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Sparsity as a powerful instrument in signal processing is now
commonplace. However, it is also well known that certain classes of
signals do not admit a sparse expansion in an orthonormal basis (e.g.,
a mixture of spikes and sinuoids is non-sparse in either the canonical
or Fourier basis). Therefore, it is typical to use an overcomplete basis,
or a redundant dictionary, for representing such complicated signals.
Mathematically, x ∈ RN is k-sparse in a dictionary D ∈ Rn×N ,
where n < N , if x = Dα where α ∈ RN contains only k nonzeros.

Compressive Sensing (CS) [1] encompasses the development of
efficient techniques for sampling and reconstruction of sparse signals.
A signal x ∈ Rn may be sampled by inner products with m < n
vectors; therefore, y = Φx = ΦDα, where Φ ∈ Rm×n is the
measurement matrix. Here, the matrix ΦD is sometimes called the
holographic basis. Signal reconstruction can be performed using a
slew of algorithms; see, for example, [2]. It is generally accepted
that the mutual coherence µ (or the maximum absolute off-diagonal
entry of the Gram matrix) of the holographic basis plays an important
role in reconstruction performance; smaller values of µ typically lead
to better reconstruction.

An important consideration is the choice of measurement matrix
Φ. The typical CS approach offers a very simple, universal solution:
construct Φ ∈ Rm×n elementwise by randomly drawing from a
Gaussian (or Bernoulli) probability distribution. Remarkably, if x
is k-sparse, then with high probability, m = O (k logn) samples
suffice in order to ensure efficient, stable reconstruction of α (and
consequently, x) from y; in other words, m needs only to be linear
in the sparsity level k and logarithmic in the actual signal length n.

While randomized constructions of measurement matrices are
agnostic to the dictionary D under consideration, the question re-
mains whether one can do better, i.e., whether one can construct a
hypothetical Φ with an even fewer number of rows m by leveraging
the intrinsic structure of D. In this work, we answer this question
in the affirmative. We develop an algorithmic framework for learn-
ing measurement matrices Φ that are well-tuned to the dictionary
under consideration. Our framework can be viewed as a variant of
NuMax [3], a new convex optimization framework for designing near-
isometric linear embeddings of high-dimensional point clouds.

A brief sketch of our approach is as follows. Consider a sparsifying
dictionary D = [d1, . . . ,dN ] with unit-norm columns. We seek a
matrix Φ ∈ Rm×n, with as few rows as possible, such that the
mutual coherence of the holographic basis ΦD is at most a scalar
parameter µ > 0. To avoid numerical degeneracies, we also impose
the constraints that the columns of ΦD themselves be approximately
unit-norm. Define P = ΦTΦ so that rank(P) = m. Then, P can be
posed as the solution to the problem:

minimize rank(P) (1)

subject to |dT
i Pdj | ≤ µ, i ̸= j,

dT
i Pdi ≥ 1− µ, P ⪰ 0.

Note that (1) consists of inequality constraints that are linear in the
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Fig. 1. CS recovery performance for random projections versus the matrix
produced by our proposed algorithm (NuMax-Dict). NuMax-Dict far outper-
forms random Gaussian projections in terms of recovered signal SNR.

optimization variable P. Since rank minimization is NP-hard, we
relax (1) to obtain a nuclear norm minimization problem, subject to
linear inequality constraints, over the cone of positive semidefinite
(PSD) matrices. This problem is convex and can be solved very
efficiently, for example, using a simple modification of Algorithm
1 in [3]. We dub this modified algorithm NuMax-Dict. A simple
matrix square root of the optimal P∗ reveals the desired Φ, modulo
an orthogonal transformation. The choice of the parameter µ is
important; larger values of µ result in optimal matrices P∗ of smaller
rank, and consequently, a smaller number m of rows in Φ.

Figure 1 illustrates the benefits of CS recovery using our approach.
We consider a generic dictionary D populated with i.i.d. Gaussian
entries with parameters n = 64, N = 128 and solve the nuclear
norm relaxation of (1) using NuMax-Dict for a given parameter
µ. We generate 500 coefficient vectors α with k = 5 nonzeros
and random amplitudes, form signals x = Dα, and obtain m
compressive samples using both the learned measurement matrix Φ
as well as a random Gaussian measurement matrix with m rows.
We reconstruct the signals using orthogonal matching pursuit (OMP)
[2] and record the error in signal recovery in terms of SNR. We
repeat this experiment for different values of input µ. As illustrated in
Fig. 1, the learned matrix using our proposed NuMax-Dict algorithm
outperforms conventional random sampling over a wide range of
measurement regimes. Our proposed formulation (1) can be adapted
to other notions of matrix coherence, such as average coherence.
Further, it is applicable to a number of practical settings, such as
the compressive acquisition of images that are sparse in large-scale
redundant dictionaries. We explore these avenues further in the full
version of this work.
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