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Abstract

Collaborative learning among multiple agents
with private datasets over a communication net-
work often involves a tradeoff between commu-
nication, consensus and optimality. In this pa-
per, we build on recent algorithmic progresses
in distributed deep learning to explore various
consensus-optimality trade-offs with more com-
munication over a fixed communication topology.
We propose incremental consensus-based dis-
tributed SGD (i-CDSGD) algorithm and its mo-
mentum variant (i-CDMSGD), which involves
multiple consensus steps (where each agent com-
municates information with its neighbors) within
each SGD iteration. We support our algorithms
via numerical experiments, and demonstrate im-
provements over existing methods for collabora-
tive deep learning.

1. Introduction

Scaling up deep learning algorithms in a distributed set-
ting (LeCun et al., 2015; Recht et al., 2011; Jin et al., 2016)
is becoming increasingly critical, impacting several appli-
cations such as learning in robotic networks (Lenz et al.,
2015), the Internet of Things (IoT) (Gubbi et al., 2013; Lane
et al., 2015), and mobile device networks (Lane & Georgiev,
2015). Several distributed deep learning approaches have
been proposed to address issues such as model paral-
lelism (Dean et al., 2012), data parallelism (Dean et al.,
2012; Jiang et al., 2017), and the role of communication and
computation (Li et al., 2014; Das et al., 2016).

We focus on the constrained communication topology set-
ting where the data is distributed (so that each agent has its
own estimate of the deep model) and where information ex-
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change among the learning agents are constrained along the
edges of a given communication graph (Jiang et al., 2017;
Lian et al., 2017). In this context, two key aspects arise: con-
sensus and optimality. We refer the reader to Figure 1 for an
illustration involving 3 agents. With sufficient information
exchange, the learned model parameters corresponding to
each agent, θjk, j = 1, 2, 3 could converge to θ̂, in which
case they achieve consensus but not optimality (here, θ∗ is
the optimal model estimate if all the data were centralized).
On the other hand, if no communication happens, the agents
may approach their individual model estimates (θi∗) while
being far from consensus. The question is whether this
trade-off between consensus and optimality can be balanced
so that all agents collectively agree upon a model estimate
close to θ∗.

Our contributions: In this paper, we propose, a new algo-
rithmic frameworks for distributed deep learning that enable
us to explore fundamental trade-offs between consensus and
optimality called incremental consensus-based distributed
SGD (i-CDSGD), which is a stochastic extension of the
descent-style algorithm proposed in (Berahas et al., 2017).
This involves running multiple consensus steps where each
agent exchanges information with its neighbors within each
SGD iteration. Specifically, we 1) propose i-CDSGD and
show the convergence of i-CDSGD (Theorems 1 & 2) for
strongly convex and non-convex objective functions; 2) em-
pirically demonstrate that i-CDMSGD (the momentum vari-
ant of i-CDSGD) can achieve similar (global) accuracy as
the state-of-the-art with lower fluctuation across epochs as
well as better consensus.

2. Problem Formulation

We consider the standard unconstrained empirical risk mini-
mization (ERM) problem typically used in machine learning
problems (such as deep learning):

min
1

n

n∑
i=1

f i(θ), (1)

where θ ∈ Rd denotes the parameter vector of interest,
f : Rd → R denotes a given loss function, and f i is the
function value corresponding to a data point i. Our focus
is to investigate the case where the ERM problem is solved
collaboratively among a number of computational agents.
In this paper, we are interested in problems where the agents
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Figure 1. A closer look at the optimization updates in distributed
deep learning: Blue dots represent the current states (i.e., learned
model parameters) of the agents; green dots represent the individ-
ual local optima (θi∗), that agents converge to without sufficient
consensus; the purple dot (θ∗) represents the ideal optimal point
for the entire agent population; another purple dot θ̂ represents a
possible consensus point for the agents which is far from optimal;
blue and red curves signify the convergence trajectories with differ-
ent step sizes; the green dashed circles indicate the neighborhoods
of θ∗ and θ̂, respectively; d2 represents the consensus bound/error
and d1 represents the optimality bound/error.

exhibit data parallelism, i.e., they only have access to their
own respective training datasets. However, we assume that
the agents can communicate over a static undirected graph
G = (V, E), where V is a vertex set (with nodes correspond-
ing to agents) and E is an edge set. Throughout this paper
we assume that the graph G is connected.

Let Dj , j = 1, . . . , n denote the subset of the training data
(comprising nj samples) corresponding to the jth agent such
that

∑N
j=1 nj = n, where N is the total number of agents.

With this formulation, and since f(θ) =
∑N
j=1 fj(θ), we

have the following (constrained) reformulation of (1):

min
N∑
j=1

∑
i∈Dj

f ij(θ
j), s.t. θj = θl ∀(j, l) ∈ E , (2)

Equivalently, the concatenated form of the above equation
is as follows:

minF(Θ) :=

N∑
j=1

∑
i∈Dj

f ij(θ
j), s.t. (Π⊗ Id)Θ = Θ, (3)

where Θ := [θ1; θ2; . . . ; θN ] ∈ RdN , Π ∈ RN×N is the
agent interaction matrix with its entries πjl indicating the
link between agents j and l, Id is the identity matrix of
dimension d× d, and ⊗ represents the Kronecker product.

Definition 1. A function f : Rd → R is said to be H-
strongly convex, if for all x, y ∈ Rd, we have f(y) ≥ f(x)+
∇f(x)T (y − x) + H

2 ‖y − x‖
2; it is said to be γ-smooth

if we have f(y) ≤ f(x) +∇f(x)T (y − x) + γ
2 ‖y − x‖

2,
where ‖ · ‖ represents the Euclidean norm; it is said to be
coercive if it satisfies: c(x)→∞ when ‖x‖ → ∞.

Assumption 1. The objective functions fj : Rd → R are
assumed to satisfy the following conditions: a) each fj is
γj-smooth; b) each fj is proper (not everywhere infinite)
and coercive.

Assumption 2. The interaction matrix Π is normalized to
be doubly stochastic; the second largest eigenvalue of Π
is strictly less than 1, i.e., λ2 < 1, where λ2 is the second
largest eigenvalue of Π. If (j, l) /∈ E , then πjl = 0.

We will solve (2) in a distributed and stochastic manner.
For the formulation in (2), the state-of-the-art algorithm is
a method called consensus distributed SGD, or CDSGD,
recently proposed in (Jiang et al., 2017). This method esti-
mates θ according to the update equation:

θjk+1 =
∑

l∈Nb(j)

πjlθ
l
k − αgj(θ

j
k) (4)

where Nb(j) indicates the neighborhood of agent j, α is
the step size, gj(θ

j
k) is the (stochastic) gradient of fj at θjk,

implemented by drawing a minibatch of sampled data points.
More precisely, gj(θ

j
k) = 1

b′

∑
q′∈D′ ∇fq

′

j (θjk), where b′ is
the size of the minibatch D′ selected uniformly at random
from the data subset Dj available to Agent j.

3. Proposed Algorithm

State-of-the-art algorithms such as CDSGD alternate be-
tween the gradient update and consensus steps. We propose
a natural extension where one can control the emphasis on
consensus relative to the gradient update and hence, leads
to interesting trade-offs between consensus and optimality.

Increasing consensus. Observe that the concatenated form
of the CDSGD updates, (4), can be expressed as

Θk+1 = (Π⊗ Id)Θk − αg(Θk).

If we perform τ consensus steps interlaced with each gradi-
ent update, we can obtain the following concatenated form
of the iterations of the parameter estimates:

Θk+1 = (Πτ ⊗ Id)Θk − αg(Θk) (5)

where, g(Θk) =

[
gT1 (θ1k), gT2 (θ2k), . . . , gTN (θNk )

]T
. We

call this variant incremental consensus-based distributed
SGD (i-CDSGD) which is detailed in Algorithm 1. Note,
in a distributed setting, this algorithm incurs an additional
factor τ in communication complexity. We next present the
pseudo-code of i-CDSGD shown in Algorithm 1.

Tools for convergence analysis. We now analyze the con-
vergence of the iterates {θjk} generated by our algorithm..
Specifically, we identify an appropriate Lyapunov function
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Algorithm 1 i-CDSGD/i-CDMSGD

1: Initialization: θj0, v
j
0, j = 1, 2, ..., N , α, N , τ , m, Π

2: Distribute the training data set to N agents
3: for each agent do
4: Randomly shuffle each data subset
5: for k = 0 : m do
6: t = 0
7: for j = 1, ..., N do
8: θjt = θjk
9: vjt = vjk{for i-CDMSGD}

10: end for
11: while t ≤ τ − 1 do
12: for j = 1, ..., N do
13: θjt+1 =

∑
l∈Nb(j) πjlθ

l
t{Incremental Con-

sensus}
14: vjt+1 =

∑
l∈Nb(j) πjlv

l
t{for i-CDMSGD}

15: end for
16: t = t+ 1
17: end while
18: θ̂ = θjt
19: θjk+1 = θ̂ − αgj(θjk)
20: For i-CDMSGD:
21: v̂ = vjt
22: vjk+1 = θ̂ − θjk + µv̂ − αgj(θjk)

23: θjk+1 = θjk + vjk+1

24: end for
25: end for
(that is bounded from below) for each algorithm that de-
creases with each iteration, thereby establishing conver-
gence. In our analysis, we use the concatenated (Kronecker)
form of the updates. For simplicity, let P = Π ⊗ Id ∈
RNd×Nd.

We begin the analysis for i-CDSGD by constructing a Lya-
punov function that combines the true objective function
with a regularization term involving a quadratic form of
consensus as follows:

V (Θ) := F(Θ) +
1

2α
ΘT (INd −Pτ )Θ (6)

It is easy to show that
∑N
j=1 fj(θ

j) is γm := maxj{γj}-
smooth, and that V (Θ) is γ̂-smooth with γ̂ := γm +
α−1λmax(INd − Pτ ) = γm + α−1(1 − λτN ). Likewise,
it is easy to show that

∑N
j=1 fj(θ

j) is Hm := minj{Hj}-
strongly convex; therefore V (Θ) is Ĥ-strongly convex with
Ĥ := Hm+ (2α)−1λmin(INd−Pτ ) = Hm+ (2α)−1(1−
λτ2). We also assume that there exists a lower bound Vinf for
the function value sequence {V (Θk)},∀k. When the objec-
tive functions are strongly convex, we have Vinf = V (Θ∗),
where Θ∗ is the optimizer.

Due to Assumptions 1 and 2, it is straightforward to obtain
an equivalence between the gradient of Eq. 6 and the update

law of i-CDSGD. Rewriting (5), we get:

Θk+1 = PτΘk − αg(Θk) (7)

Therefore, we obtain:

Θk+1 = Θk −Θk + PΘk +−αg(Θk)

= Θk − α(g(Θk) +
1

α
(INd −Pτ )Θk)

(8)

The last term in (8) is precisely the gradient of V (Θ). In
the stochastic setting, g(Θk) can be approximated by sam-
pling one data point (or a mini-batch of data points) and the
stochastic Lyapunov gradient is denoted by S(Θk),∀k.

For analysis, we require a bound on the variance of the
stochastic Lyapunov gradient S(Θk) such that the vari-
ance of the gradient noise1 can be bounded from above.
The variance of S(Θk) is defined as: V ar[S(Θk)] :=
E[‖S(Θk)‖2]−‖E[S(Θk)]‖2. The following assumption is
standard in SGD convergence analysis, and is based on (Bot-
tou et al., 2016).

Assumption 3. a) There exist scalars r2 ≥ r1 > 0
such that ∇V (Θk)TE[S(Θk)] ≥ r1‖∇V (Θk)‖2 and
‖E[S(Θk)]‖ ≤ r2‖∇V (Θk)‖ for all k ∈ N; b) There ex-
ist scalars B ≥ 0 and BV ≥ 0 such that V ar[S(Θk)] ≤
B + BV ‖∇V (Θk)‖2 for all k ∈ N; c) there exists a con-
stant G > 0 such that ‖∇V (Θk)‖ ≤ G,∀Θk ∈ RNd.

Assumption 3 implies that the second moment of S(Θk) can
be bounded above as E[‖S(Θk)‖2] ≤ B+Bm‖∇V (Θk)‖2,
where Bm := BV + r22 ≥ r21 > 0.

4. Main Results

This section presents the main results by analyzing the
convergence properties of the i-CDSGD for both strongly
convex and non-convex objective functions: the consensus
bound and the optimality bound.

Proposition 1. (Consensus with fixed step size, i-CDSGD)
Let Assumptions 1, 2, 3 hold. The iterates of i-CDSGD
(Algorithm 1) satisfy the following inequality ∀k ∈ N, when
α satisfies 0 < α ≤ r1−(1−λτN )Bm

γmBm
,

E[‖θjk − sk‖] ≤
α
√
B +BmG2

1− λτ2
(9)

where sk = 1
N

∑N
j=1 θ

j
k.

Theorem 1. (Convergence of i-CDSGD in strongly convex
case) Let Assumptions 1, 2 and 3 hold. When the step size

1As our proposed algorithm is a distributed variant of SGD, the
noise in the performance is caused by the random sampling (Song
et al., 2015).
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Figure 2. Performance of different algorithms with unbalanced
sample distribution among agents. (Dashed lines represent test
accuracy & solid lines represent training accuracy.)

satisfies 0 < α ≤ r1−(1−λτN )Bm
γmBm

, the iterates of i-CDSGD
(Algorithm 1) satisfy the following inequality ∀k ∈ N:

E[Dk] ≤ Ck−11 D1 + C2

k−1∑
q=0

Cq1 (10)

whereDk = V (Θk)−V ∗, C1 = 1−(αHm+ 1
2 (1−λτ2))r1,

C2 =
(α2γm+α(1−λτN ))B

2 .

In a conventional manner, to eliminate the negative effect
of “noise” caused by the stochastic gradients, a diminish-
ing step size is used. However, in this context, it can be
observed from Theorem 1 that a constant step size results
in the convergence to a neighborhood of the local mini-
mum. We claim that using a constant step size can lead to a
linear convergence rate instead of a sublinear convergence
rate. Although we show the convergence for strongly con-
vex objectives, we note that objective functions are highly
non-convex for most deep learning applications. While con-
vergence to a global minimum in such cases is extremely
difficult to establish, we prove that i-CDSGD still exhibits
weaker (but meaningful) notions of convergence.

Theorem 2. (Convergence to the first-order stationary point
for non-convex case of i-CDSGD) Let Assumptions 1, 2,
and 3 hold. When the step size satisfies 0 < α ≤
r1−(1−λτN )Bm

γmBm
, the iterates of i-CDSGD (Algorithm 1) sat-

isfy the following inequality ∀K ∈ N:

E[
1

K

K∑
k=1

‖∇V (Θk)‖2] ≤ (γmα+ (1− λτN ))B

r1

+
2(V (Θ1)− Vinf)

Kr1α
.

(11)

5. Experimental Results

We validate our algorithms via several experimental results
using the CIFAR-10 image recognition dataset (with stan-
dard training and testing sets) with a deep convolutional
neural network (CNN) model The mini-batch size is set

Figure 3. The accuracy percentage difference between the best and
the worst agents for different algorithms with unbalanced and
balanced sample distribution among agents.

to 512, and step size is set to 0.01 in all experiments. We
use a sparse network topology with 5 agents. We use both
balanced and unbalanced data sets for our experiments. In
the balanced case, agents have an equal share of the entire
training set. However, in the unbalanced case, agents have
(randomly selected) unequal parts of the training set while
making sure that each agent has at least half of the equal
share amount of examples.

Performance of algorithms. While the experiments were
performed for both momentum based and non-momentum
based methods, due to space constraints we show the re-
sults of the momentum variant, which provides key insights
to the analysis performed in the earlier section. In Fig-
ure 2, we compare the performance of i-CDMSGD with
state-of-the art techniques such as CDMSGD and Federated
Averaging using an unbalanced data set. All algorithms
were run for 3000 epochs. Observing the average accuracy
over all the agents for both training and test data, we note
that i-CDMSGD can converge as fast as CDMSGD with
lesser fluctuation in the performance across epochs and with
slightly better performance eventually. Both the algorithms
significantly outperform Federated Averaging in terms of
average accuracy.

Degree of Consensus. One of the main contribution of our
paper is to show that one can control the degree of consen-
sus while maintaining average accuracy in distributed deep
learning. We demonstrate this by observing the accuracy
difference between the best and the worst performing agents
(identified by computing the mean accuracy for the last 100
epochs). As shown in Figure 3, the degree of consensus is
similar for all three algorithms for balanced data set, with
i-CDMSGD performing slightly better than the rest and Fed-
erated Averaging performing the worst. However, for an
unbalanced set, i-CDMSGD performs significantly better
compared to CDMSGD and CDMSGD is the worst among
all. We do not compare these results by comparing τ as
the doubly stochastic agent interaction matrix for the small
agent population becomes stationary very quickly with a
very small value of τ . However, this will be explored in our
future work with significantly bigger networks.
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6. Conclusion and Future Work
For investigating the trade-off between consensus and op-
timality in distributed deep learning with constrained com-
munication topology, this paper presents a new algorithm,
called i-CDSGD. We show the convergence properties for
the proposed algorithm and the relationships between the
hyperparameters and the consensus & optimality bounds.
Theoretical and experimental comparison with the state-of-
the-art algorithm called CDSGD, shows that i-CDMSGD
can improve the degree of consensus among the agents while
maintaining the average accuracy especially when there is
data imbalance among the agents. Future research directions
include learning with non-uniform data distributions among
agents and time-varying networks.
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