Sparsity as a powerful instrument in signal processing is now commonplace. However, it is also well known that certain classes of signals do not admit a sparse expansion in an orthonormal basis (e.g., a mixture of spikes and sinusoids is non-sparse in either the canonical or Fourier basis). Therefore, it is typical to use an overcomplete basis, or a redundant dictionary, for representing such complicated signals. Mathematically, \(x \in \mathbb{R}^n \) is \(k \)-sparse in a dictionary \(D \in \mathbb{R}^{n \times N} \), where \(n < N \), if \(x = D\alpha \) where \(\alpha \in \mathbb{R}^N \) contains only \(k \) nonzeros.

Compressive Sensing (CS) [1] encompasses the development of efficient techniques for sampling and reconstruction of sparse signals. A signal \(x \in \mathbb{R}^n \) may be sampled by inner products with \(m < n \) vectors; therefore, \(y = \Phi x = \Phi D\alpha \), where \(\Phi \in \mathbb{R}^{m \times n} \) is the measurement matrix. Here, the matrix \(\Phi D \) is sometimes called the holographic basis. Signal reconstruction can be performed using a slew of algorithms; see, for example, [2]. It is generally accepted that the mutual coherence \(\mu \) (or the maximum absolute off-diagonal entry of the Gram matrix) of the holographic basis plays an important role in reconstruction performance; smaller values of \(\mu \) typically lead to better reconstruction.

An important consideration is the choice of measurement matrix \(\Phi \). The typical CS approach offers a very simple, universal solution: construct \(\Phi \in \mathbb{R}^{m \times n} \) elementwise by randomly drawing from a Gaussian (or Bernoulli) probability distribution. Remarkably, if \(x \) is \(k \)-sparse, then with high probability, \(m = \mathcal{O}(k \log n) \) samples suffice in order to ensure efficient, stable reconstruction of \(\alpha \) (and consequently, \(x \)) from \(y \); in other words, \(m \) needs only to be linear in the sparsity level \(k \) and logarithmic in the actual signal length \(n \).

While randomized constructions of measurement matrices are agnostic to the dictionary \(D \) under consideration, the question remains whether one can do better, i.e., whether one can construct a hypothetical \(\Phi \) with an even fewer number of rows \(m \) by leveraging the intrinsic structure of \(D \). In this work, we answer this question in the affirmative. We develop an algorithmic framework for learning measurement matrices \(\Phi \) that are well-tuned to the dictionary under consideration. Our framework can be viewed as a variant of NuMax [3], a new convex optimization framework for designing near-isometric linear embeddings of high-dimensional point clouds.

A brief sketch of our approach is as follows. Consider a sparsifying dictionary \(D = [d_1, \ldots, d_N] \) with unit-norm columns. We seek a matrix \(\Phi \in \mathbb{R}^{m \times n} \), with as few rows as possible, such that the mutual coherence of the holographic basis \(\Phi D \) is at most a scalar parameter \(\mu > 0 \). To avoid numerical degeneracies, we also impose the constraints that the columns of \(\Phi D \) themselves be approximately unit-norm. Define \(P = \Phi^* \Phi \) so that \(\text{rank}(P) = m \). Then, \(P \) can be posed as the solution to the problem:

\[
\begin{align*}
\text{minimize} & \quad \text{rank}(P) \\
\text{subject to} & \quad |d_i^T P d_j| \leq \mu, \quad i \neq j, \\
& \quad d_i^T P d_i \geq 1 - \mu, \quad P \succeq 0.
\end{align*}
\]

Note that (1) consists of inequality constraints that are linear in the

Fig. 1. CS recovery performance for random projections versus the matrix produced by our proposed algorithm (NuMax-Dict). NuMax-Dict far outperforms random Gaussian projections in terms of recovered signal SNR.

References

