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Abstract—In dictionary learning, we seek a collection of atoms
that sparsely represent a given set of training samples. While this
problem is well-studied, relatively less is known about the more
challenging case where the samples are incomplete, i.e., we only
observe a fraction of their coordinates. In this paper, we develop
and analyze an algorithm to solve this problem, provided that
the dictionary satisfies additional low-dimensional structure.

I. INTRODUCTION

In this paper, we consider a variant of the problem of
dictionary learning, a widely used unsupervised technique for
learning compact (sparse) representations of high dimensional
data. At its core, the challenge in dictionary learning is to
discover a basis (or dictionary) that can sparsely represent a
given set of data samples with as little empirical representation
error as possible. An important underlying assumption that
guides the success of all existing dictionary learning algorithms
is the availability of (sufficiently many) data samples that are
fully observed. Our focus, on the other hand, is on the special
case where the given data points are only partially observed,
that is, we are given access to only a small fraction of the
coordinates of the data samples. Such a “missing data” setting
arises naturally in applications such as image-inpainting and
demosaicing [1], and hyper-spectral imaging [2].

Earlier works that tackle the incomplete variant of the
dictionary learning problem only offer heuristic solutions [2],
[3] or involve constructing intractable statistical estimators [4].
Indeed, the recovery of the true dictionary involves analyzing an
extremely non-convex optimization problem that is, in general,
not solvable in polynomial time [5]. To our knowledge, our
recent work [6] was the first to give a theoretically sound
as well as tractable algorithm to learn the dictionary from
incompletely observed samples. However, a key requirement
of our approach was the availability of a small hold-out set
of fully observed samples. In this paper, we circumvent this
requirement, provided that the atoms of the unknown dictionary
exhibits additional low-dimensional structure.

Our Contributions. Following [7], [8], we assume that
each data sample is synthesized from a generative model with
an unknown dictionary and a random k-sparse coefficient
vector (or sparse code). Mathematically, the data samples Z =
[z(1), z(2), . . . , z(p)] ∈ Rn×p are of the form Z = A∗X∗,
where A∗ ∈ Rn×m denotes the dictionary and X∗ ∈ Rm×p
denotes the (column-wise) k-sparse codes. However, we do
not have access to the full data samples; instead, each entry of
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Z is observed independently with probability ρ ∈ (0, 1]. For
analysis, we also make the (standard) assumptions that A∗ is
both incoherent (i.e., the columns of A∗ are sufficiently close
to orthogonal) and democratic (i.e., the energy of each atom
is well spread). Given a set of such (partially observed) data
samples, our goal is to recover the true dictionary A∗. In recent
work, [6] we presented a tractable algorithm with convergence
results to perform this recovery, provided we have a coarse
estimate A0 that is sufficiently close to A∗. In that work, we
also presented an algorithm to produce such A0, albeit by
requiring a small hold-out set of fully observed samples.

In this paper, we remove this requirement: we present a prac-
tical algorithm to estimate A∗ from only incomplete samples,
provided A∗ obeys additional low-dimensional structure.

Techniques. We build upon recent algorithms for dictionary
learning — specifically, the framework of [8], which proposes
a descent-like algorithm over the dictionary parameters. The
descent is achieved by alternating between updating the
dictionary estimate and updating the sparse codes of the data
samples. This algorithm provably succeeds so long as the codes
are sparse enough, the columns of A∗ are incoherent, and we
are given sufficiently many samples.

However, a direct application of the above framework to
the missing data setting does not work. To resolve this, we
leverage a specific property that is commonly assumed in the
matrix completion literature: we suppose that the dictionaries
are not “spiky” and that the energy of each atom is spread out
among its coordinates; specifically, the sub-dictionaries formed
by randomly sub-selecting rows are still incoherent. We call
such dictionaries democratic, following the terminology of [9].
Our main contribution in [6] proves that democratic, incoherent
dictionaries can be learned via a similar alternating descent
scheme if only a small fraction of the data entries are available.

Of course, the above analysis is somewhat local in nature
since we are using a descent-style method over a non-convex
loss function. In order to get global recovery guarantees, we
need to initialize carefully. To achieve this, we leverage known
results in matrix completion [10] to prove that a starting
estimate for the descent within the basin of attraction of A∗

can be constructed in polynomial time, assuming that A∗ obeys
additional low-dimensional structure. This addresses an open
problem in [6], albeit at the cost of the above assumption.

Prior Work. The literature on dictionary learning (or
sparse coding) is very vast; cf. [1]. Dictionary learning with
incompletely observed data, however, is far less well-studied.
Initial attempts in this direction [2] involve Bayesian-style
techniques, while more recent attempts have focused on



alternating minimization heuristics [3]. However, none of these
methods provide rigorous polynomial-time algorithms that
provably succeed in recovering the dictionary parameters.

Our setup can also be viewed as an instance of matrix
completion, which has been a source of intense interest in
the machine learning community over the last decade [11],
[12]. The typical assumption in such approaches is that the
data matrix Z = A∗X∗ is low-rank (i.e., A∗ typically spans
a low-dimensional subspace). This assumption leads to either
feasible convex relaxations, or a bilinear form that can be solved
approximately via alternating minimization. However, our work
differs significantly from conventional matrix completion, since
our guarantees are not in terms of estimating the missing entries
of Y , but rather obtaining the atoms in A∗.

In the context of matrix-completion, perhaps the most related
work to ours is the statistical analysis of matrix-completion
under the sparse-factor model of [4], which employs a similar
generative data model to ours. (Similar sparse-factor models
have been studied in the work of [13], but no complexity
guarantees are provided.) For this model, [4] propose a non-
convex statistical estimator for estimate Z and provide error
bounds for this estimator under various noise models. However,
they do not discuss an efficient algorithm to realize that
estimator. In contrast, we provide a rigorous polynomial
time algorithm, together with recovery error bounds. Overall,
our work could shed some light on the design of provable
algorithms for matrix completion in such more general settings.

II. PRELIMINARIES

Given a vector x ∈ Rm and a subset S ⊆ [m], denote xS ∈
Rm as a vector which equals x in indices belonging to S and
equals zero elsewhere. Denote by AΓ• the submatrix of A with
rows not in Γ set to zero. The symbol ‖·‖ refers to the `2-norm,
unless otherwise specified. We adopt standard big-O notation.
The terms “with high probability” (sometimes in abbreviation
as w.h.p.) indicates an event with failure probability O(n−ω(1)).

We make two basic assumptions on our dictionary A∗:
incoherence, and democracy. The incoherence property requires
the columns of A∗ to be approximately orthogonal, and is a
canonical property to resolve identifiability issues in dictionary
learning and sparse recovery. The democracy property shows
that the rows of A∗ roughly have the same amount of mass.
Formally, we have:

Definition 1 (Incoherence). The matrix A is incoherent with
parameter µ if the following holds for all columns i 6= j:

|〈A•i, A•j〉|
‖A•i‖‖A•j‖

≤ µ√
n
.

Definition 2 (Democracy). Suppose A is µ-incoherent. A
is further said to be democratic if the submatrix AΓ• is µ-
incoherent for any subset Γ ⊂ [n] of size

√
n ≤ |Γ| ≤ n.

We seek an algorithm that provides a provably “good”
estimate of A∗. For this, we need a suitable measure of
“goodness”. The following notion of distance records the
maximal column-wise difference between any estimate A and
A∗ in `2-norm under a suitable permutation and sign flip.

Definition 3 ((δ, κ)-nearness). The matrix A is said to be
δ-close to A∗ if ‖σ(i)A•π(i) − A∗•i‖ ≤ δ holds for every
i = 1, 2, . . . ,m and some permutation π : [m] → [m] and
sign flip σ : [m] : {±1}. In addition, if ‖A•π −A∗‖ ≤ κ‖A∗‖
holds, then A is said to be (δ, κ)-near to A∗.

To keep notation simple, in our convergence theorems
below, whenever we discuss nearness, we simply replace the
transformations π and σ in the above definition with the identity
mapping π(i) = i and the positive sign σ(·) = +1 while
keeping in mind that in reality, we are referring to finding one
element in the equivalence class of permutations and sign flips.

Armed with the above concepts, we now posit a generative
model for our observed data. Suppose that we observe p data
samples Y = [y(1), y(2), . . . , y(p)] such that each sample is
generated according to the rule:

y = PΓ(A∗x∗), (1)

where A∗ is an unknown, ground truth dictionary; x∗ is drawn
from a distribution D specified below; and PΓ is a uniform
sampling operator that retains entries in Γ ⊂ [n] and zeroes out
everything else. We emphasize that Γ is independently chosen
for each y(i), so more precisely, y(i) = y

(i)

Γ(i) ∈ Rn. We also
make the following assumptions.

Assumption 1. A∗ has size m ≤ Kn for a constant K > 0,
is of rank r < min(m,n) and democratic with parameter µ.
All columns of A∗ have unit norms.

Assumption 2. A∗ has bounded spectral and max norms:
‖A∗‖ ≤ O(max(1,

√
m/n)), ‖A∗‖max ≤ O(1/

√
n).

Assumption 3. The code vector x∗ is k-sparse random with
uniform support S. We assume that the sparsity k ≤ O(ρ

√
m)

(with ρ defined below) and that the nonzero entries of x∗

are pairwise independent sub-Gaussian with variance 1, and
bounded below by some known constant C.

Assumption 4. Each entry of the sample A∗x∗ is indepen-
dently observed with constant probability ρ ∈ (0, 1].

Assumption 5. Given a set of full samples Z = A∗X whose
SVD is Z =

∑r
i=1 σiuiv

T
i , assume that ui and vj for i, j ∈ [r]

obey:
‖ui‖∞ ≤ O(n−1/2), ‖vj‖∞ ≤ O(n−1/2).

The first four assumptions should be familiar. The intuition
behind Assumption 5 is that Y has entries with magnitude
bounded by O(1/

√
n) with high probability. Specifically, we

have Zij = A∗>i• x
(j) for the ith-row of A∗ and the jth-column

of X . According to our aforementioned generative model, the
(i, j)th entry of Y has mean E[Zij ] = 0 and variance:
var(Zij) = E[(A∗>i• x

(j))2] = O(k/m)‖A∗i•‖
2 ≤ O(k/n).

Since each entry of A∗ is bounded by O(1/
√
n) (Assumption 2)

and A∗ has m columns. Then with high probability, |Zij | ≤
O(k/n). Since k ≤ O(

√
n), then Z has entries with magnitude

bounded by O(n−1/4) with high probability. Since entries Z
are spread out, it is expected to have its singular vectors to
be spread out. This assumption allows us to perform matrix
completion techniques on a partially sampled Z.



Algorithm 1 Low-rank Dictionary Learning Algorithm
Input: Y – matrix of p samples with missing entries
Randomly pick Õ(m/ρ) samples, denote them as Y1

Denote the remaining samples as Y2

Ŷ1 = EXACT-COMPLETION(Y1)
A0 = SPECTRAL-INIT(Ŷ1, Y2, ρ, k,m)
A = DESCENT-ALTMIN(Y,A0, ρ,Θ(m/ρk))
Output: A – the recovered dictionary

III. ALGORITHM

In this section, we introduce an algorithm that recovers the
ground-truth dictionary A∗ from partially observed samples;
see Algorithm 1. At a high level, our algorithm mimics the
ideas in [6] for learning dictionaries from incomplete samples.
The algorithm there involves a spectral initialization (Subrou-
tine 2) followed by a descent-style alternating minimization
(Subroutine 3). Given a (coarse) initial estimate A0, the descent
stage attempts to refine it to a much greater accuracy by taking
into account only partial samples.

Let us first provide some intuition behind the spectral
initialization and how we adapt it to the incomplete setting. In
essence, the idea is to design a re-weighted covariance matrix
whose eigen-spectrum reveals one of the dictionary atoms. The
whole procedure is performed iteratively until all m atoms are
estimated. The re-weighting are technically based on pairwise
correlations between the samples with two fixed samples (says,
u, v) from an independent hold-out sampling set. For samples
with missing entries, however, such pairwise correlations are not
useful because each vector is sparsely observed. Our previous
approach [6] overcomes this problem by assuming access to
a hold-out sample set that is fully observed. As a result, the
spectral initialization with the re-weighting scheme provably
succeeds provided a democratic ground truth A∗ and sufficiently
sparse codes for the samples.

However, the success of the initialization procedure entirely
depends on a hold-out and fully-observed sample set of size
O(m polylog(n)). If such a hold-out set is not available,
a natural solution is to estimate the hold-out set from the
available, incompletely observed samples. Our approach aims
to circumvent this requirement by approximately reconstructing
the hold-out set from partial samples alone, borrowing any exact
matrix completion algorithm (call it EXACT-COMPLETION).
This succeeds provided the underlying ground truth A∗ is
low-rank, as asserted in Assumption 1.

Our approach fundamentally differs from standard matrix
completion, since we only need to complete O(m polylog(n))
samples. Consequently, there are computational benefits in
performing matrix completion on this smaller set rather than
the whole set of samples. Our analysis below suggests that the
difference in sample set sizes is Oρ(k), which can be as high
as n

1
2−δ and hence can constitute a significant benefit.

IV. ANALYSIS

The remainder of the paper analyzes the above algorithm.
Our main theoretical result is stated in Theorem 1, which

Subroutine 2 SPECTRAL-INIT(Ŷ1, Y2, ρ, k,m)

Input: Ŷ1 – p1 approximated full samples (hold-out set)
Y2 – p2 samples with missing entries
Parameters ρ, k, m
Set L = ∅
while |L| < m do

Pick u and v from P1 at random
Construct the weighted covariance matrix M̂u,v using
samples y(i) from P2

M̂u,v ←
1

p2ρ4

p2∑
i=1

〈y(i), u〉〈y(i), v〉y(i)(y(i))>

δ1, δ2 ← top singular values
if δ1 ≥ Ω(k/m) and δ2 < O∗(k/m log n) then

z ← top singular vector
if z is not within distance 1/ log n of vectors in L even
with sign flip then

L← L ∪ {z}
end

end
end
Output: A0 ← ProjB(Ã) where Ã is the matrix whose
columns in L and B = {A : ‖A‖ ≤ 2‖A∗‖}

Subroutine 3 DESCENT-ALTMIN(Y,A0, ρ, η)

Input: Y – p samples with observed entry set Γ(i)

Initial A0 that is (δ, 2)-near to A∗

Parameters ρ, η
for s = 0, 1, . . . , T do

/* Encoding step */
for i = 1, 2, . . . , p do

x(i) ← thresholdC/2( 1
ρ (As)>y(i))

end
/* Update step */
ĝs ← 1

p

∑p
i=1(PΓ(i)(Asx(i))− y(i))sgn(x(i))>

As+1 ← As − ηĝs
end
Output: A← A(T ) as a learned dictionary

follows from an appropriate concatenation of the main results
of [10], [11], and [6].

Theorem 1. Suppose µ = O∗
( √

n
k log3 n

)
, 1
ρ − 1 ≤ k ≤

O∗( ρ
√
n

logn ). When p = Õ(max(m,n)k/ρ4), then with high
probability, Algorithm 1 recovers A∗ within column-wise
O(
√
k/n) error. The total running time is Õ(ρmn2p).

In the next lemma, we show that we can construct the hold-
out set of size at least mpolylog(n). The best available matrix
completion result requires nrpolylog(n) observed entries,
which suggests the hold-out set must be at least rpolylog(n)/ρ
partial columns. When r = O(m), we require 1/ρ factor more
partial samples than is necessary to be able to construct the
hold-out sampling set.

Lemma 1 (Theorem 1.2, [10]). Given p1 = mpolylog(n)/ρ



partial samples Y1 = [y1, y2, . . . , yp1 ] = PΓ1
(A∗X1).

With probability 1 − n−3, nuclear norm minimization re-
covers all the entries of Z1 = A∗X1 exactly. The run-
ning time is O(max(m,n)3). We dub this algorithm as
EXACT-MATRIX-COMPLETION.

Proof. We prove this result by construction. The matrix Y1 has
p1 = mpolylog(n)/ρ columns, then by the uniform sampling,
it has mnpolylog(n)/ρ observed entires, which is bigger than
rnpolylog(n)/ρ since m > r. By Assumption 5, the singular
vectors of the original matrix Z1 have incoherence parameter
µ0 = O(log n) with respect to the standard basis (as defined
therein). Apply Theorem 1.2, [10] to get the result.

Lemma 2 (Theorem 5, [6]). Suppose that the available training
dataset consists of p1 fully observed samples, together with p2

incompletely observed samples according to the sparse factor
model. Suppose µ = O∗

( √
n

k log3 n

)
, 1
ρ − 1 ≤ k ≤ O∗( ρ

√
n

logn ).
When p1 = Ω̃(m) and p2 = Ω̃(mk/ρ4), then with high
probability, Subroutine 2 returns an initial estimate A0 whose
columns share the same support as A∗ and is (δ, 2)-near to
A∗ with δ = O∗(1/ log n).

Lemma 3 (Theorem 3, [6]). Suppose that the initial estimate
A0 is (δ, 2)-near to A∗ with δ = O∗(1/ log n) and the sampling
probability satisfies ρ ≥ 1/(k+1). If Subroutine 3 is given p =
Ω̃(mk) fresh partial samples at each step and uses learning
rate η = Θ(m/ρk), then

E[‖As•i −A∗•i‖
2
] ≤ (1− τ)s‖A0

•i −A∗•i‖
2

+O(
√
k/n)

for some 0 < τ < 1/2 and s = 1, 2, . . . , T . As a corollary, As

converges geometrically to A∗ until column-wise O(
√
k/n)

error.

Provided the approximate samples Y1, we use them as the
hold-out set to perform spectral initialization and obtain a
coarse estimate A0 that is δ-close to the ground truth with
closeness δ = O∗(1/ log n). In order to establish provable
guarantees for learning the dictionary A∗, we use the results
in Lemma 2 and Lemm 3 obtained from [6].

By way of Lemma 1, we can achieve the exact recovery
of Y1 with near optimal sample complexity at the price of
running time. It it important to note that we do not need exact
recovery but can tolerate error n−1 entrywise. Lemma 4 gives
guarantee for such an error.

Let us denote u = A∗α and v = A∗α′ sampled from the
model without sub-sampling. Consider a sample with missing
entries y = A∗Γ•x

∗ under a random subset Γ ⊆ [n]. Suppose
we are given two approximation û, v̂ such that û = u+ εu and
v̂ = v + εv . Then, denote

β =
1

ρ
A∗TΓ• û, and β′ =

1

ρ
A∗TΓ• v̂

representing coarse estimates of α and α′ respectively. The
following lemma establishes the quality of these estimates
(coordinate-wise).

Lemma 4. Suppose ‖εu‖ ≤ O(n−1/4). With high probability
over the randomness in u and Γ, we have:

(a) |βi − αi| ≤ µk logn√
n

+ 2
√

1
ρn1/2 for each i = 1, 2, . . . ,m;

and
(b) ‖β‖ ≤

√
k logn
ρ + 1

ρn1/4 .

Proof. By definition of β, we have

|βi − αi| =
∣∣∣1
ρ
A∗TΓ,iu− αi +

1

ρ
A∗TΓ,iεu

∣∣∣ (2)

By Lemma 2, [6], we have∣∣∣1
ρ
A∗TΓ,iu− αi

∣∣∣ ≤ µk log n√
n

+

√
1− ρ
ρn1/2

.

The latter term is bounded by∣∣∣1
ρ
A∗TΓ,iεu

∣∣∣ ≤ 1

ρ
‖A∗Γ,i‖‖εu‖ ≤

1
√
ρ
‖εu‖ ≤

√
1

ρn1/2

since ‖A∗Γ,i‖
2 ≤ ρ+ o(ρ) and ‖εu‖ ≤ n−1/2.

Combining these two bounds, we get

|βi − αi| ≤
µk log n√

n
+ 2

√
1

ρn1/2
,

w.h.p., which is the first part of the claim.
The second part is easily bounded as follows:

‖β‖ =
1

ρ
‖A∗TΓ• (u+ εu)‖

≤ 1

ρ
‖A∗Γ•‖

(
‖A∗•U‖‖αU‖+ ‖εu‖

)
,

for U = supp(α). Then, using ‖αU‖ ≤
√
k log n w.h.p.,

‖A∗‖ ≤ O(1) and ‖εu‖ ≤ O(n−1/4), then ‖β‖ ≤√
k log n/ρ+ 1

ρn1/4 .
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