
Optimizing SOC Test Resources using Dual Sequences

 Abstract
In this paper, we propose a new data structure called

dual sequences to represent SOC test schedules. Dual
sequences are used together with a simulated annealing
based procedure to optimize the SOC test application time
and tester resources. The problems we consider are
generation of optimal test schedules for SOCs and
minimizing tester memory and test channels. Results of
experiments conducted on ITC’02 benchmark SOCs show
the effectiveness of the proposed method.

1. Introduction

In the last few years, SOC (system on a chip) design
has become the trend in integrated circuit design.
Designing a SOC usually involves using pre-defined IP
blocks, potentially from different sources, and then
adding user defined logic to create a design for a specific
application. By taking advantage of the re-usability of the
IP blocks, SOC design eliminates the need to design an
entire chip from scratch and accelerates time-to-market.
As SOC design moves toward mainstream use, the
problem of effectively testing the IP blocks (called cores)
within the SOC needs to be addressed. Generally
speaking, SOC test requires considering the following
issues: test access mechanism (TAM) design, core
wrapper design, test scheduling, tester memory and tester
channels.

TAM is the hardware infrastructure, which transports
the test data between the SOC pins and the core wrappers.
The core wrapper is a logic block consisting primarily of
scan chains placed around the core to isolate the core
from its surrounding logic and serve as an interface
between the TAM and the core. A number of approaches
have been proposed for the core wrapper design [1-6, 11].

SOC test scheduling is the procedure of deciding the
test start time of every core so as to obtain a minimum test
application time for the SOC under certain constraints,
such as TAM width (i.e. the number of SOC pins), power
dissipation during test, etc.. Since test scheduling depends
on the SOC TAM design and the core wrapper design,
SOC test requires co-optimization of the TAM, the core
wrapper design and the test schedule. Recently a number
of works proposed solutions to this problem. In [3]
Marinissen et. al. presented several methods to design
TAMs. In [7, 8] Larsson and Peng considered co-
optimization of SOC test time and the number of SOC
pins under the assumption that a wrapper for each core is
given. In [9], Chakrabarty developed an integer linear
programming model for minimizing test application time
by co-optimization of bandwidth distribution and test bus
assignment. Huang et al. [10] formulated the co-
optimization problem as a two-dimensional bin packing
or rectangle packing problem and solved it by using a

best-fit heuristic algorithm. In [16], a SOC test schedule
representation called k-tuples was introduced and test
scheduling was realized using a greedy algorithm. A
similar test schedule representation known as sequence
pair was used together with simulated annealing to solve
the co-optimization problem [6]. Other works, such as
[11-15] have investigated the same problem using
specialized heuristic procedures.

In [6] it was shown that test application time for
benchmark SOCs using a simulated annealing algorithm
were most often shorter than all earlier proposed heuristic
solutions and also shorter than an ILP based procedure
when the run time of the ILP procedure was limited (to
several hours). The SOC schedules were represented in [6]
by what are called sequence pair [19].

In this paper, we introduce a simple and effective
data structure called Dual Sequences (DS) to represent
SOC test schedules and use this to obtain optimal SOC
test schedules using simulated annealing. Experimental
results show that test schedules obtained using DS with
simulated annealing are as good as or better than those
obtained using sequence pair [6] while the run time of the
simulated annealing procedure is greatly reduced.
Another problem we consider is minimization of tester
memory and tester channels, again using DS to represent
test schedules together with simulated annealing.

 The paper is organized as follows. In Section 2, we
briefly review the features of SOC core test time. SOC
test scheduling is introduced in Section 3. In Section 4,
the new test schedule representation by dual sequences is
presented. In section 5, the simulated annealing algorithm
used to obtain optimal SOC test schedules is presented.
The problem of minimizing tester memory and tester
channels is discussed in Section 6. Experimental results
are given in Section 7. Section 8 concludes the paper.

2. The Features of SOC Core Test Time

The core wrapper is the interface between the core
and the SOC TAM. It provides several kinds of operation
modes, such as normal function, interconnect test, bypass
test, etc.. The test time for a core is derived by the
following formula [1].
T={1+max (Si, So)}· P + min (Si, So) (1)
where P is the number of test patterns, and Si (So) denotes
the length of the longest wrapper scan input (output)
chain for the core. The core test time T is decided by the
length of the longest wrapper scan chain. So one goal of
the core wrapper design is to shorten the longest wrapper
scan chain. For this purpose, balanced wrapper design
was proposed [1, 11], which partitions the wrapper scan
elements among the wrapper chains to make the length of
the wrapper chains as equal as possible. In our method,
balanced wrapper design proposed in [11] is used.

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

wrapper width

Te
st

 ti
m

e
(#

 c
lo

ck
 c

yc
le

s)

Fig.1 The testing time for the core 6 of p93791

Next we consider the relationship between the core
test time and the core wrapper width. Figure 1 shows the
test time for core 6 of the ITC’02 benchmark SOC
p93791 for different wrapper widths. It can be seen that
the test time for the core is a staircase function, which
means that there are only some wrapper width values
where the core test time changes. These points are called
pareto-optimal points [11]. This feature of core test time
enables us to restrict consideration of candidate core
wrapper widths to the pareto-optimal points as the
permissible wrapper widths. If the core wrapper is
represented by a rectangle with the width representing the
wrapper width and the height representing the core test
time, there is a set of candidate rectangles for every core
corresponding to the pareto-optimal core wrapper widths.
In co-optimizing wrapper design and SOC test time, one
of these rectangles is chosen for each core.

3. Problem Formulation
The problem of SOC test scheduling we are considering is
stated below.

Given are a SOC with N pins and Nc cores. Each core
Ci (1 ≤ i ≤ Nc) has a set of Ni permissible wrapper
configurations. Each wrapper configuration is represented
by a pair (Wij, T(Wij)), where Wij stands for the width of
the j-th wrapper configuration for core Ci and T(Wij)
stands for the test time of core Ci with wrapper width Wij.
The objective is to pick one wrapper design for each core,
determine the mapping from the SOC pins to the core
wrapper pins, and set the test start time for each core such
that the SOC test application time is minimized.

This problem can be transformed into the well-known
two-dimensional bin packing problem, in which the SOC
is represented by a bin with width N and the set of Ni
SOC wrappers for every core is represented by a set of Ui
rectangles with width Wij and height T(Wij) [10]. The
objective is to choose a rectangle for every core Ci and
pack all the rectangles in the bin, such that height of the
bin is minimum.

4. Representation of SOC Test Schedules by Dual
Sequences

In Figure 2, we illustrate a test schedule for a SOC
with six cores. The vertical axis is time and the horizontal
axis represents SOC pins. In this schedule, testing of Core
1, Core 2 and Core 3 starts simultaneously at time t = 0.
Testing of Core 3 is completed at time t = t3 at which time
testing of Core 4 is initiated. Testing of Core 4 is
completed at t = t4 at which time testing of Cores 5 and 6
is initiated. The two parts of Core 5, denoted 5_1 and 5_2,
indicate that Core 5 is tested through two non-consecutive
subsets of TAM pins. Testing of Core 2 is completed at t
= t2 and testing of Core 6 is completed at t = t6. At this
time, testing of the SOC is completed. As seen from
Figure 2, every test schedule corresponds to a rectangle
placement in the bin representing the SOC. So the
problem of SOC test scheduling can be transformed to the
rectangle placement problem.

In this section, a new representation called Dual
Sequences (DS) is introduced to express the rectangle
placement. Earlier, sequence pair was used to represent
SOC test schedules in [6, 16]. As shown in the section on
experimental results, using DS representation of SOC test
schedules reduces the run time and improves the quality
of the solutions obtained by using simulated annealing.

The DS for a placement of a set of n rectangles (cores)
is a pair of sequences (R, W), in which R is a sequence of
the names of the n rectangles and W is a sequence of the
widths of the n rectangles listed in R. For example, (< R3
R1 R2 R4 >, < 4 2 1 5 >) is a DS from which we can see
that the placement is composed of four rectangles with
widths 4,2,1 and 5, respectively. Next we discuss how to
represent a rectangle placement by a DS and how to
obtain the rectangle placement corresponding to a DS.

4.1 DS Extraction from Rectangle Placement

Given a placement of rectangles, the corresponding
DS can be obtained by visiting every rectangle in the
placement from bottom to top and from left to right.
During the visitation, the rectangles we encounter are
recorded in R in the order of visiting them and the width
corresponding to the discovered rectangles are recorded in
W. If a rectangle is split into several sub-rectangles in the
placement, the sub-rectangles are merged into one
rectangle for representation in (R, W) and its position in R
is decided by the first sub rectangle and the width in W is
the sum of the widths of the sub-rectangles. A rectangle
placement corresponding to a SOC test schedule may
have split a rectangle corresponding to a core since its
wrapper pins are connected to non-consecutive SOC pins.
For example consider the rectangle placement in Figure 2,
which has six rectangles R1,R2,R3,R4,R5,R6
corresponding to the six cores with widths, say Φ1, Φ2, Φ3,
Φ4, Φ5, and Φ6 , respectively. The rectangle R5 is divided
into two sub-rectangles R5_1 and R5_2. As explained

next, by visiting each rectangle within the placement and
merging the sub-rectangles, we obtain the Dual Sequences
(<R1 R2 R3 R4 R5 R6>, < Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 >). Since
testing of R1, R2 and R3 are all scheduled at time zero,
they are visited before R4 which is scheduled for testing
at t3. Within the set of rectangles R1, R2, and R3, R1 is
visited first since it is left of R2, followed by R2 and then
R3. Next R4 is visited. After visiting R4, R5 and R6 are
visited but R5 is visited before R6.

 Fig. 2 A SOC test schedule

4.2 Mapping from DS to Placement of Rectangles

To obtain a placement from a DS, a greedy algorithm
based on two dimensional bin packing is used. The basic
idea of this algorithm is that given the packing sequence R
and the width sequence W of the packed rectangles, we
pick rectangles from R one at a time in the order of their
appearance in R and pack a selected rectangle at a
position which is as low as possible (i.e., we schedule the
start of the test of the core corresponding to the rectangle
as early as possible). It is important to point the
distinction between dual sequences used here and
sequence pair used in [6, 16] to represent a bin packing.
Given a sequence pair the corresponding bin packing is
uniquely defined and is obtained by a longest path
procedure run over two graphs derived from the sequence
pair [6]. The bin packing corresponding to a given DS is
not unique. The sequence R determines the order in which
the rectangles are considered and W restricts the choice of
the width (i.e. wrappers) of the rectangle corresponding to
the core being packed. Any procedure to pack the
rectangles in the order given by R can be used.
 In the proposed method to obtain a rectangle
placement from a given DS, a data structure called a layer
is used, which corresponds to a position where a yet
unplaced rectangle can be placed. A layer has two
attributes: starting time and width. The starting time is the
height of the layer in the bin and the width indicates the
space available at this height. For example, in Fig.3 (a),
we have four layers, layer 0 to layer 3, which are
indicated by the thick dark lines. The start time and the
width of the layer can be seen from Fig.3 (a). For example,
the start time of layer1 is H1 and the width is (W2-W1).

Before we describle the procedure to obtain the rectangle
placement from a DS, we show how the layers change
when a new rectangle is added into an existing partial
placement.

Given the partial placement in Fig 3(a), suppose a
new rectangle, say R4 with width (W2+W4-W3) is placed
on layer 2. As shown in Fig 3 (b), R4 occupies layer 1,
layer 2 and part of layer 0. Widths of layer 1 and layer 2
are changed to 0 and the width of layer 0 is changed to
(W5-W4). A new layer 4 with width (W2+W4-W3) is
added. Layer 4 is split into two sub-layers as can be seen
in Fig. 3(b).

Next we introduce the greedy algorithm for obtaining
a rectangle placement from a DS. At the start, there is
only one layer whose width is equal to the total TAM
width (the number of SOC pins). We pick a rectangle
from sequnce R from left to right , whose width is decided
by the corresponding entry in sequence W, and place that
rectangle on a layer L, which satisfies the following
requirment.

1. The sum of the width of L and the widths of the
layers with non-zero widths whose start time is less
than or equal to the start time of layer L is greater
than or equal to the width of the rectangle being
placed.
2. The start time of layer L is the lowest among all
layers that satisfy requirment 1.
3. If there is a power constraint, the core placed at
that layer will not violate this constraint.

Following the palcement of the rectangle, a new layer
with width equal to the width of the just placed rectangle
is added to the placement and the widths of the other
layers are updated. This procedure is repeated until all
the rectangles in sequence R are packed. It should be
pointed out that the procedure proposed above is sub-
optimal. One reason for this sub-optimality is that when
the width of a layer is reduced it may preclude the use of
some packing space. For example the shaded area in
Figure 3(b) is not availble for future packing after
rectangle R4 is placed.

Compared to test schedule representation using

sequence pair used in [6,16] for obtaining SOC test
schedules, the search space for DS is of size

)Ki!Nc(
Nc

1i
∏
=

× while for the sequence pair

representation the search space is of size

)Ki)!Nc((
Nc

1i

2 ∏
=

× , where Nc is the number of cores

in the SOC and Ki is the number of wrapper
configurations for core i. The size or the search spaces
given above is obtained by computing the number of
distinct dual sequences and sequence pair, respectively.

core 1

 core 2

core 3

core 4

core 5_1
core
5_2

core 6

t2

t3
t1(t4)

t5

t6

Since the search space using DS representation of
rectangle placement is smaller, it leads to a much lower
run time for test schedule optimization using simulated
annealing. As the experiments on ITC’02 benchmarks
reported later show, the optimality of the obtained SOC
test schedule is indeed not effected by using dual
sequences instead of sequence pair.

5. Simulated Annealing
 Simulated annealing (SA) is a global stochastic
optimization algorithm that was first introduced by
Kirkpatric et al. [17]. The algorithm begins with an initial
solution, and then a neighboring solution is created by
perturbing the current solution. If the cost of the
neighboring solution is less than that of the current
solution, the neighboring solution is accepted; else it is
accepted or rejected with some probability. The
probability of accepting an inferior solution is a function
of a parameter called the temperature. The probability
function used is:

T

ΔC

ep
−

= ,
where C∆ is the change in the cost between the
neighboring solution and the current solution and T is the

current temperature. At the beginning of the algorithm,
the temperature T is large and an inferior solution has a
high probability of being accepted. As the optimization
progresses, the temperature decreases and there is a lower
probability of accepting an inferior solution. The
procedure we used to implement the simulated annealing
algorithm for finding an optimal SOC test schedule that
minimizes the expected test completion time is given
below.
Objective: Find an optimal solution Sopt, which makes
the cost function C(Sopt) minimum.
Procedure:

1. Construct an initial solution Sinit;
2. Let the current solution be Scur: = Sinit;
3. Set the initial temperature to T: = Tinit;
4. Set Counter:= 1;
5. While the stopping criteria are not met do begin
6. While T >Tfinal do begin
7. For i: = 1 to Niter do begin
8. Generate a neighboring solution Sn from the

current solution Scur;
9. Compute the change in the cost function

 C∆ =C(Sn) - C(Scur);
10. If C∆ ≤ 0 then Scur : = Sn;
11. Else begin
12. q = random(0,1);
13. If q < T

C

e
∆

− then Scur : = Sn ;
14. End
15. End
16. Set new temperature T: = K * T;
17. End
18. Set T:= Tnew;
19. Counter:=Counter+1;
20. End

We use the SA algorithm described above to

implement the SOC test scheduling based on dual
sequences by specifying the parameters of the SA
algorithm as follows.
Cost function C: The objective of test scheduling is to
reduce the test application time of the SOC. Therefore,
the height of the bin where the rectangles are placed is
defined as the cost function.
Neighboring solution Sn : The neighboring solution is
defined by two types of moves over the dual sequences,
given below.
M1: Exchange the position of two randomly chosen
rectangles in the first sequence R (note that W is also
changed to reflect the exchange in R).
M2: Change the width (and hence the height) of a
rectangle to another allowed width of the rectangle in the
second sequence W (allowed widths are the pareto-
optimal values as discussed earlier).
During the process of optimization, the probabilities of
moves M1 and M2 are set to 0.5 each.

 (a)

H3

H2

H1

W1

Layer 0

0
W3

R1

R3

W1 W2

Layer 1

Layer 2

 R2

Layer 3

Layer 0

H3

H2

H1

W5 0 W3

R 1

R 3

W1 W2

Layer 2

R2

Layer 3

R 4_1 R4_2

Layer 4

Layer 2

Layer 1

L
ay

er
 0

W4
(b)

Fig. 3 The changes in the layers during bin packing

Initial solution: The initial solution Sinit can be set
randomly. In order to accelerate the convergence of SA,
the test schedule obtained by the heuristic procedure in
[13] is used as initial solution in the experiment reported
later.
Initial temperature: The initial temperature Tinit is set to
4000. At the end of each outer loop, temperature T is reset
to Tnew = 4000 + 1000 * Counter.
Other parameters: These parameters include the final
temperature Tfinal, the number of iterations Niter at every
temperature, the stopping criteria and the temperature
reduction multiplier K. In our implementation, these
parameters are set as follows.
(1) Tfinal = 10;
(2)The number of iterations Niter at each temperature is
set to 400*Nc where Nc is the number of rectangles.
(3)The stopping criteria can be decided by the user. In our
experiment, if Counter is larger than 10, the procedure is
stopped.
(4) The temperature reduction multiplier K is set to 0.98
when T < 10000; otherwise K = 0.93.

6. Reducing ATE Resources

Automatic Test Equipment (ATE) used in SOC test
provides the ability to perform multi-site testing, which
allows several copies of a SOC to be tested concurrently.
When the number of ATE channels is given, to test a
maximum number of SOCs at the same time requires
minimization of the TAM width of the SOC while not
violating the ATE memory depth constraint (decreasing
the TAM width of the SOC will increase the test
application time and hence the ATE memory depth
requirement). In this section we discuss how the proposed
method using DS representation of the test schedules can
be used to minimize SOC TAM width as well as the ATE
buffer memory depth for a given SOC TAM width.

When an SOC is tested by an ATE, the test channel
memory depth required for the SOC is decided by the test
data volume. The depth of the test channel memory can
be approximated by the SOC test application time (the
number of clock cycles) [20]. Therefore, the problem of
multi-site SOC test under ATE memory depth constraints
can be considered as a problem of reducing the SOC
TAM width while the total test application time is fixed.
This allows testing of a maximum number of SOCs using
a given number of test channels and their buffer memory
depth. The SOC multi-site test problem can be solved
using the two dimensional bin packing procedure with the
width of the bin representing the memory depth constraint
and the height of the bin representing the TAM width. We
should point out that in the bin packing problem for multi-
site testing, a rectangle cannot be divided into several sub-
rectangles, which is different from the bin packing
problem we discussed before. Dividing rectangles was
permitted in the earlier problem since it is not necessary
to connect the wrapper pins of a core to adjacent SOC

pins. However, in multi-site testing, breaking a rectangle
represents interruption of the test of a core, which may
not be permitted. A simple way to accommodate the
requirement that core tests cannot be interrupted is to
require that the new rectangle to be packed must occupy
contiguous layers only, thus avoiding division of
rectangles.

Figure 4 Rectangle packing to optimize ATE resources

Another issue that needs to be considered is
illustrated by the rectangle packing shown in Figure 4(a).
Figure 4(a) shows the case where the ATE test channels 1
and 2 are used to test core 2 and ATE test channel 3 is
used to test core 1. Tests for core 1 occupy M1 bits of
memory buffer for tester channel 3 and tests for core 2
occupy M2 bits of memory buffer for channels 1 and 2.
Tests for core 3 use all three test channels and hence can
only be started after completing the test of core 2. It
should be pointed out that the tests are loaded into the
buffer and shifted out to the inputs of the device under
test. If the tester architecture is such that all test channel
buffers are shifted at the same time and each channel has
dedicated memory buffer then the buffer bits of channel 3
are don’t cares from M1 to M2. However if the tester
architecture is such that each test channel is individually
controlled, then test channel 3 can be idled after testing
core 1 until core 3 test is initiated. In this case the size of
the buffer for test channel 3 need only be (M3-M2+M1).
The packing shown in Figure 4(b) for the same cores as in
Figure 4(a) illustrates the situation where the memory
buffer contents for test channel 3 is such that don’t cares
occur only at the end. In this case after the testing of core
1 is complete test channel 3 can be idled. In general, if the
packing is such that all the test channel buffers have don’t
cares only at the end the ATE memory management is
simpler [20,21]. Finally, in some ATE architectures the
entire buffer memory can be configured as a single pool

TAM

TAM

(b)
ATE
Memory

ATE

ATE
Memory

M3 M1 M2
1

2

Core 1

Core 2
Core 3

3

(a)

1

2

Core 1

Core 2
Core 3

ATE

3

of memory that can be dynamically assigned to test
channels [21, 22]. For such architectures the total
memory requirements for a SOC test is important.

For finding SOC test schedules to minimize the
number of ATE test channels given the maximum depth
of test channel buffers, we used two different procedures
to obtain rectangle packings from dual sequences. The
first one is a modified version of the procedure in [20] to
obtain rectangle packings such that all the don’t cares in
the memory buffers are at the end. The second procedure
is the one described in the last section with the additional
constraint that rectangles are not divided during packing.

7. Experimental Results

 The proposed simulated annealing based algorithm is
implemented in C++ and executed on a PC with a
Pentium IV 1.4GHZ processor and a 512 MB memory.
The implemented procedure was applied to ITC’02
benchmark SOCs [18] under the assumption of no power
constraint.

 The results of applying the proposed method to SOC
test scheduling together with the results reported by
earlier methods are reported in Table 1. The proposed
simulated annealing based procedure was run for ten
iterations and the best schedule obtained is reported. The
method used is indicated in column 2, where DS indicates
the proposed method and the other methods are indicated
by the number of the corresponding reference. The
remaining columns give the SOC test application time for
the number of SOC pins shown as the heading for the
column. The entry for the method(s) achieving the best
test application time is shown in bold. The method in [6]
also used a simulated annealing algorithm with test
schedules represented by sequence pair and had achieved
better schedules than a heuristic method that also used
sequence pair [16]. For this method also we report the
schedule obtained from ten iterations of the procedure. It
can be seen that for all the benchmark SOCs, the
proposed method achieves better or equal SOC test
application time compared to [6]. It can also be observed
that the proposed method achieves the same or better test
application time than all other methods, except in the
cases of P93791 with 80 SOC pins and A586710 with 32
SOC pins.

The run times for the proposed simulated annealing
based procedure and the earlier procedure using simulated
annealing together with sequence pair [6] are given in
Table 2. The run times reported for both procedures are
for a total of ten iterations of the procedures. From Table
2 it can be seen that using dual sequences instead of
sequence pair to represent rectangle placements improves
the run time of simulated annealing based procedures. A
2X to 3X improvement in run time is obtained for most
designs.

In Tables 3-6 we report the results on ATE tester
channels and buffer memory for four circuits for which

data of the earlier work [20] is available. In the first
column we show the maximum memory allowed per test
channel. In the next three columns we show the number
of tester channels required to deliver the tests using the
two procedures described in the last section and the
method of [20], respectively. Procedure DS1 is the
proposed simulated annealing based procedure when the
don’t care bits in the buffer memory of the test channels
are all at the end and DS is the procedure where the don’t
care bits are allowed to be anywhere in the buffer memory.
In the next four columns we give the total ATE memory
required to store the test input data. For method DS we
report two entries. Under DSg we report total memory
including the don’t cares portion and under DS we report
the total memory ignoring the don’t care portion. For the
other two procedures the don’t care portions are not
included in the totals reported.

From Tables 3-6 it can be seen that the simulated
annealing based procedures require the same or smaller
number of test channels compared to the heuristic
procedure of [20] for all the SOCs considered. It can also
be seen that the total memory required is also smaller for
the simulated annealing based procedures.

As an example of how reducing the number of ATE
test channels helps reduce the cost of SOC test using
multi-site testers, consider a tester with 128 test channels.
Note that all SOCs under test can receive the test data
simultaneously from the same tester channels. However
the test responses from each SOC under test require
separate test channels. From Table 4 for SOC p22810
with test channel buffer size limited to 640K, we note that
using methods DS1, DS and of [20], the number of test
channels needed to apply tests to all SOCs under test is 12,
11 and 13, respectively. However each tested SOC needs
the same number of separate test channels to obtain test
responses. Thus in this case, the number of SOCs that
can be simultaneously tested using a tester with 128 test
channels will be 8 using the procedure of [20], 9 using
procedure DS1 and 10 if procedure DS is used. Thus by
using procedure DS the number of SOCs tested per unit of
time increases by 25% over the number tested if the
procedure from [20] is used.

8. Conclusions

A new data structure called dual sequence to
represent rectangle packings is introduced. Using dual
sequences together with simulated annealing procedures
to obtain optimal SOC test schedules and to reduce ATE
test resources were presented. Experimental results on
ITC ’02 SOC benchmarks showed that the proposed
procedures yield better results than procedures proposed
earlier.

References
[1] E. J. Marinissen, S. K. Goel and M. Lousberg, “Wrapper Design for
Embedded Core test,” pp.911-920, ITC ,2000.

[2] P. Varma and S. Bhatia, “A Structured Test Re-Use Methodology for
Core-Based System Chips,” pp. 294 –302, ITC, 1998.
 [3] E. J. Marinissen, R. Arendsen, G. Bos, H. Dingemanse, M.
Lousberg, and C. Wouters, “A Structured And Scalable Mechanism for
Test Access to Embedded Reusable Cores,” pp. 284-293, ITC, 1998.
[4]P. T. Gonciari, B. M. Al-Hashimi and N.Nicolici , “Addressing
Useless Memory in Core-Based System-on-a-Chip Test,” pp. 423-430,
VTS, 2002.
[5] E. J. Marinissen, R. Kapur, and Y. Zorian, “On Using IEEE P1500
SECT for Test Plug-n-Play,” pp. 770-777, ITC, 2000.
[6] W. Zou, S. M. Reddy, I. Pomeranz and Y. Huang, “SOC Test
Scheduling Using Simulated Annealing,” pp. 325-330 VTS, 2003.
[7] E. Larsson and Z. Peng, “An Integrated System-On-Chip Test
Framework,” pp. 138-144, DATE, 2001.
[8] E. Larsson, Z. Peng and G. Carlsson, “The Design and Optimization
of SOC Test Solutions,” pp. 523-530, ICCAD, 2001.
[9] K. Chakrabarty, “Design of System-on-Chip Test Access
Architectures using Integer Linear Programming,” pp. 127-134, VTS,
2000.
[10] Y. Huang et. al., “Resource Allocation and Test Scheduling for
Concurrent Test of Core -Based SOC Design,” pp. 265-270,
ATS, 2001.
[11] V. Iyenger, K. Chakrabarty and E. J. Marinssen, “Test Wrapper and
Test Access Mechanism Co-Optimization for System-on-Chip,” pp.
1023-1032, ITC, 2001.
[12] V. Iyenger, K. Chakrabarty and E. J. Marinssen, “On Using
Rectangle Packing for SOC Wrapper/TAM Co-Optimization,” pp. 253-
258, VTS, 2002.

[13] V. Iyengar and K. Chakrabarty and E. J. Marinssen, “Integrated
Wrapper/TAM Co-Optimization, Constraint-Driven Test Scheduling,
and Tester Data Volume reduction for SOCs,” pp. 685-690, DAC, 2002.
[14] Y. Huang et al., “Optimal Core Wrapper Width Selection and SOC
Test Scheduling Based on3-D Bin Packing Algorithm,” pp. 74-82, ITC,
2002.
[15] S. K. Goel and E. J. Marinissen, “Effective and Efficient Test
Architecture Design for SOCs,” pp. 529-538, ITC, 2002 .
[16] S. Koranne and V. Iyengar, “On the Use of k-tuples for SoC Test
Schedule Representation,” pp. 539-548, ITC, 2002 .
[17] S. Kirkpatrick et al., “Optimization by Simulated Annealing,”
pp.671-680, Science, Vol.220, No.4598, 1983.
[18] E. J. Marinissen, V. Iyengar and K. Chakrabarty. ITC2002 SOC
Benchmarking initiative, http://www.extra.research.philips.com/itc02socbenchm.
[19] H. Murata, et. al., “VLSI Module Placement Based on Rectangle-
Packing by the Sequence-Pair,” pp. 1518-1524, IEEE, TCAD, 1996.
[20]V. Iyengar et. al., “Test resource Optimization for multi-Site testing
of SOCs under ATE memory Depth constrains, ” pp. 1159-1168, ITC,
2002.
[21] P. T. Gonciari and B. M. Al-Hashimi, “Useless Memory Allocation
in System-on-Chip test: Problems and Solutions,” pp. 423-429, VTS,
2002.
[22] J. Bedsole, R. Raina, A. Crouch and M. S. Abadir, “Very Low Cost
Tester: Opportunities and Challenges,” pp.738-747, ITC, 2001.

Table 1: Test Application Times for ITC’02 SOC Benchmarks

32 48 64 80 96 112 128
DS 41654 28161 21025 16962 14310 12134 10723
[6] 41899 28165 21258 17101 14310 12134 10760

[11] 41949 28327 21423 17210 16403 13023 12327
[12] 43723 30317 23021 18459 15698 13415 11604
[15] 44307 28576 21518 17617 14608 12462 11033
DS 433403 289332 219019 178402 147944 128887 110940
[6] 438619 293019 219923 180004 151886 132812 112515

[12] 452639 307780 246150 197293 167256 145417 136941
[15] 458068 299718 222471 190995 160221 145417 133405
DS 960230 655607 544579 544579 544579 544579 544579
[6] 965252 657561 544579 544579 544579 544579 544579

[12] 1023820 759427 544579 544579 544579 544579 544579
[15] 1010821 680411 551778 544579 544579 544579 544579
DS 1763528 1175756 887619 710211 594054 509845 445270
[6] 1765797 1178397 893892 718005 597182 510516 451472

[11] 1775099 1192980 899807 705164 602613 521806 463707
[12] 1851135 1248795 975016 794020 627934 568436 511286
[15] 1791638 1185434 912233 718005 601450 528925 455738
DS 30958 21233 16048 14794 14794 14794 14794
[6] 31398 21365 16067 14794 14794 14794 14794

[15] 34459 22821 16855 14794 14794 14794 14794
DS 13416 10750 6746 5332 5332 4080 4080
[6] 13416 10750 6746 5332 5332 4080 4080

[15] 18663 13331 10665 8084 7999 7999 7999
DS 357088 335334 335334 335334 335334 335334 335334
[6] 357088 335334 335334 335334 335334 335334 335334

[15] 372125 335334 335334 335334 335334 335334 335334
DS 10530995 10453470 5268868 5228420 5228420 5228420 5228420
[6] 10530995 10453470 5268868 5228420 5228420 5228420 5228420

[15] 10530995 10453470 5268868 5228420 5228420 5228420 5228420
DS 42198943 27785885 21343768 19041307 15031300 13401034 11486601
[6] 42198943 27785885 21735555 19041307 15071700 14709449 12754585

[15] 41523868 28716501 22475033 19048835 15315476 13401034 12700205
DS 2222349 2222349 2222349 2222349 2222349 2222349 2222349
[6] 2222349 2222349 2222349 2222349 2222349 2222349 2222349

[15] 2222349 2222349 2222349 2222349 2222349 2222349 2222349
DS 7881 5329 4070 3926 3926 3926 3926
[6] 7946 5485 4070 3926 3926 3926 3926

[15] 8444 6408 5084 3964 3926 3926 3926
DS 119357 119357 119357 119357 119357 119357 119357
[6] 119357 119357 119357 119357 119357 119357 119357

[15] 119357 119357 119357 119357 119357 119357 119357

No. SOC pins

P34392

P93791

Benchmark

D695

P22810

Method

G1023

F2126

T512505

A586710

Q12710

D281

H953

U226

 Table2. Run times for the proposed method and method of [6]

32 48 64 80 96 112 128
DS 43.76 43.51 42.99 42.82 41.82 41.7 40.74
[6] 52.25 54.19 56.11 56.86 58.93 61.29 67.69
DS 320.68 320.92 320.29 322.83 322.85 323.13 323.87
[6] 559.05 580.13 616.26 642.01 642.42 686.25 678.22
DS 148.59 148.02 146.15 142.15 139.95 137.65 136.1
[6] 233.06 261.23 279.22 305.05 324.59 335.5 341.98
DS 433.21 438.96 439.15 441.91 443.44 444.15 446.22
[6] 686.3 732.37 756.18 782.64 774.37 781.67 783.92
DS 77.63 76.79 76.02 73.67 71.8 70.3 69.07
[6] 122.93 128 135.19 143.06 148.98 153.6 156.15
DS 26.64 27.49 26.87 26.83 26.42 26.23 25.95
[6] 33.34 32.16 33.25 33.68 34.43 35.26 35.44
DS 12.55 11.84 11.4 11.38 11.41 11.39 11.4
[6] 16.08 17.24 17.47 17.41 17.42 17.41 17.42
DS 330.23 357.59 354.7 359.01 362.23 356.65 348.15
[6] 743.52 943.89 782.03 963.37 1023.21 1038.73 1043.43
DS 24.08 23.58 23.52 23.31 23.87 22.84 23.56
[6] 24.42 25.16 26.38 26.13 26.24 25.71 27.39
DS 12.28 12.25 12.26 12.28 12.27 12.27 12.26
[6] 17.49 17.49 17.47 17.51 17.47 17.48 17.49
DS 27.85 27.36 26.77 26.28 25.88 25.37 25.15
[6] 37.01 39.53 41.31 42.83 44.28 45.14 45.44
DS 28.54 27.05 26.34 25.91 25.87 25.81 25.78
[6] 49.42 52.46 53.3 53.55 53.51 53.18 53.25

Benchmark

D695

P22810

No.SOC pinsMethod

P34392

P93791

G1023

U226

D281

H953

F2126

T512505

A586710

Q12710

DS1 DS [20] DS1 DSg DS [20] DS1 DS [20] DS1 DSg DS [20]
32K 16 16 18 495679 496080 495639 511464 256K 30 28 30 7099492 7095609 6993356 7404961
40K 13 13 15 495736 493047 492948 505107 320K 23 22 25 7027732 7003552 6967561 7134483
48K 11 11 13 493358 494391 493717 507696 384K 19 19 21 6996904 7023324 6955179 7255983
56K 9 9 11 492936 493713 492087 515956 448K 17 16 18 7086139 6994720 6913817 7326446
64K 8 8 10 493475 493404 493124 514380 512K 14 14 16 6926695 7096052 7008133 7350768
72K 7 7 9 490096 490086 488965 516732 576K 13 12 14 6862197 6955836 6935482 7390568
80K 7 7 8 488759 488922 488910 514538 640K 12 11 13 6971280 6915493 6833044 7441084
88K 6 6 7 489263 490291 490020 506660 704K 11 10 11 6804771 6886110 6820335 7234211
96K 6 6 6 488639 490363 489495 507849 768K 10 9 11 6865817 6892560 6832015 7564350
104K 5 5 5 490060 489592 489142 501840 832K 9 9 10 6839742 6917345 6835019 7601117
112K 5 5 5 488244 490029 488886 500262 896K 9 8 10 6797761 6932763 6823407 7784192
120K 5 4 5 487714 489018 487870 500209 960K 8 8 9 6837474 6940258 6843692 7642819
128K 4 4 4 488271 488740 488740 497167 1M 7 7 8 6935563 6897983 6810674 7245774

DS1 DS [20] DS1 DSg DS [20] DS1 DS [20] DS1 DSg DS [20]
1.00M 29 29 30 28801632 29165376 28701704 30569666 768K 21 21 23 15499573 15572458 15509657 15975513
1.256M 23 23 23 28365553 28977417 28673994 28853177 896K 18 18 20 16037390 15381530 15348449 16676762
1.512M 19 19 20 28416635 28749065 28485192 29587103 1.00M 16 15 16 15506240 15221266 15194202 15645989
1.768M 16 16 17 28350143 28881393 28598386 30209460 1.128M 14 14 15 15399516 15267172 15213829 16227655
2.000M 14 14 15 28448141 28576775 28221882 30570183 1.256M 13 12 14 15286752 15224186 15152249 15961051
2.256M 13 13 13 28235620 28732954 28267254 29108758 1.384M 11 11 13 15336206 15345128 15268571 16713779
2.512M 12 12 12 28304322 28902346 28223225 30385045 1.512M 11 10 12 15239519 15228804 15179270 15910317
2.768M 11 11 11 28184680 28196995 28026911 29499548 1.640M 10 10 11 15177894 15304504 15165987 15474763
3.000M 10 10 10 28157723 28665927 28160766 29635431 1.768M 9 9 10 15132399 15179765 15097375 15890652
3.256M 9 9 9 28227717 28570811 28100678 29121214 1.896M 8 8 10 15124570 15176594 15127484 16330357
3.512M 8 8 8 28056204 28417779 28194724 28853489 2.000M 8 8 9 15114833 15180006 15080645 16588577
3.768M 8 8 8 28211308 28699383 28096145 29038354
4.000M 7 7 7 28301285 28420266 28189282 29096196

 Table 3. SOC g1023: TAM width and ATE memory Table 4. SOC p22810: TAM width and ATE memory

 Table 6. SOC p34392: TAM width and ATE memory Table 5. SOC p93791: TAM width and ATE memory

Memory
TAM width Total ATE memory

Memory
TAM width Total ATE memory

Total ATE memory
Memory

Total ATE memory TAM width
Memory

TAM width

