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Abstract ment were then performed to optimize the circuit performance.

A recent paper [22] by Tabbara et al. applied retiming in the
In this paper, we study the problem of retiming of sequential circuitSM domain and interconnect delay was considered. It was
with both interconnect and gate delay. Most retiming algorithms havdone by having a lower bound on the number of registers on
assumed ideal conditions for the non-logical portions of the dat@ach wireg,y, while the delays at nodes were irrelevant. Regis-
paths, which are not sufficiently accurate to be used in high perfoters could be retimed into a node that represented a component
mance circuits today. In our modeling, we assume that the delay ahd affected the total area of the component. Retiming was
a wire is directly proportional to its length. This assumption is rea-performed to satisfy the constraint on the number of registers
sonable since the quadratic component of a wire delay is significantn each wire while minimizing the total area of the compo-
smaller than its linear component when the more accurate Elmore daents. Another paper [13] by Deokar et al. used a combination
lay model is used. A simple experiment is conducted to illustrate tfgf clock skew and retiming to find a retiming solution which
validity of this assumption. We present two approaches to solve thigas guaranteed to be at most one gate delay larger than the
problem, both of which have polynomial time complexity. The firssptimal clock period. In their work, a clock skew solution cor-
one can compute the optimal clock period while the second one iesponding to an optimal clock period was converted into a
an improvement over the first one in terms of practical applicabilityretiming solution. However, their current approach to perform
The second approach gives solutions very close to the optimal (0.13%is conversion considered only gate delays.

more than the optimal on average) but in a much shorter runtime. In this paper, we study the problem of retiming with both in-
A circuit with more than 22K gates and 32K wires can be optimall)fe )

retimed in 83.56 seconds by a PC with an 1.8GHz Intel Xeon proces-rconnect and gate_delay. In our ’.“Ode"”g.’ the delay of a wire
sor iS assumed to be directly proportional to its length. When a

wire is short, the quadratic component of the wire delay is sig-
nificantly smaller than its linear component. For a long wire,
1 Introduction buffer insertion_can be perf_ormed_ to break the wir_e into short
segments. A simple experiment is conducted to illustrate the
C\éalidity of this assumption and the result is shown in Figure 1.
ép this experiment, the Elmore delay model is used and the
arameters are based on the @u@itechnology. This graph
hows the relationship between wire delgyakis) and wire

Retiming [1] is a useful and popular technique for performan
optimization of sequential circuits. It relocates registers to r
duce the cycle time while preserving the functionality of thd’

circuit. Much effort has been made to apply this techniqu : "
in different areas like power reduction [2, SP]I,Dt)éstability [4,C5]], engt_h Q(-ax_ls). If the wire |s_sho_rter than 1.4ﬁn(’)1 the error .
logic resynthesis [6], circuit partitioning [7—9] and physicaI_Of using a linear approximation is at most 5.48%. If_ the wire
planning [10]. Some extended its applicability in large practi'—S longer than 1.48nm the deIay can be reduced by inserting
cal circuits efficiently [11-18]. However, most retiming algo-a buffer and the error resulted is even less.
rithms have assumed ideal conditions for the non-logical por- We present two approaches in this paper both of which have
tions of the data paths, specifically ignoring the interconnegiolynomial time complexity. The first one is extended from
delay. As process technology gets down to deep sub-micrahe MILP approach in the paper [1] and can solve the prob-
interconnect delay becomes a major factor of path delay. Wittem optimally, i.e., relocating the registers to give the smallest
out including this delay component, existing retiming algopossible clock period. The second one transforms the prob-
rithms are not sufficiently accurate to be used in practical higlem into a single-source longest paths problem and then ap-
performance circuits. plies a technique to reduce the size of the graph for longest
The choice of an accurate interconnect delay model and @ath computation. It is an improvement over the first one in
appropriate retiming algorithm are important. In some previterms of practical applicability. It gives solutions very close
ous works [19, 20], interconnect delay was incorporated inttm the optimal (0.13% more than the optimal on average) but
the retiming process, but simplified assumptions were made a much shorter runtime. Experimental results showed that
such that the interconnect delay between adjacent registersawircuit with more than 22K gates and 32K wires could be
the same wire was neglected. Another approach to integrattimed in 83.56 seconds by a PC with an 1.8GHz Intel Xeon
retiming into detailed placement was presented in [21]. Aftegprocessor. These retiming techniques will also find applica-
an initial placement and routing, heuristics were used to etens in flip-flop dropping in placement by estimating the best
timate interconnect delay. Retiming and post-retiming placgossible register positions to optimize the circuit performance.
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r:V — Z, whereZ is the set of integers [1]. The retiming label
100 — - r(v) for a nodev represents the number of registers moved from
50 | its outputs toward its inputs. After retiming, the number of
ol | Wire registfarSNfJV onan edgehvlis given byy\iuv = r(v) +wyy—r(u).
| | | | | | | length As interconnect delay is dominating in the VDSM technol-
0 05 1.0 15 2.0 g5 (mm) ogy, the exact position of each register will affect the clock

period. A retiming solution should specify both the retiming
Figure 1: A simple experiment to illustrate the relationship be/@P€! (V) for each nodev and the exact positions of theu
tween wire delay and wire length. registers on each ed@v. Ret|m|n_g shou_ld _be forml_JIateq as
a problem of determining a feasible retiming solution, i.e., a
solution in which the number of registesg, on each edge,y
The original placement solution will be modified to relocatdS non-negative, such that the clock period of the retimed cir-
the registers according to the retiming solution. However theuit is minimized. In the following, we show how to check
effect will be minor if the original solution is not very denselywhether a particular clock periotl can be achieved by a fea-
placed. This is a reasonable assumption today as area is n&il¥le retiming solution. The minimum achievable clock period
major concern while routability and congestion are the imporfopt Can then be found by binary search.
tant factors for circuit performance. Register relocations can
then be done by making use of the empty space or by shifti .
the placed cells a little bit. r§ An Optlmal ApproaCh

Th inder of thi i ized as follows. We, . : . . .
© remaincer of This paper 15 organized as 1o1ows ths approach is extended from the mixed integer linear pro-

present the problem statement in Section 2. The optimal ap- . . - .

proach and the fast approach are presented in Section 3 mming (MILI.D) appr_oach in [1]. Inthg original for_mulauon,

Section 4, respectively. Experimental results are shown afy'y gate qelay is considered and there IS thus no dlﬁgrence b?'

discussed in Section 5. A conclusion follows in Section 6. 'WEEN having one or more than one registers on a wire. Their
technique can be extended to solve the problem with both gate
and interconnect delay optimally by modifying some of the

2  Problem Formulation constraint formulation. In order to formulate the problem as
an MILP, for each gate, we need to define a tera(v) that

A sequential circuit can be represented by a directed grapfPresents the maximum arrival time at the output of gate

G(V,E), where each node corresponds to a combinational AN €xample to illustrate this definition is shown_ln Figure 2.

gate, and each directed edgg represents a connection from We can then formulate the problem as the following MILP:

the output of gateu to the input of gatev, through zero or

more registers. Without loss of generality, we assume @at dy=alv) wev (1)

is strongly connected. If not, we can add a source reafed av)<T WeV (2

connect it to all primary inputs, add a target no@dad connect r(v) +wy—r(u) >0 Veye€E (3)

all primary outputs to it, and connecto s. Then the resulting  a(v) > a(u) + dyy+dy — T(r(v) + Wy —r(u)) Vew € E (4)

graph is strongly connected. If we set the delag,dfand all

the added edges to zero, and set the number of registexs onwhereT is the clock period that we want to check whether it

to one and that on the other added edges to zero, a retimiisgachievable. Sinca(v) is the longest delay to the output of

solutionS of the modified graph will also be a valid retiming gatev from a register connected directly to an inputwthis

solution of the original graph as long as still has one regis- delay must be at least the delay of gateod, < a(v) as stated

ter in S, Let wyy be the number of registers of edgg. Let in (1). Besides, this delay cannot exceed the clock pefiad

dyv be the interconnect delay of edgg if all the registers are required in (2). Constraint (3) is needed for a feasible retiming

removed. Note that the delay of an interconnect segment is aslution. Constraint (4) is to ensure that enough registers are

sumed to be proportional to the length of the segment.di,et on each edge,, to achieve a clock cycld. As the largest

be the gate delay of node possible delay between two adjacent registerE,ithe right-
Traditionally, interconnect delay is ignored during retiminghand side of constraint (4) is reducedbyor each register on



edgee,y. Note that this constraint also captures the scenarroof: It is clear that 0< R(vV) — [R(v)| <1 forallveV.

when there is no registers on edgg. In that case, the arrival Therefore, (5) and (6) are satisfied. For agy< E,
time at nodeu contributes directly to the arrival time at node

By introducing a variabl®(v) at each node that is defined r(uy—r(v) < R(u)—r(v) asr(u) <R(u)
asa(v)/T +r(v), the above set of constraints (1)—(4) can be duy

uv
rewritten as a set of difference constraints as follows: < (F +RU)-r(v) as—>0
d, < (Wyy+R(V))—r(v) by constraint (8)
RV)—r(v)z+ WeV (®) < ww+1 asR(v)—r(v)<1
RV -r(vy <1 WweV ©) As r(u) —r(v) is an integer, it must be less than or equal to
ru)—r(v) <wy VeweE () wyy. Hence, constraint (7) is also satisfied. O
dUV dV
R(v) —R(u) = T T T W veweE (®) Lemma 1 implies that we can first solve constraint (8) to find

] ) ) o ~ R(v) and it is then easy to find(v) to satisfy the other three
Notice that (5)—(8) is a set of difference constraints involvingonstraints. Notice that ifl, # 0 for somev €V, Lemma 1
both integer and real variables. There @r¢ real variables does not hold as constraint (5) is not satisfied. In other words,
R(v), [V[ integer variables (v), and 2V|+ 2|E| constraints. thjs idea cannot be applied to the retiming problem with both
This can be solved in polynomial time @(|V|[E[lg|V[+ interconnect and gate delay discussed in Section 3.

V|21g? V) if Fibonacci heap is used as the data structure [23]. The problem of findingR(v) for all v € V to satisfy con-

If the above set of constraints is solvable, the valuesof  straint (8) can be viewed as a single-source longest paths prob-
anda(v) for all v e V are known. We can then find the exactiem onG with lengthlyy equalsdy,/T —w, for eacheyy, € E.
position of each register on a wire one by one as follows. FQts G is strongly connected, we can pick an arbitrary node as
each edgeyy, if there are registers retimed on it, i.e(v) +  the source node! Note that edge lengths can be positive. If
wyy — I (u) > 0, the first register on this edge will be placed ai has a positive cycle, the set of constraints has no solutions.
a distance of dela¥ —a(u) from the output of gate. Other |t means that the clock peridH is infeasible. The solution to

regist_ers are then placed as far from _each other as possible, iRis problem is presented in the following subsection.
at a distance of delay from the previous one, until reaching

the gate'_v. All the remaining registers on this edge are theQLl.z Fast Single-Source Longest Paths Algorithm
placed right before.

The single-source longest paths problem in Section 4.1.1 can

] be solved by the Bellman-Ford algorithm [24]. The time com-

4 A Fast Near-Optimal Approach plexity isO(|V||E|), which is at least a factor @(Ig|V|) faster

than the optimal algorithm in Section 3. In practice, it is a fac-
In this approach, we first replace each gate by a wire of ther of ©(Ig?|V|) faster agE| = O(|V|). However, this algo-
same delay and then solve the problem with only interconnedthm may still be slow in practice. In this section, we present
delay optimally and efficiently. Those registers retimed “into’a single-source longest paths algorithm which is faster in prac-
a gate are moved either to the input or the output wires of th&ce. The basic idea is to reduce the sizeGoby compacting
gate. The exact positions of the registers on the wires are theeme paths into edges before the Bellman-Ford algorithm is
determined by a linear program to minimize the clock periocapplied. The details are given below.
The solution obtained by this approach is very close to the op- We first transform the grap8(V, E) into a directed acyclic
timal on average as shown by the experimental results. In tiggaph (DAG) G'(V’,E’) by performing a depth-first traver-
following, we first show how the retiming problem with inter- sal [24] starting from the source nodeThe depth-first traver-
connect delay only can be solved optimally. Then we descrilsal defines a tree i6. Those non-tree edges running from a
in details how gate delay can be handled simultaneously.  nodeu to an ancestov of u are called back edges. If we point
all incoming back edges of a nodeto an extra node’, the
. . resulting graph will be a DAG because every simple cycl&in
4.1 Retiming with Interconnect Delay Only involves exactly one back edge. Formally, we Egdo denote

In this subsection, we assurde= 0 for all v € V. We first the set of back edges akd to denote the set of nodes with an

show that the clock period feasibility problem can be reducecoming back edge. For each nodé Vi, we introduce an

to a single-source longest paths problem. We then presenfra node/. The back edge,y is removed fro/m t/he/graph and
fast algorithm to solve the longest paths problem. the edgees,y is added. The resulting DAG &'(V',E’) where
V' =Vu {\/‘V € W} and E = (E—Ep) U {eu7vl|a_j_yv € Ep}.
_ . We set the length,, of the edgee,, to Iy. To illustrate
4.1.1 Reduction to Single-Source Longest Paths Problem the transformation, consider the gra@hin Figure 3(a) with
. : source nodeA. Suppose the depth-first traversal visits the
Ygfviigl\ll;rtwrr]r?aéet of constraints (5)—(8) with the help of the foInooles in the ordeACDEF R ThenEp — {ena, €ca, 6, éra}

andVp, = {A,C}. We introduce two extra node$ andC’, and
Lemma 1 Given Rv) for all v € V satisfying constraint (8), 'ePlace the four edgegea, épa, €ra anderc with the edges

we can obtain a solution to constraints (5)—(8) by setting 1jtthe original circuitis not strongly connected, a source neias already
r(v) = |R(v)] forallveV. been added.
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Figure 3: An example to illustrate the transformation to a DAG.

initially, and Top is the optimal clock period.

€cx, Epay € andegy, respectively. The resulting DAG is . o
shown in Figure 3(b). Algorithm |-Retiming()

We then construct a graph with node seW,. The edge set Input: A seque_ntlal cwcu_lt: Wlth_ |nt§rconnect delay only
En contains an edgeyy, for u,v € Vi, if there exists a path i® ?”tg“t_i dAn oprt]gwa\:tlllyl/zreftlmegurcwt o€
with either no back edge or one back edge at the end from > BE:Id ngg G,(b)’/ gFg)g)
tov. The length |, of the edges,y is the longest path_dlstance . Cup = a feasible clockGigy = an infeasible clock
among those paths. Note that the longest path distanGe in 4 pq
with no back edge (respectively, with one back edgg at the gng. T = (Cup+Ciow)/2
of the path) fromu to v equals the longest path distance in 6.  Update edge lengths &f according toT
G from u to v (respectively, fromu to V). Hencell, for all 7. Build graphH (W, En) with Eq = {ey|u € angv) UandV)}

u,v €V, can be computed by solvirgy| single-source longest by finding single-source longest pathsGh
paths problems i@’ for different source nodeswi,. AsG'isa 8.  If H does not have any positive cycle then
DAG, each single-source longest paths problem can be solve¥ Cup=T

in linear time by visiting the nodes in topological order. The 10. Else

time complexity to construdt is thereforeO(|Vp||E|). . Cow=T

. . - 12. while(Cyp —Ciow)/Cup > €
It is obvious that every path iH corresponds to at least one 13.T=Cyp /I Cypis always a feasible clock period

path inG of the same length. ThereforeHfcontains a positive 7, ComputeR(v) andr (v) for each noder € V
cycle, G will also contain a positive cycle. On the other hand, 15, compute the exact position of each register on a wire
if G contains a positive cycle, the cycle can be broken up into a
set of path9, p2, . . ., pk such that both endpoints of each path L .
p; are inVk,. Notice that each path corresponds to an edge in4.2  Retiming with Interconnect and Gate Delay
H of at least the same length. $bmust also contain a posi- . . . : .
In this section, we discuss how to consider interconnect and

tive cycle. Therefore we can solve the positive cycle detectionate delay simultaneously based on the above alaorithm for
problem inH instead of inG. If H has no positive cycleR(v) 9 y Y 9

for all v € i, can be found fronH. R(v) for all v € V —V, can interconnect Qelay only. To consMer ga.te delay, we first repre-
_— : . sent a gate with delayd, by a wiree,,y, with delayd,,,, = d\.
then be found in linear time by propagatiRgv) for all v € V, hi f ion for the circui 12 3 1v2 h .
throughG' in topological order This transformation for the circuit in Figure (a)_ is shown in
’ Figure 4(b). We can then obtain an optimal retiming on this
transformed circuiG using the algorithm in Section 4.1. How-
4.1.3 The Retiming Algorithm and Time Complexity ever the retiming solution obtained @may not be feasible
- . . , ) for the original circuitG because some registers may be re-
The complete retiming algorithiaRetiming()is summarized e into a wire that represents a gate. Therefore, we need to

below. The most time consuming steps are step 7 and ste ; ; L
inside the binary search loop. Stegp 7 cFr:m be don&wbHED % lrfqrm ? posft-procr?ssmg stelp tq ggt baclk a fe?sLbIe L‘?“m'”g
time as discussed above. Step 8 can be dor@(j¥i||Ex|) solution or_G rom the optimal retiming solution 0B. This

time by the Bellman-Ford algorithm. Ag, contains much S done by linear programming. _ .

fewer nodes thav and EH usua”y contains Comparable or First of a”, we move the regISterS Ina gate either backward
fewer edges thag, this technique is usually much more effi-to the input wires or forward to the output wires of the gate,
cient than applying the Bellman-Ford algorithmGadirectly.  depending on which direction has a shorter distance. An ex-
The total time complexity iSO(|Vp|maX{|E|, |Ex|}1g %‘), ample showing the relocation of registers is given in Figure 5.
whereg is the error bound for the binary searéhis the differ-  After this relocation step, the number of registes 6n each
ence between the upper and lower bounds of the clock periedgee,, is fixed. A linear program is used to determine the



extracted according to the layout. In our current implementa-
tion, the lower and upper bounds of the binary search are set
to 0 and 10@srespectively. In the near-optimal approach, we
perform the procedureRetiming()with an error bound of 1%.
After assigning the registers retimed into a gate to the appro-
priate wires, a linear program is set up to relocate the registers
on the wires to get the smallest possible clock pefidd In

the optimal approach, binary search is performed until an error
bound of 0.01% is obtained. We call the resulting clock period
Topt. Notice that we do not need to obtain a very accurate re-
sult froml-Retiming()because the solution is optimized by the
linear program afterwards. On average, the number of binary
F search iterations is 9.6 for the near-optimal approach and 16.5
for the optimal approach.

The results are shown in Table 1. The second and third
columns give the number of nodes and the number of edges
in the graphG, respectively. Notice that all circuits are not
strongly connected. The number of nodes and edges listed are

exact positions of the registers on the edges. The objective §0se after the addition of the source node, the target node, and
the linear program is to minimize the clock periddsubject the associated edges. The fourth and fifth columns show the

to the constraints in register count on each edge. In the fdimber of nodes and the number of edges in the reduced graph

lowing, we used, to denote the delay from tHé" register to H, respectively. These two valu_es are dependent on the n_ode
thek + 15t register of the wire from node to nodev in G for chosen as the root in the depth-first traversal. In our current im-

k=0,1,..., W . Notice that whemg}, = 0, X3, is the delay plementation, we always pick the additional nades the root.
of the whole wire. and whek — 0 andk — ’Wu:> 0, XX are We notice that using other nodes as the root does not change

the delays of the wire from nodeto the first register and from the result significantly. The speedup of the Bellman-Ford al-
the last register to node respectively. The linear program is 90rithm by the graph reduction approach in Section 4.1.2 is

Registers are moved
away from the wires
that represent gates

(a) A retimed solution in G (b) Registers are relocated in G

Figure 5: Relocation of registers retimed into a gate.

formulated as follows: (IVIIE])/(IVbl|EH|), which is given in the sixth column. The
graph reduction approach is faster in all circuits except s38584.

Minimize T On average, it is faster by 38l times. However, the speedup
Subject to zf;voxﬁv =dy Vew € E (A) isless (may even be less than one) for larger circuits. The rea-

X 1 d, <a(v) VeweE st Wy >0 (B) sonis thatEn| i§ roughly quadrgtic inVp|. For the circu'its in
au)+x%,<T  Vey€cEstwWy>0 (c) Table 1, the ratio ofEn| to IVp|? is from 0.11 to 0.86 with an
a(u)+dyw<alv) VeycEstw,=0 (D) averageof0.41. Therefore, the graph reduction approach may
not be useful for large circuits. We can avoid a slowdown of
For the circuit in Figure 5(b), example constraints @g + the Bellman-Ford algorithm by determining whether to Gse
L5 = dep for type (A), % +dp < a(D) for type (B),a(C)+  or H based on the ratigV||E|)/(|Vb||En|). [Vb| and|Ex| can
x2p < T for type (C), anda(B) + dgp < a(D) for type (D). be found inO(|W,||E|) time. Moreover, we only need to per-
We can solve this linear program to obtain the best possibferm this checking once for each circuit. Hence, the runtime
clock periodT* under the register count constraint on eaclyverhead is insignificant compared with the total runtime.
edge. The overall algorithiG-Retiming()to handle both in- The seventh, eighth, and ninth columns show the runtime of
terconnect and gate delay is summarized as follows: the I-Retiming()procedure, the time taken to solve the linear

Algorithm 1G-Retiming() program, and the total runtime, respectively. The tenth col-
Input: A sequential circui€ with both interconnect and gate delay Umn shows the runtime for the optimal approach. We can see
Output: A retimed circuit o that the near-optimal approach is much more efficient than the
1. Build graphG fromC optimal approach (especially for large circuits). The eleventh
2. Build G by replacing each gate i@ by a wire of the same delay and twelfth columns show the clock peridd and Tope Ob-

3. Solve the retiming problem @ by I-Retiming() tained by the near-optimal approach and the optimal approach,
4. Move registers away from wires that represent gates respectively. The last column is the percentage increa3é of

5. Setupa I|r_1ear program based on the reg_lster cc_>unt on eaqh egg%r-ropt_ The clock period produced by the near-optimal ap-
6. Solve the linear program to obtain a feasible retiming solution

proach is only 0.13% more than that by the optimal approach
on average. The optimal clock period is found in seven out of
thirteen circuits.

and the smallest possible clock peridd

5 Experimental Results

We implemented the two approaches in a 1.8GHz Intel xedd Conclusion

PC with 512 KB cache and 512 MB RAM. We tested them

with circuits from the ISCAS89 benchmark suite. In our ex\We have presented two elegant approaches to perform retim-
periments, we implement the circuits in a 028 process. We ing on sequential circuits with both interconnect and gate de-
layout the circuits by Silicon Ensemble. Wire delays are thelay. This is a pioneer work in solving this problem as far as we



No. of No. of No. of No. of CPU Time Clock Period
Circuit | Nodes Edges Nodes Edges |V|IE| I-Retiming+ LP =1G-Retiming Optimal T* Topt T_TPT:""

inVv inE inVy in Ey V| |EH | (sec) (sec) (sec) (sec)| (ns) (ns) (%)
s1488 | 655 1405 27 627 54.36| 0.09 0.19 0.28 5.62 | 18.85 18.82 0.16
s1494 | 649 1411 30 749 40.75| 0.09 0.16 0.25 4.37 | 20.78 20.78 0.00
s3271 | 1574 2707 112 3360 11.32| 0.38 0.71 1.09 33.70 | 10.24 10.24 0.00
s3330 | 1791 2890 56 1200 77.02| 0.13 0.37 0.50 43.14 | 27.05 27.05 0.00
s3384 | 1687 2782 98 2041 23.46| 0.16 0.58 0.74 25.19 | 24.21 24.16 0.21
s4863 | 2344 4093 154 20413 3.05| 2.13 0.99 3.12 87.75| 23.58 23.58 0.00
s5378 | 2781 4261 66 2554 70.30| 0.55 0.61 1.16 138.68| 27.27 27.25 0.07
s6669 | 3082 5399 67 1876 132.38 0.36 1.55 1.91 177.59| 23.07 22.96 1.00
s9234 | 5599 8005 325 26570 5.19| 2.69 1.39 4.08 512.86| 42.73 42.73 0.00
s13207| 7953 11302 550 44825 3.65| 6.45 1.66 8.11 1161.07 72.34 72.34 0.00
s15850| 9774 13794 603 100738 2.22| 21.42 2.60 24.02 1545.59 67.82 67.82 0.00
s35932| 16067 28590 884 163945 3.17| 5459 6.66 61.25 8644.27 29.59 29.54 0.17
s38417| 22181 32135 1657 308790 1.39| 72.64 10.92 83.56 7680.79 36.53 36.52 0.03
s38584| 19255 33010 1924 1115868 0.30| 433.82 11.81 445.63 > 15000 | 94.26

Table 1: The runtime of the algorithms and the clock periods obtained.

know. Most traditional retiming algorithms have neglected inf10] Jason Cong and Sung Kyu Lim. Physical Planning with Retim-

terconnect delay. Our first approach is extended from the MILP
approach in the paper [1] and can solve the problem optimallft1]
Our second approach is an improvement over the first one in
terms of practical applicability. The main idea is to transfornj12]
the problem into a single-source longest paths problem in a
reduced graph. We have implemented both algorithms, and
compared their performance on ISCAS89 benchmark circuiti.3]
Experimental results show that the second approach gives so-
lutions that are only 0.13% larger than the optimal on average
but in a much shorter runtime.
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