilinear Steiner minimal tree algorithm, routing, wire-
length estimation

1A rectilinear Steiner minimal tree is a tree with minimum total edge
length in Manhattan distance to connect a given set of nodes possibly
through some extra (i.e., Steiner) nodes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISPD’05, April 3–6, 2005, San Francisco, California, USA.

Copyright 2005 ACM 1-59593-021-3/05/0004 ...$5.00.

1 Introduction

Rectilinear Steiner minimal tree (RSMT) construction is a
fundamental problem that has many applications in VLSI
design. In early design stages like physical synthesis, floor-
planning, interconnect planning and placement, it can be
used to estimate wireload, routing congestion and intercon-
nect delay. In global and detailed routing stages, it is used to
generate the routing topology of each net.

RSMT problem is NP-complete [2]. So, in practice, recti-
linear minimum spanning tree (RMST) is often used instead
of RSMT. This approach is particularly common in early de-
sign stages in which the design space is being explored and
hence a fast tree construction algorithm is crucial. The dis-
advantage of this approach is that the length of RMST may
be much longer than that of RSMT since Steiner node is not
allowed. Hwang [3] showed that length of RMST can be as
much as 1.5 times that of RSMT. However, the difference is
typically far less than 50% in practice. So this inaccuracy is
tolerable in early design stages.

At later stages in which better wirelength is required,
RSMT construction is necessary. Hwang et al. [4] provided
a comprehensive discussion of various RSMT algorithms.
For optimal RSMT algorithm, the fastest implementation is
currently the GeoSteiner package [5, 6]. Griffith et al. [7]
(Batched 1-Steiner heuristic) and Mandoiu et al. [8] are two
well-known near-optimal algorithms. However, these op-
timal and near-optimal algorithms are computationally too
expensive to be used in VLSI design applications. Many
attempts have been made to design RSMT algorithms with
lower runtime complexity. Borah et al. [9] presented an
O(n2) time algorithm in which a spanning tree is iteratively
improved by connecting a point to a nearby edge and delet-
ing the longest edge on the created cycle. AnO(n log n)
time but very complicated alternative implementation was
also proposed. Zhou [10] used spanning graph [11] to help
both generating the initial spanning tree and finding good
candidates for the edge substitution idea in [9]. The result-
ing algorithm runs inO(n log n) time, and produces better
solution in slightly less runtime than the one in [9].

Most signal nets in VLSI circuits have a low degree2. So
in VLSI applications, rather than having a low runtime com-
plexity, it is more important for RSMT algorithms to be sim-
ple so that it can be efficient for small nets. An example
of such an approach is the single trunk Steiner tree (STST),
which is constructed by connecting each pin to a truck that
goes either horizontally or vertically through the median po-
sition of all pins [12]. However, the length of STST is far
from optimal even for medium size nets (e.g., degree 10-15).
Hence its application is limited. Chen et al. [13] proposed
an algorithm called Refined Single Trunk Tree (RST-T) to
reduce the length of STST by a refining procedure. RST-T
is proved to be optimal for nets up to degree 4 and is ex-
perimentally shown to be optimal for degree 5 nets. It is
reasonably accurate for medium size nets too. RST-T runs
in O(n log n) time with a fairly small constant.

In this paper, a very fast and accurate RSMT algorithm is
presented. The algorithm is obtained by extending the wire-
length estimation technique FLUTE [1] to perform RSMT
construction. We also called the resulting RSMT algorithm
FLUTE. In FLUTE, low-degree nets (up to degree 9 in our
implementation) are handled optimally and efficiently by a
lookup table approach. High-degree nets are recursively bro-
ken down until lookup table can be used. The main contri-
bution of this paper is a new net breaking technique which
is much better than the one in [1]. An optimal algorithm
and three heuristics are proposed to collectively determine
the best ways to break a net. A scheme is also presented
to allow users to control the tradeoff between accuracy and
runtime. The runtime complexity of FLUTE with fixed ac-
curacy isO(n log n) for a degreen net.

Since FLUTE is extremely fast and accurate for low-
degree nets, it is especially suitable for VLSI applications.
We show experimentally that over 18 industrial circuits in
the ISPD98 benchmark suite [14], FLUTE with default ac-
curacy is more accurate than the Batched 1-Steiner heuris-
tic [7] and is almost as fast as a very efficient implementa-
tion of Prim’s RMST algorithm [15]. By adjusting the ac-
curacy parameter, the error can be further reduced with only
a small increase in runtime (e.g.,2.7× error reduction with
2.2× runtime increase). In addition, we show that even for
high-degree nets (up to degree 100), it is still very fast and
accurate.

The remainder of the paper is organized as follows. In
Section 2, a brief review of the original FLUTE algorithm is
provided. In Section 3, the extension for RSMT construction
is discussed. In Section 4, the new net breaking technique is
presented. In Section 5, experimental results are shown. The
paper is concluded in Section 6.

2 The Original FLUTE Algorithm

FLUTE is a lookup table based technique originally de-
signed for wirelength estimation [1]. In [1], it is shown that

2Thedegreeof a net is the number of pins in the net.

Degree # of groups # of POWVs in a group Ave. # of op.
n n! Min. Ave. Max. per net

2 2 1 1 1 0
3 6 1 1 1 0
4 24 1 1.667 2 1.333
5 120 1 2.467 3 4.267
6 720 1 4.433 8 10.333
7 5040 1 7.932 15 20.025
8 40320 1 15.251 33 38.561
9 362880 1 30.039 79 74.155

Table 1: Number of groups, number of POWVs in a group, and
average number of addition/subtraction operations to evaluate a net.

the set of all degreen nets can be partitioned inton! groups
according to the relative positions of their pins. For each
group, the wirelength of all possibly optimal routing topolo-
gies along the Hanan grid [16] can be written as a small
number of linear combinations of distances between adja-
cent Hanan grid lines. Each linear combination can be ex-
pressed as a vector of the coefficients which is called a poten-
tially optimal wirelength vector (POWV). The few POWVs
for each group can be generated once by an efficient algo-
rithm based on a boundary compaction technique, and stored
into a lookup table. To evaluate the wirelength of a net, we
just need to compute the wirelengths corresponding to the
POWVs for the group the net belongs to, and then report the
one with minimum wirelength. To speed up the wirelength
evaluation of a net (i.e., evaluation of all POWVs in a group),
a minimum spanning tree based algorithm is presented to ex-
plore the similarity among the POWVs in a group.

This idea works well for low-degree nets. Table 1 gives
the number of groups, the number of POWVs in a group,
and the average number of addition/subtraction operations
to evaluate a net by the MST-based algorithm for nets with
degree up to 9. For low-degree nets, the number of groups
and the average number of POWVs per group are both small.
Hence, the size of the lookup table is also small. The table
size for all nets up to degree 9 is only 2.75 MB. In addition,
it is extremely economical to evaluate a low degree net.

For high-degree nets, both the table size and the number
of operations to evaluate a net will be impractically large. So
in [1], a lookup table is constructed for nets with degree up to
a user-defined parameterD.3 Nets with higher degree are re-
cursively divided into sub-nets by a net breaking technique
until the lookup table can be used. The net breaking tech-
nique tries to divide the net at all pin positions and in both di-
rections (i.e., horizontal and vertical). Then the best solution
is picked. For a given pin and breaking direction, pins with a
smaller coordinate than the given pin in the breaking direc-
tion form one sub-net and other pins form another sub-net.
The given pin is also included into both sub-nets as shown

3In [1], D = 7 or 8 is used. In this paper,D = 9 is used. We have con-
structed a lookup table that can be proved to be optimal for degree up to 6
and experimentally verified to be optimal for degree 7, 8, and 9 by 5 million
random nets each. The table construction is based on a modified boundary
compaction technique but it is not reported here due to space limitation.

in Figure 1(a). However, if recursive calls are really made
to evaluate each of the possible pins and directions, the run-
time will be very significant. Thus, the total half-perimeter
wirelength (HPWL) of the two sub-nets is used to predict the
wirelength of each possibilities. For example, according to
HPWL prediction, Figure 1(c) is a better selection than Fig-
ure 1(b). Then only one pin in each direction is selected to
really break the net. The better of the two wirelengths will
be returned.

(a) (b) (c)

Figure 1:Illustration of the original net breaking technique.

3 Extension for RSMT Construction

In this paper, we extend the original FLUTE idea to construct
RSMT. When building the lookup table, for each POWV, one
of the routing topologies generated by the boundary com-
paction based algorithm is stored. Then to construct RSMT,
the Steiner trees corresponding to the two sub-nets created
by net breaking is combined and returned.

It is enough to store one routing topology per POWV. If
more than one are stored, then different RSMTs can be con-
structed. All the resulting RSMTs have the same wirelength.
However, routers may explore the alternatives to optimize
some other objectives like congestion or coupling between
different nets.

One of the causes of the non-optimality of the original
FLUTE algorithm is that the two sub-nets are considered in-
dependently. The two corresponding Steiner sub-trees may
share some wire segments as shown in Figure 2(a). How-
ever, if wirelength only is returned as in original FLUTE,
this redundancy cannot be detected. In this extension that
returns a RSMT, the redundant segment is detected and re-
moved in linear time. So the wirelength can be improved
and the runtime complexity will remain the same.

(a) (b)

Steiner node

Figure 2: Redundant segment when combining two Steiner sub-
trees.

4 Improved Net Breaking Technique

In this section, we present an improved technique to recur-
sively break high-degree nets. In this technique, if a net sat-
isfies certain conditions, it will be broken optimally. Other-
wise, three heuristics are applied to collectively determine a
score for each way of breaking. Then several ways corre-
sponding to the highest scores are tried by making recursive
calls. Note that in original FLUTE, one pin is selected for
each direction to break the net. However, in the new tech-
nique, there is no restriction on the number of pins selected
for each direction. In this technique, a scheme is also intro-
duced to allow users to control the tradeoff between accuracy
and runtime.

Let us introduce some notations. Consider ann-pin net.
Let xi be the x-coordinate of some vertical Hanan grid line
such thatx1 ≤ x2 ≤ · · · ≤ xn. Similarly, letyj be the y-
coordinate of some horizontal Hanan grid line such thaty1 ≤
y2 ≤ · · · ≤ yn. Assume the pins are indexed in ascending
order of y-coordinate. Letsi be the rank of pini if all pins
are sorted in ascending order of x-coordinate.4 Therefore,
the coordinates of the pini is (xsi

, yi). The notations are
illustrated in Figure 3.

s = 24

2

3s = 4

s = 1

s = 31

1x

1y

x2 x3 x4

Pin 1

Pin 2
Pin 3

Pin 4

2

3y

4

y

y

y

x

Figure 3:Illustration of some notations.

4.1 Optimal Net Breaking Algorithm

Theorem 1 For any net, if there existsr such thatsi ≤ r
for all i ∈ {1, . . . , r} (see Figure 4(a) for an example with
r = 3), then an optimal RSMT can be constructed by merg-
ing the optimal RSMTs of{Pin 1, . . . , Pin r, (xr, yr)} and
{(xr, yr), Pin r + 1, . . . , Pin n}.

Proof: si ≤ r for all i ∈ {1, . . . , r} impliessi ≥ r + 1 for
all i ∈ {r + 1, . . . , n}. In other words, the x-coordinates of
the firstr pins are always less than the x-coordinates of the
remainingn − r pins. The firstr pins and the othern − r
pins naturally form two clusters. In any optimal RSMT, there
should be at least one5 “bridge” connecting the two clusters
(Figure 4(b)). An optimal RSMTT ∗ that passes through the
node(xr, yr) can be constructed by shifting the segments of
each bridge without changing the wirelength (Figure 4(c)).
Another RSMTT with the same or less wirelength toT ∗ can

4Note thats1s2 . . . sn is called vertical sequence in [1].
5It can be proved that there is always exactly one bridge.

be obtained by merging the optimal RSMTs for the two clus-
ters with the node(xr, yr) added to both. Hence,T should
also be optimal. 2

(b)

7

S =11

(a)

bridge

(c)

S =4

S =2

S =3

S =7

S =5

2

3

5
6

S =64

r r(x , y)

Figure 4:Illustration of the optimal net breaking algorithm.

Theorem 2 For any net, if there existsr such that
si ≥ n − r + 1 for all i ∈ {1, . . . , r}, then
an optimal RSMT can be constructed by merging the
optimal RSMTs of{Pin 1, . . . , Pin r, (xn−r+1, yr)} and
{(xn−r+1, yr), Pin r + 1, . . . , Pin n}.
Proof: Similar to Theorem 1. 2

The optimal net breaking algorithm will break a net ac-
cording to Theorem 1 and 2 if there existsr ∈ {2, . . . , n−2}
satisfying either one of the two conditions. Note the the size
of the two sub-nets arer + 1 andn− r + 1. So it will not be
useful to break the net ifr = 1 or n− 1.

4.2 Net Breaking Heuristics

Without loss of generality, consider breaking the net accord-
ing to y-coordinate. If the net is broken at pinr, then pin1
to pin r will form one sub-net, and pinr to pin n will form
another sub-net. To ensure that both sub-nets are at least
a constant factor smaller than the original net, we require
γn ≤ r ≤ n − γn + 1 for some positive constantγ. We
compute a score which is a weighted sum of three compo-
nents:

Score S(r) = S1(r)− αS2(r)− βS3(r).

A larger score means a more desirable way of breaking. So
it is better forS1(r) to be large, and forS2(r) andS3(r) to
be small.

The first component is:

S1(r) = yr+1 − yr−1

If we break the net at pinr, according to [1], the segment
lengthyr+1 − yr (respectively,yr − yr−1) will be counted
once in the wirelength of the upper (respectively, lower) sub-
net because pinr is the only pin at the bottom (respectively,
top) boundary of the sub-net. Otherwise, bothyr+1−yr and
yr − yr−1 are likely to be counted more than once in the
total wirelength. So it is better to break the net at pinr if
yr+1 − yr−1 is large.

The second component is:

S2(r) =

 2(x3 − x2) if sr = 1 or 2
xsr+1 − xsr−1 if 3 ≤ sr ≤ n− 2
2(xn−1 − xn−2) if sr = n− 1 or n

When 3 ≤ sr ≤ n − 2, xsr+1 and xsr−1 are the x-
coordinates of the pins just right and just left of pinr, re-
spectively. If we break the net at pinr, in both the lower
sub-net and the upper sub-net, the pins on the left of pinr
needs to be connected to those on the right (unless for the
rare cases that there is no pin either on the left or on the right
of pin r in a sub-net). So the segment lengthsxsr+1 − xsr

andxsr
− xsr−1 will be counted in both the upper and the

lower sub-nets. Therefore, it is less desirable to break the
net at a pin with a largexsr+1 − xsr−1. Whensr = 1 (re-
spectively,n), pin r is at the left (respectively, right) bound-
ary andxsr−1 (respectively,xsr+1) is not defined. When
sr = 2 (respectively,n− 1), as the segment lengthx2 − x1

(respectively,xn − xn−1) will always be counted once for
any way of breaking according to [1], it is less effective to
usexsr+1 − xsr−1 as a prediction. For these cases, we ob-
serve that it is good in practice to set the second component
to either2(x3 − x2) or 2(xn−1 − xn−2).

The third component is:

S3(r) =
∣∣∣∣sr −

n + 1
2

∣∣∣∣× dx +
∣∣∣∣r − n + 1

2

∣∣∣∣× dy

wheredx =
xn−1 − x2

n− 3
anddy =

yn−1 − y2

n− 3
. In general, it

is better to have the breaking pin closer to the center of the
net. If pin r is close to center vertically (i.e.,r is close to
(n + 1)/2), the net will be evenly divided and hence less re-
cursive calls are likely to be made later. Both accuracy and
runtime will be improved as a result. If pinr is close to cen-
ter horizontally (i.e.,sr is close to(n + 1)/2), other pins are
closer to pinr on average in both upper and lower sub-nets.
In here, we use the distance of pinr from the center (in terms
of number of segments in Hanan grid) to predict how many
extra segments need to be used.dx anddy are the average
segment lengths in the Hanan grid. Becausexn − xn−1,
x2 − x1, yn − yn−1, andy2 − y1 are always counted once
for any solutions, they are not included in the computation
of average length of extra segments. In principle, we can use
different weights for the horizontal part and the vertical part
of S3 to form the score. However, we observe that a single
weightβ works just as well.

We experimentally determined that it is good to set both
α andβ to 0.3. S1 is the most important of the three com-
ponents.S1 by itself is already significantly better than the
HPWL heuristic in the original FLUTE. The result is even
better by combining the three. We have also tried to incor-
porate the HPWL heuristic into the score. Even better wire-
length can be obtained. However, the HPWL heuristic is
relatively expensive to compute. (It can consider all pins in
linear time, which is the same complexity as other heuristics,
but it comes with a bigger constant.) We note that to achieve

higher accuracy, it is more effective by utilizing the accuracy
control scheme described below.

4.3 Accuracy Control Scheme

We can control the accuracy of FLUTE by changing the
number of ways of breaking each net. However, we observe
that it is not as good if all sub-nets generated by recursive
calls are handled with the same accuracy. A better trade-
off between accuracy and runtime can be obtained if lower-
level sub-nets are handled with less accuracy. We introduce
a user-defined accuracy parameterA. The original net is
handled with accuracyA. That meansA different ways of
breaking are tried. Then for each level of recursive call, the
accuracy is reduced by 1 unless it is already 1. We notice
that a smallA is already enough to obtain very accurate so-
lutions. We set the default value ofA to 3.

4.4 Time Complexity of FLUTE

The time complexity is analyzed as follows. ConsiderA =
1. We first need to sort all pins according to x- and y-
coordinates. Then we recursively break the net into two sub-
nets in a roughly even manner. In each recursive call, it takes
linear time to check the optimal breaking conditions and to
compute the scores. So the total runtime isO(n log n). Note
that the optimal net breaking algorithm may not break the
net in a even manner. However, we can implement the algo-
rithm to search for clusters simultaneously starting from all
four corners (instead of only lower-left and lower-right cor-
ners as suggested by Theorem 1 and 2, respectively). Then,
if the net is not broken evenly (i.e., a small cluster exists), the
checking time will also be small. So the total runtime will
still be O(n log n). For accuracyA, it is not hard to show
by mathematical induction onA that the time complexity of
FLUTE isO(A! n log n).

5 Experimental Results

We have implemented FLUTE in C. Our implementation has
a time complexity ofO(n2) because a simpleO(n2) sorting
algorithm is used, and the net breaking pin is searched in the
range2 ≤ r ≤ n− 1. The source code of FLUTE is posted
in the “Rectilinear Spanning and Steiner Trees” slot of the
GSRC bookshelf [17].

We perform all experiments in a 750 MHz Sun Sparc-2
machine. Three sets of experiments are conducted. First, we
compare the following five algorithms on nets from indus-
trial circuits: an efficientO(n2) implementation of Prim’s
algorithm (RMST) [15], Refined Single Trunk Tree (RST-
T) [13], the spanning graph based RSMT algorithm (SPAN)
[10], the near-optimal Batched Iterated 1-Steiner (BI1S)
heuristic [7], and FLUTE with default accuracyA = 3. The
exact RSMT software GeoSteiner 3.1 [6] is used to gener-
ate the optimal solutions. Source codes of RMST, BI1S, and

Circuit # of nets Ave. degree Max. degree

ibm01 14111 3.58 42
ibm02 19584 4.15 134
ibm03 27401 3.41 55
ibm04 31970 3.31 46
ibm05 28446 4.44 17
ibm06 34826 3.68 35
ibm07 48117 3.65 25
ibm08 50513 4.06 75
ibm09 60902 3.65 39
ibm10 75196 3.96 41
ibm11 81454 3.45 24
ibm12 77240 4.11 28
ibm13 99666 3.58 24
ibm14 152772 3.58 33
ibm15 186608 3.84 36
ibm16 190048 4.10 40
ibm17 189581 4.54 36
ibm18 201920 4.06 66

All 1570355 3.92 134

Table 2:Benchmark information.

GeoSteiner are downloaded from the GSRC Bookshelf [18].
Source codes of SPAN and RST-T are obtained from the au-
thors. The 18 IBM circuits in the ISPD98 benchmark suite
are used. Some information of the benchmark circuits are
given in Table 2. There are totally 1.57 million nets. The
placement is generated by FastPlace [19].

The wirelength comparison is shown in Table 3. FLUTE
is the best among the five algorithms. The average wire-
length error over all nets is only 0.07%. FLUTE produces
the best wirelength for all 15 circuits in which all nets have
degree 55 or less. BI1S is the best for the remaining three
circuits (ibm02, ibm08 and ibm18).

The breakdown of the wirelength estimation for nets with
different degree is shown in Table 4. A summary of all 18
circuits is given. Columns 2 and 3 provide a breakdown on
the number of nets and the wirelength. Notice that although
most nets are of degree two or three, there are still a substan-
tial proportion of higher degree nets and the contribution of
those nets to the wirelength is very significant. For example,
nets with degree 10 or more account for 8.13% of all nets
and contribute 26.2% of total wirelength. Columns 4 to 8 re-
port the percentage error in wirelength. As the table shows,
all five techniques have more error for nets with higher de-
gree. FLUTE is exact for nets up to degree 9 and is still very
accurate for higher degree nets. Note that although RST-T is
exact up to degree 5, it performs badly for high-degree nets.
As a result, the overall accuracy is far worse than the other
three RSMT algorithms.

The runtime comparison is listed in Table 5. Note that ex-
cept for FLUTE, the more accurate algorithms require sig-
nificantly more runtime. FLUTE is only 2.4 times slower
than RMST (the fastest) but is the most accurate.

Second, we show the effect of the accuracy parameterA
to the tradeoff between wirelength error and runtime.A is
varying from 1 to 9. An implementation of FLUTE with

Net breakdown Wirelength error (%)
Degree # WL RMST RST-T SPAN BI1S FLUTE

2 54.92% 27.98% 0.00 0.00 0.00 0.00 0.00
3 14.40% 10.26% 2.50 0.00 0.04 0.00 0.00
4 7.68% 7.84% 3.89 0.00 0.09 0.00 0.00
5 5.61% 8.18% 4.74 0.00 0.30 0.05 0.00
6 3.20% 5.65% 5.40 0.49 0.33 0.07 0.00
7 2.28% 4.82% 5.91 1.02 0.46 0.09 0.00
8 1.98% 4.61% 6.25 1.90 0.44 0.11 0.00
9 1.81% 4.46% 6.79 2.64 0.52 0.15 0.00

10-17 6.98% 21.72% 7.81 6.22 0.66 0.22 0.16
≥18 1.15% 4.48% 9.04 14.05 0.75 0.32 0.77

Table 4:Breakdown of the wirelength estimation according to degree for nets of all 18 circuits.

Wirelength error (%)
Circuit RMST RST-T SPAN BI1S FLUTE

ibm01 4.092 1.942 0.258 0.098 0.076
ibm02 5.849 3.750 0.335 0.117 0.221
ibm03 4.637 1.925 0.267 0.099 0.060
ibm04 4.048 1.270 0.207 0.061 0.050
ibm05 4.489 3.155 0.330 0.111 0.086
ibm06 5.964 2.846 0.378 0.137 0.090
ibm07 4.720 1.693 0.266 0.087 0.042
ibm08 4.784 4.446 0.325 0.119 0.250
ibm09 4.331 1.813 0.236 0.075 0.039
ibm10 4.104 1.787 0.253 0.077 0.052
ibm11 4.018 1.215 0.218 0.062 0.026
ibm12 3.783 1.912 0.246 0.074 0.056
ibm13 4.782 2.001 0.293 0.106 0.049
ibm14 3.908 1.541 0.220 0.069 0.036
ibm15 4.201 1.945 0.265 0.076 0.060
ibm16 4.231 2.426 0.278 0.089 0.061
ibm17 3.905 2.189 0.265 0.080 0.052
ibm18 4.432 3.352 0.298 0.098 0.133

All 4.232 2.263 0.269 0.085 0.070

Table 3:Percentage error in wirelength.

Runtime (s)
Circuit RMST RST-T SPAN BI1S FLUTE

ibm01 0.03 0.55 3.68 72.48 0.06
ibm02 0.06 0.78 7.17 108.93 0.15
ibm03 0.05 1.05 7.04 140.00 0.11
ibm04 0.06 1.22 7.29 162.15 0.09
ibm05 0.08 1.15 11.95 146.23 0.22
ibm06 0.06 1.38 9.94 176.88 0.16
ibm07 0.09 1.94 13.76 244.50 0.20
ibm08 0.14 2.07 18.58 266.02 0.41
ibm09 0.12 2.44 17.14 308.61 0.23
ibm10 0.16 3.00 26.00 383.44 0.39
ibm11 0.14 3.17 20.08 411.29 0.23
ibm12 0.18 3.07 28.61 394.68 0.44
ibm13 0.19 3.88 28.37 504.71 0.38
ibm14 0.29 6.00 44.21 775.54 0.60
ibm15 0.40 7.37 63.72 949.99 0.95
ibm16 0.43 7.57 77.27 968.36 1.03
ibm17 0.50 7.71 92.85 973.79 1.35
ibm18 0.49 8.03 79.96 1036.36 1.31

All 0.42 7.51 67.1 965.1 1

Table 5:Runtime comparison. The overall runtimes in the last row
are normalized with respect to FLUTE runtime.

WL error Runtime
Algorithm (%) (s) Normalized

A = 1 0.330 5.04 0.61
A = 2 0.151 6.16 0.74
A = 3 0.070 8.31 1
A = 4 0.039 12.10 1.46

New FLUTE A = 5 0.026 18.36 2.21
(return RSMT) A = 6 0.020 29.60 3.56

A = 7 0.016 51.38 6.18
A = 8 0.013 96.35 11.59
A = 9 0.012 190.67 22.94
A = 1 0.388 2.70 0.32
A = 2 0.184 3.30 0.40
A = 3 0.089 4.26 0.51
A = 4 0.052 6.13 0.74

New FLUTE A = 5 0.036 8.97 1.08
(no RSMT) A = 6 0.028 14.15 1.70

A = 7 0.023 23.85 2.87
A = 8 0.020 43.91 5.28
A = 9 0.017 85.02 10.23

Orig. FLUTE D = 9 0.477 3.81 0.46

Table 6: Wirelength error and runtime of FLUTE for different
accuracyA. The row in bold is the default.

RSMT construction disabled (i.e., for wirelength estimation
only) and the original FLUTE withD = 9 are also com-
pared. The average percentage error and total runtime for all
nets in 18 IBM circuits are reported in Table 6 and plotted in
Figure 5.

Table 6 and Figure 5 show that the accuracy control
scheme provides a very effective way to achieve much less
error in a moderate runtime increase. The runtime is increas-
ing at a rate much slower thanA! because most nets have a
low degree.

By comparing the two implementations of FLUTE for the
sameA, we notice that the runtime is roughly doubled due
to RSMT construction. However, because of the removal of
redundant segments as described in Section 3, the error is re-
duced. For applications in which only wirelength estimation
is required, the implementation without RSMT construction
provides a much better tradeoff between accuracy and run-
time unless extremely accurate solutions are desired. For ex-
tremely accurate solutions, the implementation with RSMT

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25 30
Runtime (s)

Er
ro

r
(%

)

Orig. FLUTE
New FLUTE (return RSMT)
New FLUTE (no RSMT)

D=9

A=1

A=2

A=3
(default)

A=4 A=5 A=6

A=1

A=2

A=3

A=4
A=5 A=6 A=7

Figure 5:Wirelength error versus runtime for differentA.

construction is more efficient even if the RSMT returned is
not used.

Table 6 and Figure 5 also clearly show that the new net
breaking technique introduced in this paper is much better
than the original one. The new FLUTE without RSMT con-
struction and withA = 2 is essentially the same as the orig-
inal FLUTE except for the net breaking technique. The new
FLUTE is 2.6× smaller in error and 13.4% less in runtime.

Third, we investigate the accuracy and runtime of different
RSMT algorithms for nets with degree ranging from 10 to
100. We notice that out of 1.57 millions nets in 18 IBM
circuits, only 1212 (0.077%) have a degree of more than 30,
and only 80 (0.005%) have a degree of more than 60. So
for VLSI applications, it should be enough to observe the
behavior of algorithms for degree up to 100. 10000 nets are
randomly generated for each degree. The average wirelength
error and total runtime are reported in Table 7 and Table 8,
respectively.

We can see from Table 7 that wirelength error is increas-
ing sub-linearly over degree in all algorithms. For RMST,
SPAN and BI1S, the error increases very slowly with respect
to degree. Hence, they should be suitable for problems with
large degree. FLUTE is very accurate for low-degree nets
and it is still reasonably accurate for nets with degree up to
100. So it is suitable for VLSI applications. The error of
RST-T increases very rapidly with respect to degree and is
very substantial even for medium size nets.

From Table 8, the runtime of FLUTE with a smallA value
is comparable to RMST even for large nets. So it should also
be suitable for applications that require a fast and moderately
accurate solution for large nets. Theoretically, the time com-
plexity is O(n3) for BI1S, O(n2) for RMST and FLUTE
with fixed accuracy6, andO(n log n) for RST-T and SPAN.
But in terms of runtime scalability in the range considered,
RST-T is the best. All other algorithms scale similarly. Note
that for FLUTE with a largeA, the runtime seems to be in-

6O(n log n) time implementation exists for both RMST and FLUTE.

creasing dramatically when the degree is small. The reason
is for low-degree nets, only a few level of recursive calls can
be made during net breaking. Hence, the accuracy factor on
runtime is not apparent. When the degree gets larger, the
accuracy factor will become apparent and stabilized. Then
the increase in runtime will slow down (to quadratic in our
implementation).

6 Conclusion and Discussion

In this paper, we presented an extension of the wirelength es-
timation technique FLUTE to perform RSMT construction.
A much better net breaking technique is proposed. The net
breaking technique consists of an optimal net breaking algo-
rithm and three net breaking heuristics. The intuitions be-
hind the three heuristics are explained. However, to a certain
extent, the terms and the parameters are determined exper-
imentally. We do not have very strong arguments to fully
justify them. Many other heuristics and different ways of
tuning the parameters have also explored. The algorithm can
be made either faster or more accurate. However, what we
present in this paper provides the best tradeoff between run-
time and accuracy.

Acknowledgment

We thank Prof. C. K. Cheng for providing the source code
of RST-T and Prof. Hai Zhou for providing the source code
of SPAN.

References

[1] Chris Chu. FLUTE: Fast lookup table based wirelength
estimation technique. InProc. IEEE/ACM Intl. Conf.
on Computer-Aided Design, pages 696–701, 2004.

[2] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, NY, 1979.

[3] F. K. Hwang. On Steiner minimal trees with rectilin-
ear distance.SIAM Journal of Applied Mathematics,
30:104–114, 1976.

[4] F. K. Hwang, D. S. Richards, and P. Winter. The Steiner
tree problem.Annals of Discrete Mathematics, 1992.
Elsevier Science Publishers.

[5] D. M. Warme, P. Winter, and M. Zachariasen. Exact
algorithms for plane Steiner tree problems: A compu-
tational study. In D.Z. Du, J.M. Smith, and J.H. Rubin-
stein, editors,Advances in Steiner Trees, pages 81–116.
Kluwer Academic Publishers, 2000.

[6] GeoSteiner – software for computing Steiner trees.
http://www.diku.dk/geosteiner/ .

Wirelength error (%)
FLUTE

Degree RMST RST-T SPAN BI1S A = 1 A = 2 A = 3 A = 4 A = 5 A = 6

10 11.920 5.016 0.950 0.381 1.212 0.405 0.201 0.126 0.092 0.070
20 12.373 14.471 1.124 0.484 2.719 1.695 0.916 0.572 0.408 0.321
30 12.526 22.215 1.235 0.533 3.690 2.660 1.735 1.100 0.807 0.650
40 12.630 29.130 1.316 0.551 4.361 3.443 2.492 1.633 1.185 0.971
50 12.742 35.598 1.391 0.563 4.907 4.032 3.072 2.081 1.540 1.251
60 12.766 41.832 1.436 0.566 5.382 4.520 3.558 2.475 1.814 1.473
70 12.802 47.781 1.497 0.575 5.745 4.919 3.957 2.837 2.095 1.689
80 12.872 53.967 1.554 0.588 6.122 5.321 4.369 3.195 2.357 1.912
90 12.892 59.430 1.600 0.587 6.438 5.639 4.674 3.508 2.624 2.103
100 12.881 64.722 1.658 0.590 6.691 5.926 4.960 3.798 2.852 2.272

Table 7:Percentage error in wirelength for nets of different degree.

Runtime (s)
FLUTE

Degree RMST RST-T SPAN BI1S A = 1 A = 2 A = 3 A = 4 A = 5 A = 6

10 0.07 0.48 13.69 53.76 0.13 0.17 0.19 0.23 0.27 0.30
20 0.20 0.61 38.63 76.03 0.38 0.58 1.06 1.90 3.29 5.47
30 0.41 0.74 69.32 135.03 0.68 1.08 2.09 4.70 10.19 20.89
40 0.69 0.89 109.08 242.22 1.09 1.58 3.21 8.26 20.47 46.85
50 1.05 1.04 156.53 419.09 1.34 2.17 4.41 11.81 32.28 82.49
60 1.48 1.19 217.18 680.37 1.68 2.71 5.77 15.56 46.82 130.41
70 1.99 1.34 287.67 1033.26 2.14 3.24 7.01 19.79 61.44 183.66
80 2.58 1.48 373.74 1503.89 2.49 3.91 8.45 23.90 77.01 243.95
90 3.27 1.67 493.00 2109.24 3.10 4.62 9.88 28.34 94.93 311.15
100 4.00 1.79 577.59 2839.78 3.46 5.12 11.33 32.81 112.94 384.18

Table 8:Total runtime for 10000 nets of different degree.

[7] J. Griffith, G. Robins, J. S. Salowe, and T. Zhang.
Closing the gap: Near-optimal Steiner trees in poly-
nomial time. IEEE Trans. Computer-Aided Design,
13(11):1351–1365, November 1994.

[8] I. I. Mandoiu, V. V. Vazirani, and J. L. Ganley. A
new heuristic for rectilinear Steiner trees. InProc.
IEEE/ACM Intl. Conf. on Computer-Aided Design,
1999.

[9] M. Borah, R. M. Owens, and M. J. Irwin. An edge-
based heuristic for Steiner routing. 13(12):1563–1568,
December 1994.

[10] Hai Zhou. Efficient Steiner tree construction based on
spanning graphs. InProc. Intl. Symp. on Physical De-
sign, pages 152–157, 2003.

[11] H. Zhou, N. Shenoy, and W. Nicholls. Efficient span-
ning tree construction with delaney triangulation.In-
formation Processing Letters, 81(5), 2002.

[12] J. Soukup. Circuit layout. Proceedings of IEEE,
69:1281–1304, October 1981.

[13] H. Chen, C. Qiao, F. Zhou, and C.-K. Cheng. Refined
single trunk tree: A rectilinear Steiner tree generator
for interconnect prediction. InProc. ACM Intl. Work-
shop on System Level Interconnect Prediction, pages
85–89, 2002.

[14] C. J. Alpert. The ISPD98 Circuit Benchmark Suite.
In Proc. Intl. Symp. on Physical Design, pages 80–
85, 1998. http://vlsicad.cs.ucla.edu/
˜cheese/ispd98.html .

[15] Andrew B. Kahng and Ion Mandoiu. RMST-
Pack: Rectilinear minimum spanning tree algo-
rithms. http://vlsicad.ucsd.edu/GSRC/
bookshelf/Slots/RSMT/RMST/ .

[16] M. Hanan. On Steiner’s problem with rectilinear dis-
tance.SIAM Journal of Applied Mathematics, 14:255–
265, 1966.

[17] Chris Chu. FLUTE: Fast lookup table based tech-
nique for RSMT construction and wirelength esti-
mation. http://vlsicad.ucsd.edu/GSRC/
bookshelf/Slots/RSMT/ .

[18] A. E. Caldwell, A. B. Kahng, and I. L. Markov. VLSI
CAD Bookshelf. http://www.gigascale.
org/bookshelf/ .

[19] Natarajan Viswanathan and Chris Chu. FastPlace: Effi-
cient analytical placement using cell shifting, iterative
local refinement and a hybrid net model. InProc. Intl.
Symp. on Physical Design, pages 26–33, 2004.

