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           Abstract 
In this paper, we propose a new data structure called 

dual sequences to represent SOC test schedules. Dual 
sequences are used together with a simulated annealing 
based procedure to optimize the SOC test application time 
and tester resources. The problems we consider are 
generation of optimal test schedules for SOCs and 
minimizing tester memory and test channels. Results of 
experiments conducted on ITC’02 benchmark SOCs show 
the effectiveness of the proposed method.  
 
1. Introduction 

In the last few years, SOC (system on a chip) design 
has become the trend in integrated circuit design. 
Designing a SOC usually involves using pre-defined IP 
blocks, potentially from different sources, and then 
adding user defined logic to create a design for a specific 
application. By taking advantage of the re-usability of the 
IP blocks, SOC design eliminates the need to design an 
entire chip from scratch and accelerates time-to-market. 
As SOC design moves toward mainstream use, the 
problem of effectively testing the IP blocks (called cores) 
within the SOC needs to be addressed. Generally 
speaking, SOC test requires considering the following 
issues: test access mechanism (TAM) design, core 
wrapper design, test scheduling, tester memory and tester 
channels.  

TAM is the hardware infrastructure, which transports 
the test data between the SOC pins and the core wrappers. 
The core wrapper is a logic block consisting primarily of 
scan chains placed around the core to isolate the core 
from its surrounding logic and serve as an interface 
between the TAM and the core. A number of approaches 
have been proposed for the core wrapper design [1-6, 11]. 

SOC test scheduling is the procedure of deciding the 
test start time of every core so as to obtain a minimum test 
application time for the SOC under certain constraints, 
such as TAM width (i.e. the number of SOC pins), power 
dissipation during test, etc.. Since test scheduling depends 
on the SOC TAM design and the core wrapper design, 
SOC test requires co-optimization of the TAM, the core 
wrapper design and the test schedule. Recently a number 
of works proposed solutions to this problem. In [3] 
Marinissen et. al. presented several methods to design 
TAMs. In [7, 8] Larsson and Peng considered co-
optimization of SOC test time and the number of SOC 
pins under the assumption that a wrapper for each core is 
given. In [9], Chakrabarty developed an integer linear 
programming model for minimizing test application time 
by co-optimization of bandwidth distribution and test bus 
assignment. Huang et al. [10] formulated the co-
optimization problem as a two-dimensional bin packing 
or rectangle packing problem and solved it by using a 

best-fit heuristic algorithm. In [16], a SOC test schedule 
representation called k-tuples was introduced and test 
scheduling was realized using a greedy algorithm.  A 
similar test schedule representation known as sequence 
pair was used together with simulated annealing to solve 
the co-optimization problem [6]. Other works, such as 
[11-15] have investigated the same problem using 
specialized heuristic procedures. 

In [6] it was shown that test application time for 
benchmark SOCs using a simulated annealing algorithm 
were most often shorter than all earlier proposed heuristic 
solutions and also shorter than an ILP based procedure 
when the run time of the ILP procedure was limited (to 
several hours). The SOC schedules were represented in [6] 
by what are called sequence pair [19].  

In this paper, we introduce a simple and effective 
data structure called Dual Sequences (DS) to represent 
SOC test schedules and use this to obtain optimal SOC 
test schedules using simulated annealing. Experimental 
results show that test schedules obtained using DS with 
simulated annealing are as good as or better than those 
obtained using sequence pair [6] while the run time of the 
simulated annealing procedure is greatly reduced. 
Another problem we consider is minimization of tester 
memory and tester channels, again using DS to represent 
test schedules together with simulated annealing.    

 The paper is organized as follows. In Section 2, we 
briefly review the features of SOC core test time. SOC 
test scheduling is introduced in Section 3. In Section 4, 
the new test schedule representation by dual sequences is 
presented. In section 5, the simulated annealing algorithm 
used to obtain optimal SOC test schedules is presented. 
The problem of minimizing tester memory and tester 
channels is discussed in Section 6. Experimental results 
are given in Section 7. Section 8 concludes the paper. 
 
2. The Features of SOC Core Test Time  

The core wrapper is the interface between the core 
and the SOC TAM. It provides several kinds of operation 
modes, such as normal function, interconnect test, bypass 
test, etc.. The test time for a core is derived by the 
following formula [1]. 
T={1+max (Si, So)}· P + min (Si, So)               (1) 
where P is the number of test patterns, and Si (So) denotes 
the length of the longest wrapper scan input (output) 
chain for the core. The core test time T is decided by the 
length of the longest wrapper scan chain. So one goal of 
the core wrapper design is to shorten the longest wrapper 
scan chain. For this purpose, balanced wrapper design 
was proposed [1, 11], which partitions the wrapper scan 
elements among the wrapper chains to make the length of 
the wrapper chains as equal as possible. In our method, 
balanced wrapper design proposed in [11] is used.  
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Fig.1 The testing time for the core 6 of p93791  
 

Next we consider the relationship between the core 
test time and the core wrapper width. Figure 1 shows the 
test time for core 6 of the ITC’02 benchmark SOC 
p93791 for different wrapper widths.  It can be seen that 
the test time for the core is a staircase function, which 
means that there are only some wrapper width values 
where the core test time changes. These points are called 
pareto-optimal points [11]. This feature of core test time 
enables us to restrict consideration of candidate core 
wrapper widths to the pareto-optimal points as the 
permissible wrapper widths. If the core wrapper is 
represented by a rectangle with the width representing the 
wrapper width and the height representing the core test 
time, there is a set of candidate rectangles for every core 
corresponding to the pareto-optimal core wrapper widths. 
In co-optimizing wrapper design and SOC test time, one 
of these rectangles is chosen for each core. 
 
3. Problem Formulation 
The problem of SOC test scheduling we are considering is 
stated below. 

Given are a SOC with N pins and Nc cores. Each core 
Ci (1 ≤ i ≤ Nc) has a set of Ni permissible wrapper 
configurations. Each wrapper configuration is represented 
by a pair (Wij, T(Wij)),  where Wij stands for the width of 
the j-th wrapper configuration for core Ci and  T(Wij) 
stands for the test time of  core Ci with wrapper width Wij. 
The objective is to pick one wrapper design for each core, 
determine the mapping from the SOC pins to the core 
wrapper pins, and set the test start time for each core such 
that the SOC test application time is minimized.  

This problem can be transformed into the well-known 
two-dimensional bin packing problem, in which the SOC 
is represented by a bin with width N and the set of Ni 
SOC wrappers for every core is represented by a set of Ui 
rectangles with width Wij and height T(Wij) [10]. The 
objective is to choose a rectangle for every core Ci and 
pack all the rectangles in the bin, such that height of the 
bin is minimum. 
 

4. Representation of SOC Test Schedules by Dual 
Sequences 

In Figure 2, we illustrate a test schedule for a SOC 
with six cores. The vertical axis is time and the horizontal 
axis represents SOC pins. In this schedule, testing of Core 
1, Core 2 and Core 3 starts simultaneously at time t = 0. 
Testing of Core 3 is completed at time t = t3 at which time 
testing of Core 4 is initiated. Testing of Core 4 is 
completed at t = t4 at which time testing of Cores 5 and 6 
is initiated. The two parts of Core 5, denoted 5_1 and 5_2, 
indicate that Core 5 is tested through two non-consecutive 
subsets of TAM pins. Testing of Core 2 is completed at t 
= t2 and testing of Core 6 is completed at t = t6. At this 
time, testing of the SOC is completed. As seen from 
Figure 2, every test schedule corresponds to a rectangle 
placement in the bin representing the SOC. So the 
problem of SOC test scheduling can be transformed to the 
rectangle placement problem.   

In this section, a new representation called Dual 
Sequences (DS) is introduced to express the rectangle 
placement. Earlier, sequence pair was used to represent 
SOC test schedules in [6, 16]. As shown in the section on 
experimental results, using DS representation of SOC test 
schedules reduces the run time and improves the quality 
of the solutions obtained by using simulated annealing.  

The DS for a placement of a set of n rectangles (cores) 
is a pair of sequences (R, W), in which R is a sequence of 
the names of the n rectangles and W is a sequence of the 
widths of the n rectangles listed in R. For example, (< R3 
R1 R2 R4 >, < 4 2 1 5 >) is a DS from which we can see 
that the placement is composed of four rectangles with 
widths 4,2,1 and 5, respectively. Next we discuss how to 
represent a rectangle placement by a DS and how to 
obtain the rectangle placement corresponding to a DS. 
 
4.1 DS Extraction from Rectangle Placement    

Given a placement of rectangles, the corresponding 
DS can be obtained by visiting every rectangle in the 
placement from bottom to top and from left to right. 
During the visitation, the rectangles we encounter are 
recorded in R in the order of visiting them and the width 
corresponding to the discovered rectangles are recorded in 
W. If a rectangle is split into several sub-rectangles in the 
placement, the sub-rectangles are merged into one 
rectangle for representation in (R, W) and its position in R 
is decided by the first sub rectangle and the width in W is 
the sum of the widths of the sub-rectangles. A rectangle 
placement corresponding to a SOC test schedule may 
have split a rectangle corresponding to a core since its 
wrapper pins are connected to non-consecutive SOC pins. 
For example consider the rectangle  placement in Figure 2, 
which has six rectangles R1,R2,R3,R4,R5,R6 
corresponding to the six cores with widths, say Φ1, Φ2, Φ3, 
Φ4, Φ5, and Φ6 , respectively. The rectangle R5 is divided 
into two sub-rectangles R5_1 and R5_2. As explained 



next, by visiting each rectangle within the placement and 
merging the sub-rectangles, we obtain the Dual Sequences 
(<R1 R2 R3 R4 R5 R6>, < Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 >). Since 
testing of R1, R2 and R3 are all scheduled at time zero, 
they are visited before R4 which is scheduled for testing 
at t3. Within the set of rectangles R1, R2, and R3, R1 is 
visited first since it is left of R2, followed by R2 and then 
R3. Next R4 is visited. After visiting R4, R5 and R6 are 
visited but R5 is visited before R6.     
 
 
 
 
 
 
        
 
 
          
 
 
              Fig. 2 A SOC test schedule  
 
4.2 Mapping from DS to Placement of Rectangles 

To obtain a placement from a DS, a greedy algorithm 
based on two dimensional bin packing is used.  The basic 
idea of this algorithm is that given the packing sequence R 
and the width sequence W of the packed rectangles, we 
pick rectangles from R one at a time in the order of their 
appearance in R and pack a selected rectangle at a 
position which is as low as possible (i.e., we schedule the 
start of the test of the core corresponding to the rectangle 
as early as possible). It is important to point the 
distinction between dual sequences used here and 
sequence pair used in [6, 16] to represent a bin packing. 
Given a sequence pair the corresponding bin packing is 
uniquely defined and is obtained by a longest path 
procedure run over two graphs derived from the sequence 
pair [6]. The bin packing corresponding to a given DS is 
not unique. The sequence R determines the order in which 
the rectangles are considered and W restricts the choice of 
the width (i.e. wrappers) of the rectangle corresponding to 
the core being packed. Any procedure to pack the 
rectangles in the order given by R can be used.   
       In the proposed method to obtain a rectangle 
placement from a given DS, a data structure called a layer 
is used, which corresponds to a position where a yet 
unplaced rectangle can be placed. A layer has two 
attributes: starting time and width. The starting time is the 
height of the layer in the bin and the width indicates the 
space available at this height. For example, in Fig.3 (a), 
we have four layers, layer 0 to layer 3, which are 
indicated by the thick dark lines. The start time and the 
width of the layer can be seen from Fig.3 (a). For example, 
the start time of layer1 is H1 and the width is (W2-W1). 

Before we describle the procedure to obtain the rectangle 
placement from a DS, we show how the layers change 
when a new rectangle is added into an existing partial 
placement. 

Given the partial placement in Fig 3(a), suppose a 
new rectangle, say R4 with width (W2+W4-W3) is placed 
on  layer 2.  As shown in Fig 3 (b), R4 occupies layer 1, 
layer 2 and  part of  layer 0. Widths of layer 1 and layer 2 
are changed to 0 and the width of layer 0 is changed to 
(W5-W4). A new layer 4 with width (W2+W4-W3) is 
added. Layer 4 is split into two sub-layers as can be seen 
in Fig. 3(b). 

Next we introduce the greedy algorithm for obtaining 
a rectangle placement from a DS. At the start, there is 
only one layer whose width is equal to the total TAM 
width (the number of SOC pins). We pick a rectangle 
from sequnce R from left to right , whose width is decided 
by the corresponding entry in  sequence W, and place that 
rectangle on a layer L, which satisfies the following 
requirment. 

1. The sum of the width of L and the widths of the 
layers with non-zero widths whose start time is less 
than or equal to the start time of  layer L is greater 
than or equal to the width of the rectangle being 
placed. 
2. The start time of  layer L is the lowest among all 
layers that satisfy requirment 1. 
3. If there is a power constraint, the core  placed at 
that layer will not violate this constraint. 

 
Following the palcement of the rectangle,  a new layer 
with width equal to the width of the just placed rectangle 
is added to the placement and the widths of the other 
layers are updated. This procedure is repeated  until all 
the rectangles in sequence R are packed. It should be 
pointed out that the procedure proposed above is sub-
optimal. One reason for this sub-optimality is that when 
the width of a layer is reduced  it may preclude the use of 
some packing space. For example the shaded area in 
Figure 3(b) is not availble for future packing after 
rectangle R4 is placed.  

  
Compared to test schedule representation using 

sequence pair used in [6,16] for obtaining SOC test 
schedules, the search space for DS is of size 

)Ki!Nc(
Nc

1i
∏
=

×  while for the sequence pair 

representation the search space is of size 

)Ki)!Nc((
Nc

1i

2 ∏
=

× , where Nc is the number of  cores 

in the SOC and Ki is the number of wrapper 
configurations for core i. The size or the search spaces 
given above is obtained by computing the number of 
distinct dual sequences and sequence pair, respectively. 
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Since the search space using DS representation of 
rectangle placement is smaller, it leads to a much lower 
run time for test schedule optimization using simulated 
annealing. As the experiments on ITC’02 benchmarks  
reported later show, the optimality of the obtained SOC 
test schedule is indeed not effected by using dual 
sequences instead of sequence pair. 
 
 
 
 
 
 
 
 
 
        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. Simulated Annealing   
  Simulated annealing (SA) is a global stochastic 
optimization algorithm that was first introduced by 
Kirkpatric et al. [17]. The algorithm begins with an initial 
solution, and then a neighboring solution is created by 
perturbing the current solution.  If the cost of the 
neighboring solution is less than that of the current 
solution, the neighboring solution is accepted; else it is 
accepted or rejected with some probability. The 
probability of accepting an inferior solution is a function 
of a parameter called the temperature. The probability 
function used is: 

T

ΔC

ep
−

= , 
where C∆ is the change in the cost between the 
neighboring solution and the current solution and T is the 

current temperature. At the beginning of the algorithm, 
the temperature T is large and an inferior solution has a 
high probability of being accepted. As the optimization 
progresses, the temperature decreases and there is a lower 
probability of accepting an inferior solution. The 
procedure we used to implement the simulated annealing 
algorithm for finding an optimal SOC test schedule that 
minimizes the expected test completion time is given 
below. 
Objective: Find an optimal solution Sopt, which makes 
the cost function C(Sopt) minimum. 
Procedure: 

1. Construct an initial solution Sinit; 
2. Let the current solution be Scur: = Sinit;       
3. Set the initial temperature to T: = Tinit; 
4. Set Counter:= 1; 
5. While the stopping criteria are not met do begin 
6. While T >Tfinal do begin 
7.  For i: = 1 to Niter do begin 
8. Generate a neighboring solution Sn from the 

current solution Scur; 
9. Compute the change in the cost function 

                        C∆ =C(Sn) - C(Scur); 
10.  If C∆  ≤ 0 then Scur : =  Sn; 
11.  Else begin 
12.  q =  random(0,1); 
13.  If q < T

C

e
∆

−  then Scur : = Sn ;  
14.  End 
15.  End 
16.  Set new temperature T: = K * T; 
17.  End 
18.  Set T:= Tnew; 
19.  Counter:=Counter+1; 
20.  End 

 
We use the SA algorithm described above to 

implement the SOC test scheduling based on dual 
sequences by specifying the parameters of the SA 
algorithm as follows. 
Cost function C: The objective of test scheduling is to 
reduce the test application time of the SOC. Therefore, 
the height of the bin where the rectangles are placed is 
defined as the cost function.  
Neighboring solution Sn : The neighboring solution is 
defined by two types of moves over the dual sequences, 
given below. 
M1: Exchange the position of two randomly chosen 
rectangles in the first sequence R (note that W is also 
changed to reflect the exchange in R). 
M2: Change the width (and hence the height) of a 
rectangle to another allowed width of the rectangle in the 
second sequence W (allowed widths are the pareto-
optimal values as discussed earlier).   
During the process of optimization, the probabilities of 
moves M1 and M2 are set to 0.5 each.  
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Fig. 3 The changes in the layers during bin packing 



Initial solution: The initial solution Sinit can be set 
randomly. In order to accelerate the convergence of SA, 
the test schedule obtained by the heuristic procedure in 
[13] is used as initial solution in the experiment reported 
later.  
Initial temperature: The initial temperature Tinit is set to 
4000. At the end of each outer loop, temperature T is reset 
to Tnew   = 4000 + 1000 * Counter. 
Other parameters: These parameters include the final 
temperature Tfinal, the number of iterations Niter at every 
temperature, the stopping criteria and the temperature 
reduction multiplier K. In our implementation, these 
parameters are set as follows. 
(1) Tfinal = 10;  
(2)The number of iterations Niter at each temperature is 
set to 400*Nc where Nc is the number of rectangles. 
(3)The stopping criteria can be decided by the user. In our 
experiment, if Counter is larger than 10, the procedure is 
stopped. 
(4) The temperature reduction multiplier K is set to 0.98 
when T < 10000; otherwise K = 0.93. 
 
6. Reducing ATE Resources  

Automatic Test Equipment (ATE) used in SOC test 
provides the ability to perform multi-site testing, which 
allows several copies of a SOC to be tested concurrently.  
When the number of ATE channels is given, to test a 
maximum number of SOCs at the same time requires 
minimization of  the TAM width of the SOC while not 
violating the ATE memory depth constraint (decreasing 
the TAM width of the SOC will increase the test 
application time and hence the ATE memory depth 
requirement). In this section we discuss how the proposed 
method using DS representation of the test schedules can 
be used to minimize SOC TAM width as well as the ATE 
buffer memory depth for a given SOC TAM width. 

When an SOC is tested by an ATE, the test channel 
memory depth required for the SOC is decided by the test 
data volume. The depth of the test channel memory can 
be approximated by the SOC test application time (the 
number of clock cycles) [20].  Therefore, the problem of 
multi-site SOC test under ATE memory depth constraints 
can be considered as a problem of reducing the SOC 
TAM width while the total test application time is fixed. 
This allows testing of a maximum number of SOCs using 
a given number of test channels and their buffer memory 
depth. The SOC multi-site test problem can be solved 
using the two dimensional bin packing procedure with the 
width of the bin representing the memory depth constraint 
and the height of the bin representing the TAM width. We 
should point out that in the bin packing problem for multi-
site testing, a rectangle cannot be divided into several sub-
rectangles, which is different from the bin packing 
problem we discussed before. Dividing rectangles was 
permitted in the earlier problem since it is not necessary 
to connect the wrapper pins of a core to adjacent SOC 

pins. However, in multi-site testing, breaking a rectangle 
represents interruption of the test of a core, which may 
not be permitted. A simple way to accommodate the 
requirement that core tests cannot be interrupted is to 
require that the new rectangle to be packed must occupy 
contiguous layers only, thus avoiding division of 
rectangles.  

 
   
 
 
 
 
 
                                                                                                      
 
 
 

 
 
 
 
 
 
 
 
  
Figure 4 Rectangle packing to optimize ATE resources 

Another issue that needs to be considered is 
illustrated by the rectangle packing shown in Figure 4(a). 
Figure 4(a) shows the case where the ATE test channels 1 
and 2 are used to test core 2 and ATE test channel 3 is 
used to test core 1. Tests for core 1 occupy M1 bits of 
memory buffer for tester channel 3 and tests for core 2 
occupy M2 bits of memory buffer for channels 1 and 2. 
Tests for core 3 use all three test channels and hence can 
only be started after completing the test of core 2. It 
should be pointed out that the tests are loaded into the 
buffer and shifted out to the inputs of the device under 
test. If the tester architecture is such that all test channel 
buffers are shifted at the same time and each channel has 
dedicated memory buffer then the buffer bits of channel 3 
are don’t cares from M1 to M2.  However if the tester 
architecture is such that each test channel is individually 
controlled, then test channel 3 can be idled after testing 
core 1 until core 3 test is initiated. In this case the size of 
the buffer for test channel 3 need only be (M3-M2+M1). 
The packing shown in Figure 4(b) for the same cores as in 
Figure 4(a) illustrates the situation where the memory 
buffer contents for test channel 3 is such that don’t cares 
occur only at the end. In this case after the testing of core 
1 is complete test channel 3 can be idled. In general, if the 
packing is such that all the test channel buffers have don’t 
cares only at the end the ATE memory management is 
simpler [20,21]. Finally, in some ATE architectures the 
entire buffer memory can be configured as a single pool 
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of memory that can be dynamically assigned to test 
channels [21, 22].  For such architectures the total 
memory requirements for a SOC test is important. 

For finding SOC test schedules to minimize the 
number of ATE test channels given the maximum depth 
of test channel buffers, we used two different  procedures 
to obtain rectangle packings from dual sequences. The 
first one is a modified version of the procedure in [20] to 
obtain rectangle packings such that all the don’t cares in 
the memory buffers are at the end. The second procedure 
is the one described in the last section with the additional 
constraint that rectangles are not divided during packing. 

 
7. Experimental Results 

 The proposed simulated annealing based algorithm is 
implemented in C++ and executed on a PC with a 
Pentium IV 1.4GHZ processor and a 512 MB memory.  
The implemented procedure was applied to ITC’02 
benchmark SOCs [18] under the assumption of no power 
constraint.   

 The results of applying the proposed method to SOC 
test scheduling together with the results reported by 
earlier methods are reported in Table 1. The proposed 
simulated annealing based procedure was run for ten 
iterations and the best schedule obtained is reported. The 
method used is indicated in column 2, where DS indicates 
the proposed method and the other methods are indicated 
by the number of the corresponding reference. The 
remaining columns give the SOC test application time for 
the number of SOC pins shown as the heading for the 
column. The entry for the method(s) achieving the best 
test application time is shown in bold. The method in [6] 
also used a simulated annealing algorithm with test 
schedules represented by sequence pair and had achieved 
better schedules than a heuristic method that also used 
sequence pair [16]. For this method also we report the 
schedule obtained from ten iterations of the procedure. It 
can be seen that for all the benchmark SOCs, the 
proposed method achieves better or equal SOC test 
application time compared to [6]. It can also be observed 
that the proposed method achieves the same or better test 
application time than all other methods, except in the 
cases of P93791 with 80 SOC pins and A586710 with 32 
SOC pins. 

The run times for the proposed simulated annealing 
based procedure and the earlier procedure using simulated 
annealing together with sequence pair [6] are given in 
Table 2. The run times reported for both procedures are 
for a total of ten iterations of the procedures. From Table 
2 it can be seen that using dual sequences instead of 
sequence pair to represent rectangle placements improves 
the run time of simulated annealing based procedures. A 
2X to 3X improvement in run time is obtained for most 
designs. 

In Tables 3-6 we report the results on ATE tester 
channels and buffer memory for four circuits for which 

data of the earlier work [20] is available. In the first 
column we show the maximum memory allowed per test 
channel. In the next three columns we show the number 
of tester channels required to deliver the tests using the 
two procedures described in the last section and the 
method of [20], respectively. Procedure DS1 is the 
proposed simulated annealing based procedure when the 
don’t care bits in the buffer memory of the test channels 
are all at the end and DS is the procedure where the don’t 
care bits are allowed to be anywhere in the buffer memory. 
In the next four columns we give the total ATE memory 
required to store the test input data. For method DS we 
report two entries. Under DSg we report total memory 
including the don’t cares portion and under DS we report 
the total memory ignoring the don’t care portion. For the 
other two procedures the don’t care portions are not 
included in the totals reported. 

From Tables 3-6 it can be seen that the simulated 
annealing based procedures require the same or smaller 
number of test channels compared to the heuristic 
procedure of [20] for all the SOCs considered. It can also 
be seen that the total memory required is also smaller for 
the simulated annealing based procedures.   

As an example of how reducing the number of ATE 
test channels helps reduce the cost of SOC test using 
multi-site testers, consider a tester with 128 test channels. 
Note that all SOCs under test can receive the test data 
simultaneously from the same tester channels. However 
the test responses from each SOC under test require 
separate test channels. From Table 4 for SOC p22810 
with test channel buffer size limited to 640K, we note that 
using methods DS1, DS and of [20], the number of test 
channels needed to apply tests to all SOCs under test is 12, 
11 and 13, respectively. However each tested SOC needs 
the same number of separate test channels to obtain test 
responses.  Thus in this case, the number of SOCs that 
can be simultaneously tested using a tester with 128 test 
channels will be 8 using the procedure of [20], 9 using 
procedure DS1 and 10 if procedure DS is used. Thus by 
using procedure DS the number of SOCs tested per unit of 
time increases by 25% over the number tested if the 
procedure from [20] is used. 

  
8. Conclusions 

A new data structure called dual sequence to 
represent rectangle packings is introduced. Using dual 
sequences together with simulated annealing procedures 
to obtain optimal SOC test schedules and to reduce ATE 
test resources were presented. Experimental results on 
ITC ’02 SOC benchmarks showed that the proposed 
procedures yield better results than procedures proposed 
earlier. 
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Table 1: Test Application Times for ITC’02 SOC Benchmarks 
            

32 48 64 80 96 112 128
DS 41654 28161 21025 16962 14310 12134 10723
[6] 41899 28165 21258 17101 14310 12134 10760

[11] 41949 28327 21423 17210 16403 13023 12327
[12] 43723 30317 23021 18459 15698 13415 11604
[15] 44307 28576 21518 17617 14608 12462 11033
DS 433403 289332 219019 178402 147944 128887 110940
[6] 438619 293019 219923 180004 151886 132812 112515

[12] 452639 307780 246150 197293 167256 145417 136941
[15] 458068 299718 222471 190995 160221 145417 133405
DS 960230 655607 544579 544579 544579 544579 544579
[6] 965252 657561 544579 544579 544579 544579 544579

[12] 1023820 759427 544579 544579 544579 544579 544579
[15] 1010821 680411 551778 544579 544579 544579 544579
DS 1763528 1175756 887619 710211 594054 509845 445270
[6] 1765797 1178397 893892 718005 597182 510516 451472

[11] 1775099 1192980 899807 705164 602613 521806 463707
[12] 1851135 1248795 975016 794020 627934 568436 511286
[15] 1791638 1185434 912233 718005 601450 528925 455738
DS 30958 21233 16048 14794 14794 14794 14794
[6] 31398 21365 16067 14794 14794 14794 14794

[15] 34459 22821 16855 14794 14794 14794 14794
DS 13416 10750 6746 5332 5332 4080 4080
[6] 13416 10750 6746 5332 5332 4080 4080

[15] 18663 13331 10665 8084 7999 7999 7999
DS 357088 335334 335334 335334 335334 335334 335334
[6] 357088 335334 335334 335334 335334 335334 335334

[15] 372125 335334 335334 335334 335334 335334 335334
DS 10530995 10453470 5268868 5228420 5228420 5228420 5228420
[6] 10530995 10453470 5268868 5228420 5228420 5228420 5228420

[15] 10530995 10453470 5268868 5228420 5228420 5228420 5228420
DS 42198943 27785885 21343768 19041307 15031300 13401034 11486601
[6] 42198943 27785885 21735555 19041307 15071700 14709449 12754585

[15] 41523868 28716501 22475033 19048835 15315476 13401034 12700205
DS 2222349 2222349 2222349 2222349 2222349 2222349 2222349
[6] 2222349 2222349 2222349 2222349 2222349 2222349 2222349

[15] 2222349 2222349 2222349 2222349 2222349 2222349 2222349
DS 7881 5329 4070 3926 3926 3926 3926
[6] 7946 5485 4070 3926 3926 3926 3926

[15] 8444 6408 5084 3964 3926 3926 3926
DS 119357 119357 119357 119357 119357 119357 119357
[6] 119357 119357 119357 119357 119357 119357 119357

[15] 119357 119357 119357 119357 119357 119357 119357

No. SOC pins 

P34392

P93791

Benchmark

D695

P22810

Method

G1023

F2126

T512505

A586710

Q12710

D281

H953

U226



 Table2. Run times for the proposed method and method of [6] 
 

32 48 64 80 96 112 128
DS 43.76 43.51 42.99 42.82 41.82 41.7 40.74
[6] 52.25 54.19 56.11 56.86 58.93 61.29 67.69
DS 320.68 320.92 320.29 322.83 322.85 323.13 323.87
[6] 559.05 580.13 616.26 642.01 642.42 686.25 678.22
DS 148.59 148.02 146.15 142.15 139.95 137.65 136.1
[6] 233.06 261.23 279.22 305.05 324.59 335.5 341.98
DS 433.21 438.96 439.15 441.91 443.44 444.15 446.22
[6] 686.3 732.37 756.18 782.64 774.37 781.67 783.92
DS 77.63 76.79 76.02 73.67 71.8 70.3 69.07
[6] 122.93 128 135.19 143.06 148.98 153.6 156.15
DS 26.64 27.49 26.87 26.83 26.42 26.23 25.95
[6] 33.34 32.16 33.25 33.68 34.43 35.26 35.44
DS 12.55 11.84 11.4 11.38 11.41 11.39 11.4
[6] 16.08 17.24 17.47 17.41 17.42 17.41 17.42
DS 330.23 357.59 354.7 359.01 362.23 356.65 348.15
[6] 743.52 943.89 782.03 963.37 1023.21 1038.73 1043.43
DS 24.08 23.58 23.52 23.31 23.87 22.84 23.56
[6] 24.42 25.16 26.38 26.13 26.24 25.71 27.39
DS 12.28 12.25 12.26 12.28 12.27 12.27 12.26
[6] 17.49 17.49 17.47 17.51 17.47 17.48 17.49
DS 27.85 27.36 26.77 26.28 25.88 25.37 25.15
[6] 37.01 39.53 41.31 42.83 44.28 45.14 45.44
DS 28.54 27.05 26.34 25.91 25.87 25.81 25.78
[6] 49.42 52.46 53.3 53.55 53.51 53.18 53.25

Benchmark

D695

P22810

No.SOC pinsMethod

P34392

P93791

G1023

U226

D281

H953

F2126

T512505

A586710

Q12710

       

DS1 DS [20] DS1 DSg DS [20] DS1 DS [20] DS1 DSg DS [20]
32K 16 16 18 495679 496080 495639 511464 256K 30 28 30 7099492 7095609 6993356 7404961
40K 13 13 15 495736 493047 492948 505107 320K 23 22 25 7027732 7003552 6967561 7134483
48K 11 11 13 493358 494391 493717 507696 384K 19 19 21 6996904 7023324 6955179 7255983
56K 9 9 11 492936 493713 492087 515956 448K 17 16 18 7086139 6994720 6913817 7326446
64K 8 8 10 493475 493404 493124 514380 512K 14 14 16 6926695 7096052 7008133 7350768
72K 7 7 9 490096 490086 488965 516732 576K 13 12 14 6862197 6955836 6935482 7390568
80K 7 7 8 488759 488922 488910 514538 640K 12 11 13 6971280 6915493 6833044 7441084
88K 6 6 7 489263 490291 490020 506660 704K 11 10 11 6804771 6886110 6820335 7234211
96K 6 6 6 488639 490363 489495 507849 768K 10 9 11 6865817 6892560 6832015 7564350
104K 5 5 5 490060 489592 489142 501840 832K 9 9 10 6839742 6917345 6835019 7601117
112K 5 5 5 488244 490029 488886 500262 896K 9 8 10 6797761 6932763 6823407 7784192
120K 5 4 5 487714 489018 487870 500209 960K 8 8 9 6837474 6940258 6843692 7642819
128K 4 4 4 488271 488740 488740 497167 1M 7 7 8 6935563 6897983 6810674 7245774

DS1 DS [20] DS1 DSg DS [20] DS1 DS [20] DS1 DSg DS [20]
1.00M 29 29 30 28801632 29165376 28701704 30569666 768K 21 21 23 15499573 15572458 15509657 15975513
1.256M 23 23 23 28365553 28977417 28673994 28853177 896K 18 18 20 16037390 15381530 15348449 16676762
1.512M 19 19 20 28416635 28749065 28485192 29587103 1.00M 16 15 16 15506240 15221266 15194202 15645989
1.768M 16 16 17 28350143 28881393 28598386 30209460 1.128M 14 14 15 15399516 15267172 15213829 16227655
2.000M 14 14 15 28448141 28576775 28221882 30570183 1.256M 13 12 14 15286752 15224186 15152249 15961051
2.256M 13 13 13 28235620 28732954 28267254 29108758 1.384M 11 11 13 15336206 15345128 15268571 16713779
2.512M 12 12 12 28304322 28902346 28223225 30385045 1.512M 11 10 12 15239519 15228804 15179270 15910317
2.768M 11 11 11 28184680 28196995 28026911 29499548 1.640M 10 10 11 15177894 15304504 15165987 15474763
3.000M 10 10 10 28157723 28665927 28160766 29635431 1.768M 9 9 10 15132399 15179765 15097375 15890652
3.256M 9 9 9 28227717 28570811 28100678 29121214 1.896M 8 8 10 15124570 15176594 15127484 16330357
3.512M 8 8 8 28056204 28417779 28194724 28853489 2.000M 8 8 9 15114833 15180006 15080645 16588577
3.768M 8 8 8 28211308 28699383 28096145 29038354
4.000M 7 7 7 28301285 28420266 28189282 29096196

                Table 3. SOC g1023: TAM width and ATE memory           Table 4. SOC p22810: TAM width and ATE memory

           Table 6. SOC p34392: TAM width and ATE memory               Table 5. SOC p93791: TAM width and ATE memory
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