Fast and Accurate Rectilinear Steiner Minimal Tree
Algorithm for VLSI Design

Chris Chu Yiu-Chung Wong
Electrical and Computer Engineering Rio Design Automation
lowa State University Santa Clara, CA 95054
Ames, 1A 50010 Email: ycwong@rio-da.com

Email: cnchu@iastate.edu

Abstract 1 Introduction

In this paper, we present a very fast and accurate rectilin-
ear Steiner minimal tree (RSMiTlgorithm called FLUTE. Rectilinear Steiner minimal tree (RSMT) construction is a
The algorithm is an extension of the wirelength estimatiofundamental problem that has many applications in VLSI
approach by fast lookup table [1]. The main contribution oflesign. In early design stages like physical synthesis, floor-
this paper is a new net breaking technique which is much belanning, interconnect planning and placement, it can be
ter than the one in [1]. A scheme is also presented to allowsed to estimate wireload, routing congestion and intercon-
users to control the tradeoff between accuracy and runtiméect delay. In global and detailed routing stages, it is used to
FLUTE is optimal for nets up to degree 9 and is still veryd&nerate the routing topology of each net.
accurate for nets up to degree 100. So it is particularly suit- RSMT problem is NP-complete [2]. So, in practice, recti-
able for VLSI applications ir! which most nets have.a degr.efﬁqear minimum spanning tree (RMST) is often used instead
3,0 or Ies;. We show experimentally that_ over 18 mdusFrlaéf RSMT. This approach is particularly common in early de-
circuits in the ISPD98 benchmark suite, FLUTE withgjon stages in which the design space is being explored and
default accuracy is more accurate than the Batched 1-Steingl e 5 fast tree construction algorithm is crucial. The dis-
heuristic and is almost as fast as a very efficient 'mplemer&'dvantage of this approach is that the length of RMST may
tation of Prim's rectilinear minimum spanning tree (RMST),q 1ch longer than that of RSMT since Steiner node is not
algorithm. By adjusting the accuracy parameter, the erfjiowed. Hwang [3] showed that length of RMST can be as
can be further reduced with only a small increase in rung, o a5 1.5 times that of RSMT. However, the difference is
time (e.g.2.7x error reduction witl2.2 x runtime increase). typically far less than 50% in practice. So this inaccuracy is
tolerable in early design stages.
Categories and Subject Descriptors

B.7.2 [Integrated Circuits]: Design Aids — Placement and At later stages in which better wirelength is required,
Routing RSMT construction is necessary. Hwang et al. [4] provided

neral Term a Comp_rehensive discugsion of various _RSMT algor?thms.
ggorﬁh?ns gerfosrmance Design For optimal RSMT algorithm, the fastest implementation is
' ' currently the GeoSteiner package [5, 6]. Griffith et al. [7]

Keywords , . ) , . (Batched 1-Steiner heuristic) and Mandoiu et al. [8] are two
Rectilinear Steiner minimal tree algorithm, routing, wire-yq|i_known near-optimal algorithms. However, these op-
length estimation timal and near-optimal algorithms are computationally too

1A rectilinear Steiner minimal tree is a tree with minimum total edgeXPensive to be used in VLSI d€.‘5i9n applications. Many
length in Manhattan distance to connect a given set of nodes possittempts have been made to design RSMT algorithms with
through some extra (i.e., Steiner) nodes. lower runtime complexity. Borah et al. [9] presented an
O(n?) time algorithm in which a spanning tree is iteratively
improved by connecting a point to a nearby edge and delet-
Permission to make digital or hard copies of all or part of this work foring the longest edge on the created cycle. @ logn)
personal or classroom use is granted without fee provided that copies 3fe but very complicated alternative implementation was
not made or distributed for profit or commercial advantage and that copiesl d. Zh 10 d . h 1111 to hel
bear this notice and the full citation on the first page. To copy otherwise, t8'SO propose_ : Ou_ [ : ] use SPa””'”g grap . [ : ] to help
republish, to post on servers or to redistribute to lists, requires prior specifg0th generating the initial spanning tree and finding good
permission and/or a fee. candidates for the edge substitution idea in [9]. The result-
ISPD’05, April 3-6, 2005, San Francisco, California, USA. ing algorithm runs inD(nlog n) time, and produces better

Copyright 2005 ACM 1-59593-021-3/05/0004 ...$5.00. solution in slightly less runtime than the one in [9].



Most signal nets in VLSI circuits have a low degte€o | Degree| # of groups| # of POWVs in a group| Ave. # of op.
in VLSI applications, rather than having a low runtime comt_" n! Min.  Ave.  Max. per net
plexity, it is more important for RSMT algorithms to be sim-| 2 2 1 1 1 0
ple so that it can be efficient for small nets. An example 3 6 1 1 1 0
of such an approach is the single trunk Steiner tree (STST), 4 24 1 leer 2 1.333
which is constructed by connecting each pin to a truck that 2 %38 1 i'jg; g 14623?373
goes either horizontally or vertically through the median pag- ' '

o . . 7 5040 1 7.932 15 20.025
sition of.all pins [12]. Hov_vever_, the length of STST is far 8 40320 1 15251 33 38.561
from optimal even for medium size nets (e.g., degree 10-1%). o 362880 1 30039 79 74155

Hence its application is limited. Chen et al. [13] proposed

an algorithm called Refined Single Trunk Tree (RST-T) toraple 1: Number of groups, number of POWVs in a group, and
reduce the length of STST by a refining procedure. RST-average number of addition/subtraction operations to evaluate a net.
is proved to be optimal for nets up to degree 4 and is ex-

perimentally shown to be optimal for degree 5 nets. It is

reasonably accurate for medium size nets too. RST-T ruff3€ set of all degree nets can be partitioned intd groups

in O(n log n) time with a fairly small constant. according to the relative positions of their pins. For each
In this paper, a very fast and accurate RSMT algorithm ig'roup, the wirelength of a!l possibly optimallrouting topolo-

presented. The algorithm is obtained by extending the wir ies along t.he Hanan _gnd_ [16] can be written as a smgll

length estimation technique FLUTE [1] to perform RSM_I_number of linear combinations of distances between adja-

construction. We also called the resulting RSMT algorithrr(fent Hanan grid lines. Each linear combination can be ex-

. ressed as a vector of the coefficients which is called a poten-
.FLUTE' In F.LUTE’ low-degree ngts (up to deg'rge gin OUIEally optimal wirelength vector (POWYV). The few POWVs
implementation) are handled optimally and efficiently by

lookup table approach. High-degree nets are recursively b?c?—r each group can be generated once by an efficient algo-
. ; rithm based on a boundary compaction technique, and stored
ken down until lookup table can be used. The main contri-

bution of this paper is a hew net breaking technique WhicwtO a lookup table. To evaluate the wirelength of a net, we

is much better than the one in [1]. An optimal algonthmIUSt need to compute the wirelengths corresponding to the
- . . POWVs for the group the net belongs to, and then report the
and three heuristics are proposed to collectively determine . - . .
; one with minimum wirelength. To speed up the wirelength

the best ways to break a net. A scheme is also presente : . . .
€valuation of a net (i.e., evaluation of all POWVs in a group),
to allow users to control the tradeoff between accuracy an

runtime. The runtime complexity of FLUTE with fixed ac- aminimum spanning tree based algonthm Is presented 1o ex-
. plore the similarity among the POWVs in a group.
curacy isO(n log n) for a degree: net.

Since FLUTE is extremely fast and accurate for low- This idea works well for low-degree nets. Table 1 gives

degree nets, it is especially suitable for VLSI application the number of groups, the numpgr of POWV.S N a group,
We show experimentally that over 18 industrial circuits inand the average number of addition/subtraction operations

the ISPD98 benchmark suite [14], FLUTE with default aC_to evaluate a net by the MST-based algorithm for nets with

curacy is more accurate than the Batched 1-Steiner heurpse—gree up to 9. For low-degree nets, the number of groups
y and the average number of POWVs per group are both small.

tic [7] and is almost as fast as a very efficient implementa\:Ience the size of the lookup table is also small. The table

tion of Prim’s RMST algorithm [15]. By adjusting the ac- . . .
curacy parameter, the error can be further reduced with °”ﬁi&iﬂgﬁgggﬁgﬁﬁ 2\;:1I82'Pe/ iﬂ)?/vl\gglqlrre]:ﬂgltnon’

a small increase in runtime (e.g.,7x error reduction with
2.2x runtime increase). In addition, we show that even for For high-degree nets, both the table size and the number
high-degree nets (up to degree 100), it is still very fast anaf operations to evaluate a net will be impractically large. So
accurate. in[1], a lookup table is constructed for nets with degree up to
The remainder of the paper is organized as follows. |/ User-defined parametBr® Nets with higher degree are re-
Section 2, a brief review of the original FLUTE algorithm isCUrsively divided into sub-nets by a net breaking technique
provided. In Section 3, the extension for RSMT constructioNtil the lookup table can be used. The net breaking tech-
is discussed. In Section 4, the new net breaking techniqueidue tries to divide the net atall pin positions and in both di-

presented. In Section 5, experimental results are shown. TiRetions (i.e., horizontal and vertical). Then the best solution
paper is concluded in Section 6. is picked. For a given pin and breaking direction, pins with a

smaller coordinate than the given pin in the breaking direc-
tion form one sub-net and other pins form another sub-net.

2 The Original FLUTE Algorithm The given pin is also included into both sub-nets as shown

. . o 3In[1], D = 7 or 8 is used. In this papef) = 9 is used. We have con-
FLUTE is a lookup table based technique originally destructed a lookup table that can be proved to be optimal for degree up to 6
signed for wirelength estimation [1]. In [1], it is shown thatand experimentally verified to be optimal for degree 7, 8, and 9 by 5 million
random nets each. The table construction is based on a modified boundary
2Thedegreeof a net is the number of pins in the net. compaction technique but it is not reported here due to space limitation.




in Figure 1(a). However, if recursive calls are really maddl  Improved Net Breaking Technique

to evaluate each of the possible pins and directions, the run-

time will be very Significant. ThUS, the total half—perimeterm this section, we present an improved technique to recur-

wirelength (HPWL) of the two sub-nets is used to predict thgjvely break high-degree nets. In this technique, if a net sat-

wirelength of each possibilities. For example, according t@fies certain conditions, it will be broken optimally. Other-

HPWL prediction, Figure 1(c) is a better selection than Figwise, three heuristics are applied to collectively determine a

ure 1(b). Then only one pin in each direction is selected tgcore for each way of breaking. Then several ways corre-

really break the net. The better of the two wirelengths wilkponding to the highest scores are tried by making recursive

be returned. calls. Note that in original FLUTE, one pin is selected for

each direction to break the net. However, in the new tech-

®© ° nique, there is no restriction on the number of pins selected

¢ e ? ® for each direction. In this technique, a scheme is also intro-

g 3 duced to allow users to control the tradeoff between accuracy

e ° ° and runtime.

@ ®) © Let us introduce some notations. Considemapin net.

Let z; be the x-coordinate of some vertical Hanan grid line

such thatr; < zo < --- < z,. Similarly, lety; be the y-

coordinate of some horizontal Hanan grid line such that

y2 < -+ < y,. Assume the pins are indexed in ascending

order of y-coordinate. Let; be the rank of pin if all pins

. . are sorted in ascending order of x-coordirfat&€herefore,

3 Extension for RSMT Construction  the coordinates of the pinis (zs,,¥:). The notations are

illustrated in Figure 3.

Figure 1:lllustration of the original net breaking technique.

In this paper, we extend the original FLUTE idea to construct

RSMT. When building the lookup table, for each POWYV, one y

. . Pin 4
of the routing topologies generated by the boundary com- /1 ° s4=2
paction based algorithm is stored. Then to construct RSMT, .
. - Y3| e ®Pin3 s.=4

the Steiner trees corresponding to the two sub-nets created Pin 2 3
by net breaking is combined and returned. Y| e s,= 1

It is enough to store one routing topology per POWV. If M ) 5;=3
more than one are stored, then different RSMTs can be con- Pin 1 -

X1 X X3 X4 X

structed. All the resulting RSMTSs have the same wirelength.
However, routers may explore the alternatives to optimize
some other objectives like congestion or coupling between
different nets.

Figure 3:lllustration of some notations.

One of the causes of the non-optimality of the original4
FLUTE algorithm is that the two sub-nets are considered in-"
dependently. The two corresponding Steiner sub-trees m

share some wire segments as shown in Figure 2(a). HO\%—r alli € {1,...,r} (see Figure 4(a) for an example with

ever, if wirelength only is returned as in original FLUTE,T _ 3), then an optimal RSMT can be constructed by merg-
this redundancy cannot be detected. In this extension tqﬁ thé optimal RSMTs ofPin 1 Pinr, (x )} and
returns a RSMT, the redundant segment is detected and g?x u), Pin + 1 binm) ey (s Yrr

moved in linear time. So the wirelength can be improve

and the runtime complexity will remain the same. Proof: s; < rforalli e {1,...,r} impliess; > r + 1 for

alli € {r +1,...,n}. In other words, the x-coordinates of

the firstr pins are always less than the x-coordinates of the

remainingn — r pins. The firstr pins and the othen — r

[ ? pins naturally form two clusters. In any optimal RSMT, there

e should be at least oRébridge” connecting the two clusters
R e (Figure 4(b)). An optimal RSMT* that passes through the

\ node(z.., ) can be constructed by shifting the segments of

(@) (b) each bridge without changing the wirelength (Figure 4(c)).

l:énother RSMTT" with the same or less wirelengthT& can

1 Optimal Net Breaking Algorithm

Fheorem 1 For any net, if there exists such thats; < r

Steiner node

Figure 2: Redundant segment when combining two Steiner su
trees.

4Note thatsy sz . . . sy, is called vertical sequence in [1].
5t can be proved that there is always exactly one bridge.



be obtained by merging the optimal RSMTSs for the two clus- The second component is:
ters with the nod€z,., y,.) added to both. Hencé, should

also be optimal. O 2(z3 — x2) if s, =1o0r2

Sa(r) = T, 41 — Ts, -1 if 3<s,<n-—2

2(xp—1 — XTp—g) if s,=n—1o0rn
g;i . bridge * e When3 < s, < n — 2, 2, 4; andx, _; are the x-
Ss= ° P ° | coordinates of the pins just right and just left of pinre-
S0 o ] / spectively. If we break the net at pin in both the lower
S3=2 ¢ \i'fr)filyi)—»“" sub-net and the upper sub-net, the pins on the left of-pin
$,=3 e 4 ® needs to be connected to those on the right (unless for the
Siste - ° S rare cases that there is no pin either on the left or on the right
(@) (b) © of pin r in a sub-net). So the segment lengihs;; — =5,

andz,,. — x,, 1 Will be counted in both the upper and the
lower sub-nets. Therefore, it is less desirable to break the
net at a pin with a large; 41 — z5,.—1. Whens, = 1 (re-
spectivelyn), pinr is at the left (respectively, right) bound-
ary andz,__, (respectively,x, ;1) is not defined. When

= 2 (respectivelyn — 1), as the segment lengih — z;
spectivelyx,, — z,_1) will always be counted once for

Figure 4:lllustration of the optimal net breaking algorithm.

Theorem 2 For any net, if there existsr such that
si > n—r+1foral i e {1,...,r}, then .
an optimal RSMT can be constructed by merging th?;é

optimal RSMTs of{Pinl,...,Pinr (zn—r11,4:)} and any way of breaking according to [1], it is less effective to
{(@n—r+1,97),PinT +1,..., Pinn}. usexs 11 — Ts,.—1 as a prediction. For these cases, we ob-
Proof: Similar to Theorem 1. O serve thatit is good in practice to set the second component
to either2(xs — x9) Or 2(x,,—1 — Tp—2).
The optimal net breaking algorithm will break a net ac- The third component is:
cording to Theorem 1 and 2 if there exists {2,...,n—2}

satisfying either one of the two conditions. I\!ote_ the the size Se(r) = |sn— n+ dy 4| — n -+ xd,
of the two sub-nets are+ 1 andn — r + 1. So it will not be 2
useful to break the netif=1orn — 1. - . _
whered, = "2 andd, = In=1 — Y2 |4 general, it
n— —
4.2 Net Breaking Heuristics is better to have the breaking pin closer to the center of the

net. If pinr is close to center vertically (i.er, is close to
Without loss of generality, consider breaking the net accordn + 1)/2), the net will be evenly divided and hence less re-
ing to y-coordinate. If the net is broken at pinthen pinl  cursive calls are likely to be made later. Both accuracy and
to pinr will form one sub-net, and pin to pinn will form  runtime will be improved as a result. If pinis close to cen-
another sub-net. To ensure that both sub-nets are at letsthorizontally (i.e.s,. is close to(n + 1)/2), other pins are
a constant factor smaller than the original net, we requireloser to pinr on average in both upper and lower sub-nets.
yn < r < n —vn + 1 for some positive constant. We  In here, we use the distance of pifrom the center (in terms
compute a score which is a weighted sum of three compof number of segments in Hanan grid) to predict how many
nents: extra segments need to be useg.andd, are the average

segment lengths in the Hanan grid. Because— z,,_1,

Score S(r) = Si(r) — aSa(r) — BSa(r). T2 — T1, Yn — Yn_1, andys — y; are always counted once

éor any solutions, they are not included in the computation
7 average length of extra segments. In principle, we can use
different weights for the horizontal part and the vertical part
. . of S; to form the score. However, we observe that a single
The first component is: weight 5 works just as well.

We experimentally determined that it is good to set both
« andg to 0.3. 5 is the most important of the three com-
If we break the net at pim, according to [1], the segment ponents.S; by itself is already significantly better than the
lengthy,+1 — . (respectivelyy, — y,-—1) will be counted HPWL heuristic in the original FLUTE. The result is even
once in the wirelength of the upper (respectively, lower) sutbetter by combining the three. We have also tried to incor-
net because pinis the only pin at the bottom (respectively, porate the HPWL heuristic into the score. Even better wire-
top) boundary of the sub-net. Otherwise, bgth; —y,. and length can be obtained. However, the HPWL heuristic is
yr — yr—1 are likely to be counted more than once in theaelatively expensive to compute. (It can consider all pins in
total wirelength. So it is better to break the net at piii  linear time, which is the same complexity as other heuristics,
Yr+1 — Yr—1 IS large. but it comes with a bigger constant.) We note that to achieve

A larger score means a more desirable way of breaking.
it is better forS; (r) to be large, and fof;(r) andSs(r) to
be small.

S1(r) = Yrg1—Yr-1



higher accuracy, it is more effective by utilizing the accuracy [ Circuit | #of nets  Ave. degree  Max. degree

control scheme described below. ibmO1 | 14111 3.58 42
ibm0Q2 19584 4.15 134
ibm03 | 27401 3.41 55
4.3 Accuracy Control Scheme ibmo4 | 31970 331 46
ibm05 28446 4.44 17
We can control the accuracy of FLUTE by changing the ibm06 | 34826 3.68 35
number of ways of breaking each net. However, we observe ibm07 | 48117 3.65 25
that it is not as good if all sub-nets generated by recursive ibm08 | 50513 4.06 75
calls are handled with the same accuracy. A better trade- | ibm09 | 60902 3.65 39
off between accuracy and runtime can be obtained if lower- ibm10 | 75196 3.96 41
level sub-nets are handled with less accuracy. We introduce !bmll 81454 3.45 24
a user-defined accuracy parameter The original net is ibm12 | 77240 411 28
. ; ibm13 99666 3.58 24
handled with accuracyl. That meansA different ways of ibmid | 152772 358 33
breaking are tried. Then for each level of recursive call, the ibm15 | 186608 3.84 36
accuracy is reduced by 1 unless it is already 1. We notice ibm16 | 190048 4.10 40
that a smallA is already enough to obtain very accurate so- ibom17 | 189581 4.54 36
lutions. We set the default value dfto 3. ibm18 | 201920 4.06 66
All 1570355 3.92 134

4.4 Time Complexity of FLUTE Table 2:Benchmark information.

The time complexity is analyzed as follows. Consider= GeoSteiner are downloaded from the GSRC Bookshelf [18].

1.~ We first need to sort all pins according to x- and y-g,, 00 codes of SPAN and RST-T are obtained from the au-

coordinates. Then we recursively break the net into two Su?ﬁors The 18 IBM circuits in the ISPD98 benchmark suite

nets in a roughly even manner. In each recursive call, it tak%ﬁ‘e used. Some information of the benchmark circuits are
linear time to check the optimal breaking conditions and t%iven in Table 2. There are totally 1.57 million nets. The

compute the scores. So the total runtim@is logn). Note glacement is generated by FastPlace [19]

that the optimal net breaking algorithm may not break th , ; i )
net in a even manner. However, we can implement the aIgp-The wirelength comparison is shown in Table 3. FLUTE

rithm to search for clusters simultaneously starting from alf the best among the five algorithms. The average wire-
four corners (instead of only lower-left and lower-right cor-€ngth error over all nets is only 0.07%. FLUTE produces
ners as suggested by Theorem 1 and 2, respectively). Thgh? best wirelength for aII_15 circuits in which all r_1e.ts have
if the net is not broken evenly (i.e., a small cluster exists), the€9ree 55 or less. BI1S is the best for the remaining three
checking time will also be small. So the total runtime will€ircuits (ibm02, ibm08 and ibm18).
still be O(nlogn). For accuracyA, it is not hard to show  The breakdown of the wirelength estimation for nets with
by mathematical induction or that the time complexity of different degree is shown in Table 4. A summary of all 18
FLUTE isO(A! nlogn). circuits is given. Columns 2 and 3 provide a breakdown on
the number of nets and the wirelength. Notice that although
most nets are of degree two or three, there are still a substan-
5 Experimental Results tial proportion of higher degree nets and the contribution of
those nets to the wirelength is very significant. For example,

We have implemented FLUTE in C. Our implementation ha§ets with degree 10 or more account for 8.13% of all nets
a time complexity oD (n?) because a simpl@(n?) sorting ~and contribute 26.2% of total wirelength. Columns 4 to 8 re-
algorithm is used, and the net breaking pin is searched in tR@t the percentage error in wirelength. As the table shows,
range2 < r < n — 1. The source code of FLUTE is posted@ll five techniques have more error for nets with higher de-

in the “Rectilinear Spanning and Steiner Trees” slot of th@"e€. FLUTE is exact for nets up to degree 9 and is still very
GSRC bookshelf [17]. accurate for higher degree nets. Note that although RST-T is

xact up to degree 5, it performs badly for high-degree nets.

We perform all experiments in a 750 MHz Sun Sparc—i .
. ; ; s a result, the overall accuracy is far worse than the other
machine. Three sets of experiments are conducted. First, we

; . . . fee RSMT algorithms.
compare the following five algorithms on nets from indus- ] ) o ]
trial circuits: an efficientO(n2) implementation of Prim's ~ The runtime comparison s listed in Table 5. Note that ex-
algorithm (RMST) [15], Refined Single Trunk Tree (RST-Cept for FLUTE, the more accurate algorithms require sig-
T) [13], the spanning graph based RSMT algorithm (SPANJificantly more runtime. FLUTE is only 2.4 times slower
[10], the near-optimal Batched lIterated 1-Steiner (BI1SYan RMST (the fastest) but is the most accurate.
heuristic [7], and FLUTE with default accuraey = 3. The Second, we show the effect of the accuracy paraméter
exact RSMT software GeoSteiner 3.1 [6] is used to genete the tradeoff between wirelength error and runtimkis
ate the optimal solutions. Source codes of RMST, BI1S, andarying from 1 to 9. An implementation of FLUTE with



Net breakdown Wirelength error (%)

Degree # WL RMST RST-T SPAN BI1S FLUTE
2 54.92% 27.98%| 0.00 0.00 0.00 0.00 0.00
3 14.40% 10.26%| 2.50 0.00 0.04 0.00 0.00
4 7.68%  7.84% | 3.89 0.00 0.09 0.00 0.00
5 5.61% 8.18% | 4.74 0.00 0.30 0.05 0.00
6 3.20% 5.65% | 5.40 0.49 0.33 0.07 0.00
7 2.28% 4.82% | 5.91 1.02 0.46 0.09 0.00
8 1.98% 461% | 6.25 1.90 0.44 0.11 0.00
9 181%  4.46% | 6.79 2.64 0.52 0.15 0.00

10-17 | 6.98%  21.72%| 7.81 6.22 0.66 0.22 0.16

>18 1.15% 4.48% | 9.04 14.05 0.75 0.32 0.77

Table 4:Breakdown of the wirelength estimation according to degree for nets of all 18 circuits.

Wirelength error (%)

Circuit | RMST RST-T SPAN BI1S FLUTE
ibm01 | 4.092 1942 0.258 0.098 0.076
ibm02 | 5849 3.750 0.335 0.117 0.221
ibm03 | 4.637 1925 0.267 0.099 0.06(
ibm04 | 4.048 1270 0.207 0.061  0.05(
ibm05 | 4.489 3.155 0.330 0.111 0.086
ibm06 | 5.964 2.846 0.378 0.137  0.09¢
ibm07 | 4720 1.693 0.266 0.087  0.042
ibm08 | 4.784 4446 0.325 0.119 0.25(
ibm09 | 4331 1.813 0.236 0.075 0.039
ibom10 | 4.104 1.787 0.253 0.077  0.052
ibm11 | 4.018 1.215 0.218 0.062 0.026
ibm12 | 3.783 1.912 0.246 0.074 0.056
ibm13 | 4782 2.001 0.293 0.106 0.049
ibom14 | 3.908 1541 0.220 0.069 0.036
ibm15 | 4.201 1945 0.265 0.076 0.06d
ibm16 | 4.231 2426 0.278 0.089 0.061
ibm17 | 3.905 2.189 0.265 0.080 0.057
ibm18 | 4.432 3.352 0.298 0.098 0.133

All 4232 2263 0.269 0.085 0.07(

Table 3:Percentage error in wirelength.

Runtime (s)
Circuit | RMST RST-T SPAN BI1S FLUTE
ibm01 | 0.03 0.55 3.68 72.48 0.06
ibm02 | 0.06 0.78 7.17 108.93 0.15
ibm03 | 0.05 1.05 7.04 140.00 0.11
ibm04 | 0.06 1.22 7.29 162.15 0.09
ibm05 | 0.08 1.15 1195 146.23 0.22
ibm06 | 0.06 1.38 9.94 176.88 0.16
ibm07 | 0.09 1.94 13.76  244.50 0.20
ibm08 | 0.14 2.07 18.58  266.02 0.41
ibm09 | 0.12 2.44 17.14  308.61 0.23
ibm10 | 0.16 3.00 26.00 383.44 0.39
ibm11l | 0.14 3.17 20.08 411.29 0.23
ibm12 | 0.18 3.07 28.61 394.68 0.44
ibm13 | 0.19 3.88 28.37 504.71 0.38
ibm14 | 0.29 6.00 4421 77554 0.60
ibm15 | 0.40 7.37 63.72  949.99 0.95
ibm16 | 0.43 7.57 77.27  968.36 1.03
ibm17 | 0.50 7.71 92.85 973.79 1.35
ibm18 | 0.49 8.03 79.96 1036.36 1.31
All 0.42 7.51 67.1 965.1 1

WL error Runtime
Algorithm (%) (s) Normalized
A=1 0.330 5.04 0.61
A=2 0.151 6.16 0.74
A=3 0.070 8.31 1
A=4 0.039 12.10 1.46
New FLUTE A=5 0.026 18.36 2.21
(return RSMT) A =6 0.020 29.60 3.56
A=7 0.016 51.38 6.18
A=238 0.013 96.35 11.59
A=9 0.012 190.67 22.94
A=1 0.388 2.70 0.32
A=2 0.184 3.30 0.40
A=3 0.089 4.26 0.51
A=14 0.052 6.13 0.74
New FLUTE A=5 0.036 8.97 1.08
(nORSMT) A =6 0.028 14.15 1.70
A=T 0.023 23.85 2.87
A=238 0.020 43.91 5.28
A=9 0.017 85.02 10.23
Orig. FLUTE D =9 0.477 3.81 0.46

Table 6: Wirelength error and runtime of FLUTE for different
accuracyA. The row in bold is the default.

RSMT construction disabled (i.e., for wirelength estimation
only) and the original FLUTE withD = 9 are also com-
pared. The average percentage error and total runtime for all
nets in 18 IBM circuits are reported in Table 6 and plotted in
Figure 5.

Table 6 and Figure 5 show that the accuracy control
scheme provides a very effective way to achieve much less
error in a moderate runtime increase. The runtime is increas-
ing at a rate much slower thatl because most nets have a
low degree.

By comparing the two implementations of FLUTE for the
sameA, we notice that the runtime is roughly doubled due
to RSMT construction. However, because of the removal of
redundant segments as described in Section 3, the erroris re-
duced. For applications in which only wirelength estimation
is required, the implementation without RSMT construction
provides a much better tradeoff between accuracy and run-

Table 5:Runtime comparison. The overall runtimes in the last rofime unless extremely accurate solutions are desired. For ex-
are normalized with respect to FLUTE runtime.

tremely accurate solutions, the implementation with RSMT



05 creasing dramatically when the degree is small. The reason
is for low-degree nets, only a few level of recursive calls can
be made during net breaking. Hence, the accuracy factor on
runtime is not apparent. When the degree gets larger, the
accuracy factor will become apparent and stabilized. Then
the increase in runtime will slow down (to quadratic in our
implementation).

X Orig. FLUTE
0.4 1 —o— New FLUTE (return RSMT)
- New FLUTE (no RSMT)

©
w

Error (%)

o
N

6 Conclusion and Discussion

0.1
In this paper, we presented an extension of the wirelength es-

timation technique FLUTE to perform RSMT construction.

A=5 = - . . .
0 A=t ‘ =5 A much better net breaking technique is proposed. The net
0 > U e » % preaking technique consists of an optimal net breaking algo-
rithm and three net breaking heuristics. The intuitions be-
Figure 5:Wirelength error versus runtime for differert hind the three heuristics are explained. However, to a certain

extent, the terms and the parameters are determined exper-
L . . .imentally. We do not have very strong arguments to fully
construction is more efficient even if the RSMT returned '?ustify them. Many other heuristics and different ways of
not used. _ tuning the parameters have also explored. The algorithm can
Table 6 and Figure 5 also clearly show that the new néfe made either faster or more accurate. However, what we

breaking technique introduced in this paper is much bett@resent in this paper provides the best tradeoff between run-
than the original one. The new FLUTE without RSMT con+time and accuracy.

struction and withA = 2 is essentially the same as the orig-
inal FLUTE except for the net breaking technique. The new
FLUTE is 2.6x smaller in error and 13.4% less in runtime. Acknowledgment

Third, we investigate the accuracy and runtime of different
RSMT algorithms for nets with degree ranging from 10 tdVe thank Prof. C. K. Cheng for providing the source code
100. We notice that out of 1.57 millions nets in 18 IBMof RST-T and Prof. Hai Zhou for providing the source code
circuits, only 1212 (0.077%) have a degree of more than 30f SPAN.
and only 80 (0.005%) have a degree of more than 60. So
for VLSI applications, it should be enough to observe the
behavior of algorithms for degree up to 100. 10000 nets aRkeferences
randomly generated for each degree. The average wirelength
error and total runtime are reported in Table 7 and Table 8[1] Chris Chu. FLUTE: Fast lookup table based wirelength
respectively. estimation technique. IRroc. IEEE/ACM Intl. Conf.

We can see from Table 7 that wirelength error is increas- o Computer-Aided Desigpages 696-701, 2004.
ing sub-linearly over degree in all algorithms. For RMST, 2]
SPAN and BI1S, the error increases very slowly with respect[
to degree. Hence, they should be suitable for problems with
large degree. FLUTE is very accurate for low-degree nets
and it is still reasonably accurate for nets with degree up td3] F. K. Hwang. On Steiner minimal trees with rectilin-
100. So it is suitable for VLSI applications. The error of ear distance.SIAM Journal of Applied Mathematics
RST-T increases very rapidly with respect to degree and is  30:104-114, 1976.
very substantial even for medium size nets.

From Table 8, the runtime of FLUTE with a smallvalue
is comparable to RMST even for large nets. So it should also
be suitable for applications that require a fast and moderately
accurate solution for large nets. Theoretically, the time com{5] D. M. Warme, P. Winter, and M. Zachariasen. Exact
plexity is O(n?) for BI1S, O(n?) for RMST and FLUTE algorithms for plane Steiner tree problems: A compu-
with fixed accurac§, andO(n logn) for RST-T and SPAN. tational study. In D.Z. Du, J.M. Smith, and J.H. Rubin-
But in terms of runtime scalability in the range considered,  stein, editorsAdvances in Steiner Tregsages 81-116.
RST-T is the best. All other algorithms scale similarly. Note Kluwer Academic Publishers, 2000.
that for FLUTE with a large4, the runtime seems to be in-

M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completenesg-reeman, NY, 1979.

[4] F.K.Hwang, D. S. Richards, and P. Winter. The Steiner
tree problem.Annals of Discrete Mathematic$992.
Elsevier Science Publishers.

[6] GeoSteiner — software for computing Steiner trees.
60(nlogn) time implementation exists for both RMST and FLUTE. http://www.diku.dk/geosteiner/




Wirelength error (%)
FLUTE
Degree| RMST RST-T SPAN BI1S| A=1 A=2 A=3 A=4 A=5 A=6
10 11920 5.016 0.950 0.381 1.212 0.405 0.201 0.126 0.092 0.070
20 12.373 14.471 1.124 0.484 2.719 1.695 0.916 0.572 0.408 0.321
30 12,526 22.215 1.235 0.5383 3.690 2.660 1.735 1.100 0.807 0.650
40 12.630 29.130 1.316 0.55{ 4.361 3.443 2.492 1.633 1.185 0.971
50 12.742 35598 1.391 0.568 4.907 4.032 3.072 2.081 1.540 1.251
60 12.766 41.832 1.436 0.56p 5.382 4.520 3.558 2.475 1.814 1.473
70 12.802 47.781 1.497 0.57p 5.745 4.919 3.957 2.837 2.095 1.689
80 12.872 53.967 1.554 0.58B 6.122 5321  4.369 3.195 2.357 1.912
90 12.892 59.430 1.600 0.58) 6.438 5.639 4.674 3.508 2.624 2.103
100 12.881 64.722 1.658 0.590 6.691 5.926 4.960 3.798 2.852 2.272
Table 7:Percentage error in wirelength for nets of different degree.
Runtime (s)
FLUTE
Degree| RMST RST-T SPAN BIlS | A=1 A=2 A=3 A=4 A=5 A=6
10 0.07 0.48 13.69 53.76| 0.13 0.17 0.19 0.23 0.27 0.30
20 0.20 0.61 38.63 76.03| 0.38 0.58 1.06 1.90 3.29 5.47
30 0.41 0.74 69.32 135.03 0.68 1.08 2.09 4.70 10.19 20.89
40 0.69 0.89 109.08 242.22 1.09 1.58 3.21 8.26 20.47 46.85
50 1.05 1.04 156.53 419.09 1.34 2.17 4.41 11.81 32.28 82.49
60 1.48 1.19 217.18 680.37 1.68 2.71 5.77 15.56 46.82 13041
70 1.99 1.34 287.67 1033.26 2.14 3.24 7.01 19.79 61.44 183.66
80 2.58 1.48 373.74 1503.89 2.49 3.91 8.45 23.90 77.01 243.95
90 3.27 1.67 493.00 2109.24 3.10 4.62 9.88 28.34 94,93 311.15
100 4.00 1.79 57759 2839.78 3.46 5.12 11.33 32.81 11294 384.18

Table 8:Total runtime for 10000 nets of different degree.

[7] J. Griffith, G. Robins, J. S. Salowe, and T. Zhang[14] C. J. Alpert. The ISPD98 Circuit Benchmark Suite.
In Proc. Intl. Symp. on Physical Desigpages 80—

[8]

[9]

[10]

[11]

[12]

[13]

Closing the gap: Near-optimal Steiner trees in poly-
nomial time. IEEE Trans. Computer-Aided Design
13(11):1351-1365, November 1994.

I. I. Mandoiu, V. V. Vazirani, and J. L. Ganley. A [15]

new heuristic for rectilinear Steiner trees. Mhroc.
IEEE/ACM Intl. Conf. on Computer-Aided Desjgn
1999.

M. Borah, R. M. Owens, and M. J. Irwin. An edge- [16]

based heuristic for Steiner routing. 13(12):1563-1568,
December 1994,

Hai Zhou. Efficient Steiner tree construction based oy 7]

spanning graphs. IRroc. Intl. Symp. on Physical De-
sign, pages 152-157, 2003.

H. Zhou, N. Shenoy, and W. Nicholls. Efficient span-

ning tree construction with delaney triangulatiolm-  [1g]

formation Processing Letter81(5), 2002.
J. Soukup. Circuit layout. Proceedings of IEEE

69:1281-1304, October 1981. [19]

H. Chen, C. Qiao, F. Zhou, and C.-K. Cheng. Refined
single trunk tree: A rectilinear Steiner tree generator
for interconnect prediction. IRroc. ACM Intl. Work-
shop on System Level Interconnect Predictipages
85-89, 2002.

85, 1998.

“cheese/ispd98.html

rithms.

http://visicad.cs.ucla.edu/

Andrew B. Kahng and lon Mandoiu. RMST-
Pack:

Rectilinear minimum spanning tree algo-

bookshelf/Slots/RSMT/RMST/

http://visicad.ucsd.edu/GSRC/

M. Hanan. On Steiner's problem with rectilinear dis-

tance.SIAM Journal of Applied Mathematic$4:255—
265, 1966.

Chris Chu.

FLUTE: Fast lookup table based tech-

nigue for RSMT construction and wirelength esti-

mation.

bookshelf/Slots/RSMT/

CAD Bookshelf.
org/bookshelf/

http://visicad.ucsd.edu/GSRC/

A. E. Caldwell, A. B. Kahng, and I. L. Markov. VLSI
http://www.gigascale.

Natarajan Viswanathan and Chris Chu. FastPlace: Effi-

cient analytical placement using cell shifting, iterative
local refinement and a hybrid net model. Rroc. Intl.
Symp. on Physical Desigpages 26—33, 2004.



