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ABSTRACT  

Reliability of lithium-ion (Li-ion) rechargeable batteries has 
been recognized as of high importance from a broad range of 
stakeholders, including battery manufacturers, manufacturers 
of battery-powered devices, regulatory agencies, researchers, 
and the public. Assessing the current and future health of Li-
ion batteries is essential to ensure the batteries operate safely 
and reliably throughout their lifetime. This paper presents a 
new data-driven approach for prediction of battery remaining 
useful life (RUL) in the presence of corruptions (or errors) in 
capacity features. The approach leverages bilinear kernel 
regression to build a nonlinear mapping between the capacity 
feature space and the RUL state space. Specific innovations 
of the approach include: i) a general framework for robust 
sparse prognostics that effectively incorporates sparsity into 
kernel regression and implicitly compensates for errors in 
capacity features; and ii) two numerical procedures for error 
estimation that efficiently derives optimal values of the 
regression model parameters. Results of 10 years’ continuous 
cycling test on Li-ion prismatic cells suggest that the 
proposed approach achieves robust RUL prediction despite 
random noise in the capacity features.  

Keywords: Bilinear Kernel Regression; Prognostics; 
Remaining Useful Life; Lithium-Ion Battery 

1. INTRODUCTION 

Lithium-ion (Li-ion) battery technology has been playing a 
critical role in realizing wide-scale adoption of hybrid and 
electric vehicles and show great promise for emerging 
applications in smart grid and medical devices. Over the past 

two decades, real-time health diagnostic and prognostic 
techniques have been developed and deployed in battery 
management systems (BMSs) to monitor the health condition 
of a battery in operation (Plett, 2004, 2004; He et al., 2013; 
Lee et al., 2008; Hu, Youn & Chung, 2012; Xiong et al., 
2014; Hu et al., 2015); and to infer, within a maintenance 
horizon time, the remaining useful life (RUL), i.e., when the 
battery is likely to fail (Saha & Goebel, 2009; Saha, Goebel, 
Poll, et al., 2009; Liu et al., 2010; Wang et al., 2013; 
Dickerson et al., 2015; Hu et al., 2014; Hu et al. 2016). Based 
on the voltage, current and temperature measurements 
acquired from the battery, these techniques estimate three 
performance indicators of the battery: state of charge (SOC), 
state of health (SOH) and state of life (SOL). Accurate 
estimation of these parameters provides greater transparency 
into the current and future health of the battery, more cost-
effective maintenance strategies and minimum downtime, 
and opportunities for battery life extensions.  

Research on life prognostics of a general engineered system 
was conducted with an emphasis on predicting the RUL 
distribution. In general, three categories of approaches have 
been developed that enable continuous updating of system 
health degradation and RUL distribution: (i) model-based 
approaches (Gebraeel et al., 2005; Luo et al., 2008; Gebraeel 
& Pan, 2008; Si et al., 2013), (ii) data-driven approaches (Si 
et al., 2011; Wang et al., 2008; Wang et al., 2012; Hu, Youn, 
Wang, et al., 2012; Coble and Hines, 2008; Heimes, 2008; Lu 
et al., 2013), and (iii) hybrid approaches (Goebel et al., 2006; 
Liu et al., 2012). With the advance of modern sensor systems 
as well as data storage and processing technologies, the data-
driven approaches, which mainly rely on large volumes of 
sensory data with no stringent requirement on the knowledge 
about the underlying degradation mechanisms of the system, 
have recently become popular. A good review of data-driven 
prognostic approaches was given in (Si et al., 2011). Data-
driven prognostic approaches generally require sensory data 
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fusion and feature extraction, pattern recognition, and for life 
prediction, interpolation (Wang et al., 2008; Wang et al., 
2012; Hu, Youn, Wang, et al., 2012), extrapolation (Coble & 
Hines, 2012), machine learning (Heimes, 2008), and so on.  

Research on life prognostics of Li-ion battery (or battery 
prognostics) was mainly conducted by researchers in the 
prognostics and health management (PHM) society (Saha & 
Goebel, 2009; Saha, Goebel, Poll, et al., 2009; Liu et al., 
2010; Wang et al., 2013; Dickerson et al., 2015; Hu et al., 
2014). Battery prognostics often begins by estimating the 
current SOH of a battery in operation based on readily 
available measurements (i.e., voltage, current and 
temperature) from the battery (Lu et al., 2013). Capacity and 
internal resistance are two important SOH indicators that 
together determine the maximum amount of energy that a 
fully charged battery can deliver. SOL is a prognostic metric 
and often used interchangeably with RUL, which refers to the 
available service time left before SOH of the battery degrades 
to an unacceptable level. RUL can be measured in either 
calendar time (e.g., days, weeks, and months) or 
charge/discharge cycles. A Bayesian framework combining 
the relevance vector machine (RVM), trained with sparse 
Bayesian learning (SBL) (Tipping, 2001), and a particle 
filter-based approach was proposed for prognostics of a Li-
ion battery based on electrochemical impedance 
measurements (Saha, Goebel, Poll, et al., 2009). In order to 
eliminate the reliance of prognostics on impedance 
measurement equipment, researchers developed various 
model-based approaches that predict RUL by extrapolating a 
capacity fade model (Saha & Goebel, 2009; Liu et al., 2010; 
Wang et al., 2013; Dickerson et al., 2015). An integrated 
method for capacity estimation and RUL prediction of Li-ion 
battery was later developed and applied to Li-ion cells for 
implantable medical devices (Hu et al., 2014). The method 
employed the coulomb counting approach to estimate battery 
capacity based on the difference in the SOC values before and 
after partial charge/discharge. Based on the capacity 
estimates, a Gauss-Hermite particle filter was used to online 
update an empirical capacity fade model and project the 
updated model to an end-of-life (EOL) limit for RUL 
prediction. More recently, the RVM approach was leveraged 
to estimate battery capacity by approximating a nonlinear 
mapping from features (extracted from voltage and current 
measurements) to capacity (Hu et al., 2015; Hu et al., 2016), 
and RUL prediction was performed by first fitting linear 
models to random trajectories of capacity estimates and then 
extrapolating the models to an EOL limit (Hu et al., 2016).  

Despite significant advances in battery prognostics, research 
innovations are still needed to develop new approaches that 
can leverage large volumes of data to achieve robust RUL 
prediction. In particular, the goal is to perform reliable RUL 
prediction even in the presence of corruptions (or errors) in 
capacity features. In this paper, a new data-driven approach 
to RUL prediction is proposed and applied to a Li-ion battery 
used in implantable medical devices. The new approach 

fundamentally addresses the issue of input data noise via a 
new technique known as bilinear kernel regression. Specific 
innovations of the approach include: i) a general framework 
for robust sparse prognostics that effectively incorporates 
sparsity into kernel regression and implicitly compensates for 
errors in capacity features; and ii) two numerical procedures 
for error estimation that efficiently derive optimal values of 
the regression model parameters. We use 10 years’ 
continuous cycling data on eight Li-ion prismatic cells to 
demonstrate the effectiveness of the proposed approach. 
Moreover, we compare our proposed bilinear kernel 
regression framework with previously existing sparse 
regression approaches, and demonstrate uniformly improved 
prediction performance. This paper is organized as follows. 
Section 2 presents the fundamentals of the proposed 
approach. The approach is applied to a Li-ion battery used in 
implantable medical devices. Section 3 discusses the 
experimental results of this application. The paper is 
concluded in Section 4. 

2. TECHNICAL APPROACH 

In this study, the capacity of a Li-ion battery cell is viewed as 
the SOH indicator of the cell. The cell capacity quantifies the 
maximum amount of charge that the cell can hold. It tends to 
fade slowly over time, and typically decreases 1.0% or less in 
a month with regular use. Given the capacity values estimated 
by an existing estimation algorithm, we are interested in 
predicting the remaining useful life (RUL) of the cell, i.e., 
how long the cell is expected to last before the capacity fade 
reaches an unacceptable level. This section is dedicated to 
describing the proposed data-driven approach for doing so. 
Section 2.1 defines the problem of data-driven prognostics 
considered in this study and discusses the application of 
kernel regression to solve this problem; Section 2.2 presents 
the fundamentals of a classical sparse regression technique, 
namely the Least Absolute Selection and Shrinkage Operator 
(LASSO), and discusses its application to RUL prediction 
when capacity estimates and RUL responses are error-free; 
and Section 2.3 describes the fundaments of a robust sparse 
regression technique, namely bilinear kernel regression, and 
discusses its application to RUL prediction with errors in the 
capacity estimates.  

2.1. Fundamentals 

Kernel regression is a non-parametric regression technique 
that establishes a set of identical weighted functions, called 
local kernels, from the training data points, and a training 
process is employed to adjust the weights of the kernels to 
achieve the best-fit line at these data points. In the context of 
battery prognostics, a kernel regression algorithm takes the 
(estimated) capacity values of a battery cell as the inputs, and 
produces the (predicted) RUL as the output.  In this regard, 
kernel regression approximates the complex mapping from 
the capacity feature (x) space to the RUL state (y) space (see 
Fig. 1). 
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Figure 1. Approximation of mapping from capacity feature 

space to RUL state space by kernel regression. 

 

Assume that we are given a set of training data {(xi, yi)}, i =1, 
2, …, n, consisting of n samples from an arbitrary distribution 
D. Here, xi represents the data features, each represented by 
an m-dimensional vector consisting of the m most-recently 
calculated capacity estimates. Moreover, yi represents the 
(measured or true) RUL values for the corresponding 
capacity estimates. Our goal is to investigate a purely data-
driven machine learning approach that predicts the RUL from 
the capacity estimates. The approach employs a nonlinear 
kernel regression model of the form: 

 𝑦 𝐱 = 	 𝑤&𝜅 𝐱, 𝐱&

)

&*+

+ 𝑤- (1) 

where x is a (test) feature vector, y is the predicted RUL, w = 
(w0, …, wn)T represent the kernel weights, and κ(x,xi) is a 
suitable kernel function. The choice of kernel κ is somewhat 
flexible, but the key thing to note is that it is centered on the 
training point xi. A typical kernel used in nonlinear prediction 
applications is the Gaussian kernel function: 

 𝜅 𝐱, 𝐱& = 	exp −
1
𝑟4

𝐱 − 𝐱& 4
4  (2) 

where r is a pre-chosen parameter called the kernel 
bandwidth. We use this kernel function in all our experiments 
below. The goal of nonlinear kernel regression is to learn the 
optimal model (parameterized by the weight vector w) that 
provides the best prediction performance. Numerous 
algorithms for learning nonlinear prediction functions have 
been proposed in the machine learning literature, including 
singular value decomposition (SVD)-based approaches, 
stochastic gradient descent, and kernel least-squares 
(Trefethen & Bau, 1997).  

While kernel methods are known to provide very good 
prediction performance, they are often prone to overfitting to 
the training data and their performance can degrade on 
unseen test samples. Following the principle of Occam’s 
Razor, machine learning algorithms for nonlinear prediction 
often attempt to learn a simple model that best explains the 

data. From a computational standpoint, these algorithms 
learn prediction models by solving a regularized problem that 
balances two competing objectives (training error versus 
model complexity). Again, numerous prediction algorithms 
that exploit such regularization assumptions have been 
developed in the literature. One approach that has been 
explored in detail in the PHM literature is the Sparse 
Bayesian Learning (SBL) approach (Tipping, 2001) that 
constructs a nonlinear regression model, known as the RVM, 
for online estimation of battery capacity (Hu et al., 2015; Hu 
et al., 2016).  The RVM solves a Bayesian inference problem 
by imposing a sparse regression model on the optimal 
prediction weight vector, i.e., only a small subset of the 
coordinates of the optimal w are permitted to be nonzero. 
Tests reveal that such sparsity-based regularization methods 
yield better generalizability to unseen test samples, and also 
offer improved interpretability in terms of prediction 
performance. 

2.2. RUL Prediction using the LASSO 

We first propose an alternative sparsity-regularized approach 
for RUL prediction. Our approach is based on (now classical) 
optimization formulation in sparse regression called the Least 
Absolute Selection and Shrinkage Operator (LASSO). First, 
using the capacity estimates {xi}, we construct the design 
matrix Φ of size 𝑛× 𝑛 + 1 , where: 

 𝜑&8 = 1 for j = 1, and 𝜑&8 =
𝜅(𝐱&, 𝐱&:+) for j = 2, …, n+1 

(3) 

Next, we arrange the corresponding RUL measurements as a 
response vector y = (y0, …, yn)T. Finally, we define a non-
negative real valued parameter λ that controls the tradeoff 
between the goodness of prediction fit and the sparsity of the 
prediction vector.  

Having defined these quantities, we now obtain a prediction 
vector by solving the convex optimization problem: 

 𝐰 = argmin 	𝜆‖𝐰‖+ + ‖𝐲 − Φ𝐰‖44 (4) 

Here, ‖. ‖H	  denotes the ℓH-norm of a given vector. The choice 
of the tradeoff parameter λ is dataset-dependent; higher 
values encourage greater sparsity (i.e., fewer nonzero 
coefficients) in the prediction vector, and vice versa. In our 
experiments below (see Section 3), we chose the parameters 
based on leave-one-out cross-validation (LOOCV).  

The optimization problem in Eq. (4) can be solved using any 
of a number of off-the-shelf methods for convex 
programming, including cutting-plane methods, interior-
point methods, and second-order cone programming. Since 
the datasets that we consider are medium-to-large scale (see 
Section 3.2), interior-point methods are too slow for our 
problem and therefore we limit our study to first-order 
iterative convex programming methods that only use 
(sub)gradient information while making progress towards the 
optimal solution. Specifically, in our experiments we use 

Capacity feature 
space 

RUL state 
space

Kernel regression 
model
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spectral projected gradient (SPGL1), which has been 
developed in the context of compressive sensing (Van Den 
Berg & Friedlander, 2008) for solving large-scale sparse 
optimization problems. 

The LASSO can be viewed as a close relative of the RVM. 
Indeed, a Bayesian interpretation of the LASSO demonstrates 
that the solution to a LASSO problem is, in fact, the 
maximum a posteriori (MAP) estimate of the parameters w, 
when the prior p(w) is specified by a multi-dimensional 
Laplace probability density function. Several studies have 
shown that convex optimization methods such as the LASSO 
exhibit typically faster convergence (in terms of number of 
iterations) than Bayesian inference approaches (Roth et al. 
2008). However, in contrast to Bayesian methods, our 
LASSO-based formulation does not produce a full posterior 
distribution of the prediction parameters. In our experiments 
below, we compare the LASSO with the SBL approach 
(Tipping, 2001).  

2.3. RUL Prediction using Bilinear Kernel Regression  

Fundamentals of Bilinear Kernel Regression  

Until now, we have discussed regression approaches for 
prediction that (implicitly) assumes that the training samples 
(capacity estimates as well as RUL responses) are error-free. 
However, in reality, measurements (i.e., cell voltage, current 
and temperature) are rarely pristine. Whether due to human, 
instrumentation, or computation errors, it is very likely that 
capacity estimates are corrupted. Corruptions can occur due 
to noise in the measurements, owing to faulty sensor 
operation or variability in the power load and temperature 
conditions, or errors by a capacity estimation algorithm. 
Corruptions can also occur due to outliers, owing to sensor 
failure or human errors. 

Standard regression methods do not account for the 
possibility of such corruptions, and the consequence is that 
the inferred prediction model can be grossly incorrect, 
leading to unpredictable results while testing on new unseen 
data points. Our hypothesis is that we can build improved 
RUL prediction models if we explicitly capture and account 
for errors in the training data. We propose a unified 
optimization formulation for prediction of battery RUL from 
capacity estimates that addresses this hypothesis.  

First, we propose a mathematical representation of corrupted 
observations as follows. Suppose the (estimated) capacity 
measurements available to the regression method are given 
by: 

 𝐳&	 = 𝐱& + 𝐮& (5) 

where 𝐮& is a vector of noise values whose dimension equals 
the feature dimension, and whose values are generated from 
some probability distribution. Consequently, we use the 
measurements zi to construct a (contaminated) kernel matrix 

K using Eq. (3). The relation to the “true” kernel matrix is 
given by: 

 𝐾 = Φ + 𝐸 (6) 

where E is an error matrix. The two modes of corruption that 
we consider are both special cases of Eq. (6). For the additive 
noise model, we assume that the capacity estimates are 
contaminated with independent Gaussian noise, i.e., each 
estimate is perturbed by a small independently chosen 
random variable from a normal distribution. Up to a first-
order approximation, the effect of such contamination can be 
modeled by assuming that the entries of E are i.i.d. samples 
from a Gaussian distribution with some variance σ2. For the 
outlier noise model, we assume that the capacity 
measurements are contaminated with sparse (but unbounded) 
noise, i.e., a randomly chosen fraction of the observations are 
arbitrary distorted. Up to a first-order approximation, the 
effect of such contamination can be modeled via a sparsity 
assumption on the error matrix E. 

Given the (contaminated) kernel matrix K and the measured 
(or true) RUL values y, we solve a generalization of the 
optimization problem in Eq. (4) by jointly estimating both the 
optimal prediction vector as well as the error matrix: 

 
(𝐰, 𝐸) 	
= argmin 	𝜆‖𝐰‖+ + 𝜏 𝑣𝑒𝑐(𝐸) H

H

+ ‖𝐲 − (𝐾 − 𝐸)𝐰‖44 
(7) 

Here, the vec() operator vectorizes the contents of an arbitrary 
matrix in column-major order. The norm parameter p is set to 
be either 1 or 2 depending on the noise model; the case p = 2 
models additive noise and encourages dense estimates of the 
error, while the case p = 1 models outlier noise. As before, 
the parameter λ controls the sparsity of the final solution, 
while the parameter τ controls the norm of the aggregate 
errors.   

In theory, the solution to Eq. (7) will produce a sparse 
prediction vector 𝐰 that fits a kernel regression model to the 
“denoised” kernel matrix 𝐾 − 𝐸 . The denoising is implicit 
since we simultaneously remove the noise in the kernel 
matrix as well as estimate the prediction model. We note that 
unlike Eq. (4), the optimization problem in Eq. (7) is no 
longer convex. In particular, the squared-error loss term in 
Eq. (7) is a bilinear function of the optimization variables w, 
E. Therefore, Eq. (7) is an instance of penalized bilinear 
regression. Variants of bilinear regression have been 
previously explored in the machine learning literature in 
(Herman & Strohmer, 2010). In particular, a similar 
optimization problem is proposed to develop robust versions 
of the LASSO that are less susceptible to outlier errors in the 
training data (Chen et al., 2013). To the best of our 
knowledge, the application of this method to battery-life 
prognostics has not been attempted. In our experiments below 
(see Section 3.4), we see that accounting for the errors in the 
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measurements leads to improvements over the standard 
LASSO in all test cases, sometimes by a large amount. 

Algorithm for Bilinear Kernel Regression 

Since, the optimization problem in Eq. (7) is non-convex, off-
the-shelf solvers for nonlinear convex optimization cannot be 
directly used to solve this problem. However, due to the 
bilinear nature of the prediction error term in the objective 
function, we observe that the problem is convex, provided we 
fix either one of the variables (w or E) and optimize over the 
other variable. This motivates the following, natural two-step 
iterative procedure based on alternating minimization: 

Step 1 Suppose we fix E. Then, minimizing the objective 
function in Eq. (7) over all possible prediction vectors w 
reduces to a variant of the original LASSO formulation. 
This sub-problem can be solved using convex 
optimization methods such as SPGL1.  

Step 2 Suppose we fix w. Then, minimizing the objective 
function in Eq. (7) over all possible error matrices E 
reduces to an ℓH-regularized least squares problem. The 
ℓH-norm is convex for both p = 1 and p = 2. For p = 1, 
we can solve the sub-problem using a modification of 
SPGL1. For p = 2, the sub-problem can be reduced to 
ordinary penalized least-squares (also known as 
Tikhonov regularization (Tikhonov & Arsenin, 1977), 
and can be solved using standard least-squares methods 
such as conjugate gradients.  

Table 1 summarizes the overall procedure to solve the 
optimization problem in Eq. (7). The basic idea is to alternate 
between solving for E and w. In the limit of infinitely many 
iterations, this procedure will converge to a local minimum 
of the objective function in Eq. (7). In practice, we can only 
execute a finite number of iterations. Therefore, we fix an 
input parameter T (representing the maximum allowable 
iteration count) and at the end of each iteration, we record the 
prediction error. The final estimates 𝐰, 𝐸  are declared by 
determining the iteration index that yielded the minimum 
objective function. The global optimality of such a method 
(and for non-convex optimization algorithms in general) 
cannot be guaranteed, but it serves as an effective heuristic. 
We leave as an open question the theoretical analysis of the 
above alternating minimization approach.  

3. EXPERIMENTAL RESULTS 

The verification of the proposed approach was accomplished 
by using 10 years’ continuous cycling data acquired from 
eight Li-ion prismatic cells. This section reports the results of 
this verification. Section 3.1 presents the test procedure along 
with the cycling performance of the test cells. Section 3.2 
gives the implementation details of several different methods. 
Section 3.3 describes the error metric used to quantify the 
performance of these methods in RUL prediction. The RUL 
prediction results are reported in Section 3.4.  

3.1. Test Procedure and Cycling Data 

Li-ion cells were constructed in hermetically sealed prismatic 
cases between 2002 and 2012 and subjected to full depth of 
discharge cycling with a nominally weekly discharge rate 
(C/168 discharge) under 37oC (Hu, et al., 2014). The cycling 
test was conducted with the following parameter settings: (i) 
the charge rate (ICC) for the CC charge was C/6; (ii) the charge 
cutoff voltage (Vmax) was 4.075 V; (iii) the time duration (tCV 
− tCC) of the CV charge was 30 min; and (iv) the discharge 
rate was C/150 or a nominally weekly discharge rate. The test 
attempted to simulate a use condition similar to patient use in 
medical applications. The weekly rate discharge capacities 
are plotted against the time on test in Fig. 2. Please note that, 
for confidentiality reasons, the discharge capacity of a cell in 
Fig. 2 and in the discussions thereafter is presented after 

Table 1. A pseudocode representation of the 
proposed approach for RUL prediction of Li-ion 

battery. 
 
 

ALGORITHM: Alternating minimization for 
regularized bilinear regression. 

 

INPUTS: Training data {(xi, yi)}, i=1, 2, …, n.  

OUTPUTS: Estimated kernel prediction vector 𝐰Q  . 

PARAMETERS: Optimization parameters λ and 
τ, kernel bandwidth r, number of iterations T  

 

1. Initialize:  𝐰-R ← 0, 𝐸-U ← 0, 𝑡 ← 0. 

2. Compute: the kernel matrix K using 
Equation (2). 

3. While t < T do: 

a. 𝑡 ← 𝑡 + 1 

b. Set 𝐾W = 𝐾 −	𝐸XY . Solve: 

 𝐰QXZ+ = argmin 	𝜆‖𝐰‖+ + ‖𝐲 − 𝐾W𝐰‖44 

c. Set 𝐲[ = 𝐲 − 𝐾𝐰QXZ+.  Solve: 

 𝐸\XZ+ = argmin 	𝜏‖𝑣𝑒𝑐(𝐸)‖H
H 

  +‖𝐲[ + 𝐸𝐰QXZ+‖44 

d. Record prediction error: 

 𝑃𝑟𝑒𝑑𝐸𝑟𝑟(𝑡) = _𝐲 − `𝐾 − 𝐸\XZ+a𝐰QXZ+_4
4
 

4. Find 𝑡∗ that minimizes 𝑃𝑟𝑒𝑑𝑒𝑟𝑟(𝑡).  

5. Output: 𝐰Q ← 𝐰QX∗ 
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being normalized by the beginning-of-life (BOL) discharge 
capacity of the cell. As shown in Fig. 2, 80% of the initial 
capacity is retained even after 10 years of repeated cycling at 
an elevated temperature, indicating exceedingly stable cell 
performance. The cycling data also indicate consistent 
performance of cells manufactured over a long time period.  

 

3.2. Prognostic Data Generation and Method 
Implementation 

In this experimental study, the cycling data from the eight 
2002 cells in Fig. 2 were used to verify the effectiveness of 
the proposed approach in the RUL prediction. Each feature 
vector (or data point) xi consists of the 3 most-recently 
measured capacities (i.e., m = 3). To focus our discussion on 
RUL prediction, we did not implement capacity estimation in 
this study, and instead used measured capacities to construct 
the feature vectors. Each feature vector, 𝐱& , in the training 
data set was corrupted with additive noise, 𝑛&, where 𝑛& is a 
random sample from a zero-mean normal distribution with 
standard deviation 𝜎 taking one of the following: 0.0, 0.005, 
0.010 and 0.015. For each 𝜎 value, all methods were tested 
using two 8-fold cross validation (CV) experiments: the first 
where the test data contained no additive noise, and the 
second where the test data was corrupted with additive noise 
from the same normal distribution as the training data. To 
minimize the effect of randomness in additive noise, the data 
generation and 8-fold cross validation were repeated 10 
times.  

A cell is considered to reach the EOL when the measured 
discharge capacity of the cell fades to 78.5% of its initial 
discharge capacity (Hu et al., 2014). For any test cell whose 
measured capacities did not reach this EOL limit, the EOL of 
the cell was identified through a linear extrapolation of the 
capacity data from the last six charge/discharge cycles. To 
detect outliers in RUL prediction data, caused by spurious 
capacity readings input into the proposed models, a linear fit 
of the data was performed using the robust regression 
described by Holland in (Holland et al., 1977). Any residual 
greater than 15 median absolute deviations was removed 
from the prediction data and not used in the calculation of 
error.  

The tradeoff parameters, 𝜆 in Eq. (4) and 𝜆 and 𝜏 in Eq. (7), 
were determined empirically, and for each, the value 
minimizing the overall root-mean-square (RMS) error (see 
the definition in Section 3.3) of a 𝜎 = 0.01 CV was used for 
all trials. For both LASSO and bilinear regression, 𝜆  was 
36,000. For estim ation of the error matrix, 𝜏deffg  and 
𝜏h&ijk)kl were 26,000 and 16,000, respectively. The kernel 
bandwith, 𝑟, in Eq. (2) was also empirically determined, and 
was 0.05 for LASSO and bilinear regression and 0.2 for 
RVM.  

3.3. Error Metric 

The RUL is used as the relevant metric for determining the 
state of life (SOL) of Li-ion battery. We compare the 
prediction performance of the proposed methods (LASSO, 
bilinear regression with Tikhonov Regularization (our 
proposed algorithm with p=2) to estimate errors, and bilinear 
regression using LASSO to estimate errors (our proposed 
algorithm with p=1)) to that of RVM described in (Hu et al., 
2015). The accuracy of a method was evaluated by using the 
k-fold CV. In this study, the complete feature data set X 
consists of eight mutually exclusive subsets or folds X1, X2, 
…, X8 that were respectively obtained from the eight 2002 
cells. In each CV trial, of the eight subsets, one was used as 
the test set and the other seven subsets were put together as a 
training set. The CV process was performed eight times (i.e., 
the total number of CV trials is eight), with each of the eight 
subsets left out exactly once as the test set. Thus, all the data 
points in the complete data set were used for both training 
and testing. Let Il = {i: xi∈Xl}, l = 1, 2,…, 8, denote the index 
set of the feature vectors that construct the subset Xl. The CV 
root mean square error (RMSE) is computed as the root 
square of the average error over all the eight CV trials, 
expressed as 

 𝑅𝑀𝑆𝐸 =
1
𝑈

𝑦𝐗\𝐗s 𝐱& − 𝑦 𝐱&
4

&∈𝐈s

v

w*+
 (8) 

where U is the number of feature vectors for the CV, 𝑦𝐗\𝐗s is 
the predicted RUL by the method trained with the complete 
data set X excluding the subset Xl, and y(xi) is the true RUL 
of xi. The error formula in Eq. (8) indicates that all the U 
feature vectors in the complete data set X are used for both 
training and testing, and each feature vector is used for testing 
exactly once and for training seven times.  

 

 
Figure 2. Cycling performance of cells manufactured and 

cycled between 2002 and 2012 (Hu, et al., 2014). 
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Figure 3. Estimated error matrix created as an intermediate 
step of bilinear regression with Tikhonov Regularization 
where 𝜎 = 0.01. Errors are reported as a percentage of the 
maximum value in the Gaussian kernel, 𝜅. 

3.4. RUL Prediction Results 

To determine the accuracy of a given prediction method, the 
errors across all cells of the CV were aggregated and a single 
RMS value was calculated using Eq. (8). Table 2 summarizes 
the accuracy of all prediction methods with variable amounts 
of noise in the training data and test data. With uncorrupted 
test data, RVM was outperformed by all prediction methods 
proposed in this paper; LASSO without error estimation was 
outperformed by both methods incorporating error 
estimation. Moreover, error modeling with Tikhonov 
regularization outperformed error modeling with LASSO for 
the three of the four test cases. When test data is corrupted 
with small amounts of noise all models provide predictions 
similar to the error-free predictions in Table 2; greater levels 
of noise in the test data overwhelms the models ability to 
make accurate predictions. 

Figure 3 demonstrates an example of an estimated error 
matrix (displayed as a grayscale image) generated in one of 
the intermediate steps of bilinear regression with Tikhonov 
regularization. If any data point 𝐱& is imbued with error, we 
would expect our estimation of the 𝑖yz row of our error matrix 
to be mostly non-zero (i.e. error-filled). This phenomenon is 
demonstrated in Fig. 3, and by inspection we can infer that 
the rows with non-zero entries correspond to erroneous data 
points. 

Figure 4 shows estimates of the Cumulative Density Function 
(CDF) for all prediction methods. The CDF estimate was 
created using the aggregated absolute value of errors from an 
8-cell CV. In this CV, bilinear estimation using Tikhonov 
regularization outperforms all prediction methods and, as 
expected, a larger percentage of its errors are small. For all 

methods explored in this paper over 60% of predictions are 
within 30 cycles of the true RUL. 

 

 
Figure 4. Empirical CDF vs. absolute value of error for each 
prediction method. Here, 𝜎 = 0.01 for the training dataset; 
the test data was not corrupted.  RMSE – LASSO: 35.3.  
RMSE – Bilinear-LASSO: 34.5.  RMSE – Bilinear-
Tikhonov: 33.8. RMSE – RVM: 36.7. 

4. CONCLUSION 

This paper presents a data-driven approach to online RUL 
prediction of Li-ion battery by adopting bilinear kernel 
regression. This approach provides individual users of Li-ion 
battery-powered devices with estimates of the battery RUL 
over the whole service life. The RUL allows the users to 
schedule an optimal replacement near the EOL so that the 
devices can be used as long as possible, and at the same time, 
users’ safety is not compromised. Our contributions to 
battery prognostics include the formulation of a general 
framework for robust sparse prognostics, and the 
development of two numerical procedures for efficient error 
estimation. Experiments with 10 years’ continuous cycling 
data verify that the proposed approach achieves more 
accurate RUL prediction than existing data-driven 
approaches, and suggest that the proposed method is a 
promising methodology for the battery prognostics.  

It is important to note that the experimental data in Section 3 
were obtained from the eight Li-ion cells cycled with a 
constant discharge rate. Since the fade behavior is fairly 
consistent among the eight cells (see Fig. 2), a training data 
set, which carries the information about the fade behavior of 
7 training cells, is likely to be capable of capturing the fade 
behavior of the testing cell. In non-medical applications (e.g., 
hybrid and electric vehicles, and consumer electronics) where 
harsher and more inconsistent fade scenarios are often 
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encountered, the training data set may not fully represent the 
way a testing cell degrades, and in such cases, the data-driven 
methods discussed in this paper may produce inaccurate RUL 
predictions. Our future work will assess the effectiveness of 
the proposed data-driven methods in the presence of 
significant cell-to-cell variation in capacity fade as well as 

investigate the effect of dynamic loading conditions on the 
accuracy in RUL prediction.  Finally, we will also investigate 
Bayesian-inference algorithms that quantify the uncertainty 
in the predicted RUL estimates as a function of the noise 
level.

 

Table 2. A summary of prediction accuracy of different methods. Predictions were performed using error-free test data and 
using additive noise where 𝜎 is the same for both training and test data.  The standard deviation of the ten 8-fold CVs is 

presented with each RMSE. 

Prediction method Noise in training data (𝜎) Noise in training and test data (𝜎) 
0 0.005 0.01 0.015 0.005 0.01 0.015 

LASSO 31.24 
(±0.00) 

33.05 
(±1.26) 

34.72 
(±2.33) 

50.42 
(±5.73) 

42.33 
(±4.77) 

61.53 
(±5.54) 

83.67 
(±11.23) 

Bilinear regression with LASSO 30.26 
(±0.00) 

31.62 
(±1.47) 

33.28 
(±2.37) 

46.22 
(±5.54) 

40.96 
(±4.32) 

60.16 
(±5.11) 

82.40 
(±10.06) 

Bilinear regression with 
Tikhonov regularization 

29.57 
(±0.00) 

30.92 
(±1.49) 

32.8 
(±2.30) 

48.88 
(±6.16) 

40.57 
(±4.84) 

60.58 
(±4.99) 

83.52 
(±11.15) 

RVM 30.91 
(±0.00) 

32.67 
(±1.00) 

36.16 
(±2.44) 

47.67 
(±4.24) 

41.50 
(±4.65) 

60.22 
(±5.77) 

82.58 
(±10.96) 
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