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ABSTRACT
Localizing fault lines and surfaces in seismic subsurface images is a
daunting challenge. Existing state-of-the-art approaches usually in-
volve visual interpretation by an expert, but this is time-consuming,
expensive and error-prone. In this paper, we propose some initial
steps towards a new algorithmic framework for automatic fault lo-
calization. The core of our approach is a deterministic model for
2D images that we call the Constrained Generalized Earth Mover’s
Distance (CGEMD) model. We propose an algorithm that returns
the best approximation in the model for any given input 2D image
X; the output of this algorithm is then post-processed to reveal the
locations of the faults in the image. We demonstrate the validity of
this approach on a number of synthetic and real-world examples.

Index Terms— Sparse recovery, Earth Mover’s Distance, seis-
mic signal processing, min-cost flows.

1. INTRODUCTION

A key goal in seismic data processing and interpretation is the detec-
tion of geological features in images. A particularly interesting class
are faults, or shear-like discontinuities. Analysis of subsurface faults
can convey a wealth of spatio-temporal information about geologi-
cal events. Therefore, there is a strong practical need to accurately
localize faults in a seismic image.

However, fault localization can be a daunting challenge. Seis-
mic images are typically contaminated with noise, complicating the
detection of even strong discontinuities. Fault lines (and surfaces)
are also of varied shapes and sizes, and can themselves exhibit un-
predictable discontinuities. One approach to fault localization is to
perform visual inspection and interpretation by an expert. However,
this procedure can be time-consuming, expensive, subjective, and
error-prone; see Section 2.1 for a brief review of some other existing
approaches.

In this paper, we propose some initial steps towards a new al-
gorithmic framework for automatic fault localization in seismic im-
ages. The core of our framework is a deterministic model for 2D
images, called the Constrained Generalized Earth Mover’s Distance
(CGEMD) model. A similar signal model was recently proposed and
analyzed in [1, 2]. The definition of this model consists of two main
ingredients. The first ingredient is sparsity, a notion that has gained
significant traction in signal processing applications over the last few
years. In the seismic imaging context, we leverage this notion to
model the fact that a subsurface image is likely to consist of only a
small number of strong reflectors. The second ingredient is the clas-
sical Earth Mover’s Distance (EMD), a metric commonly used to
compare probability distributions. We leverage this notion to model
the fact that the profiles of subsurface reflectors are mostly contin-
uous, except at the locations of the faults. Our proposed model is

flexible enough to include 2D seismic images with even non-straight
(“wiggly”) and broken fault lines.

Our overall algorithm proceeds in two stages. First, given an
arbitrary image X , we find a near-optimal approximation of X that
does indeed lie in the CGEMD model. The algorithm proposed in
this paper is a generalized (and computationally more efficient) ver-
sion of our previous algorithm [1]. It is also supported by rigorous
stability guarantees. We show that the model projection can be dis-
covered by an iterative algorithm that solves a small number of min-
cost flow problems over a specially defined graph. Each intermediate
problem can be solved using existing tools from graph optimization,
and therefore the overall model approximation ofX can be obtained
efficiently in near-linear time. Second, we post-process the support
(i.e., the locations of the nonzeros) in the derived model approxi-
mation of X to robustly localize the faults. This can again be done
in time linear in the size of the support. An easy modification of
this post-processing step enables an extension of this approach to
3D seismic images.

We demonstrate, via numerical experiments, the advantages of
the CGEMD model and the associated approximation algorithm in
the context of automatic fault detection. We test our approach on
a number of example images, both in the presence and absence of
heavy amounts of noise. Our simulations suggest that our proposed
approach succeeds even for images with a SNR equal to -5 dB. A
synthetic test example is displayed in Fig. 1; see Section 4 for several
more synthetic and real-world test images.

2. BACKGROUND

2.1. Related work in seismic fault detection

Considerable effort has been invested into discovering automatic
methods for fault surface extraction; see, for example, the recent
article [3] and references therein. Some example approaches include
texture classification approaches [4], coherence-based methods [5],
filtering-based methods [6], and greedy optimization algorithms to
extract dominant paths in seismic images [7]. Most of these methods
do not seem to work well in the presence of high levels of noise.

To mitigate this, one option is to run a traditional denois-
ing procedure on the seismic images, prior to fault extraction.
Traditional image denoising approaches (e.g. PDE-based image
smoothing) tend to suppress fault-like features; therefore, special
fault-preserving diffusion algorithms have been proposed [8].

An alternate class of approaches possesses a semi-automatic fla-
vor: the available data is pre-processed using any of a number of
techniques, and the processed data is presented to a human expert
using an advanced visualization method. The expert then manually
labels the faults in the image [9]. Semi-automatic methods seem
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Fig. 1. Automatic fault localization in a seismic image. (left) We
construct an original (test) image comprising a small number of sub-
surface layers that are subjected to a single linear shear-like fault at
a particular angle. (center) We contaminate this image with a high
amount of noise, equivalent to a SNR = -5 dB, and present the noisy
image as input to our fault localization algorithm. (right) Despite
the high level of noise, our algorithm is able to locate the fault as
indicated by the black dotted line.

to be the prevalent approach in practice; however, they are time-
consuming, expensive, subjective, and error-prone. Below, we de-
scribe a novel fully automatic computational approach for fault ex-
traction that can potentially be integrated into larger semi-automatic
approaches.

2.2. Structured Sparsity

A key ingredient in our proposed signal model is the notion of spar-
sity. A signal x ∈ Rn is said to be k-sparse in an orthonormal basis
Ψ if at most k ≤ n coefficients of the basis expansion α = ΨTx
are nonzero. In this paper, we assume that the basis Ψ is the identity
matrix. The support of x (denoted by supp(x) ⊆ [n]) is defined as
the set of indices corresponding to the nonzero entries of x. This can
equivalently be represented by a binary vector, s(x) ∈ {0, 1}n, with
at most k ones.

In many practical situations, it is reasonable to assume the avail-
ability of additional information about the structure of the nonzeros
in a k-sparse signal x. As an example, consider the class of one-
dimensional piecewise smooth signals. It is well known that such
signals are sparse in the wavelet basis; moreover, the wavelet co-
efficients lie approximately on a rooted connected tree [10]. As an-
other example, consider a push-to-talk communications signal where
the information transmission is “bursty”, i.e., transmission happens
infrequently and in short windows. Such signals are sparse in the
identity basis; moreover, the nonzeros occur in blocks. Refer to the
survey [11] for several more examples of structured sparsity models.

In all above cases, we are interested in k-sparse signals x with
only a small number of permitted configurations of the support
supp(x). We call such a set of signals a model Mk and formally
define it as a set of allowed supports Mk = {Ω1,Ω2, . . . ,Ωak}.
As in the general k-sparse case, given a signal x, we often seek a
support Ω such that Ω ∈ Mk (hence xΩ ∈ Mk), and ‖x − xΩ‖2
is minimized. We can analogously define a model projection algo-
rithm as a procedure M(x, k) which returns the support of the best
k-term approximation of a given signal under the model Mk, i.e.,
Ω = M(x, k).

3. FAULT LOCALIZATION FRAMEWORK

Below, we interpret the signal x ∈ Rn as a matrix X ∈ Rh×w with
n = hw. For such a matrix, we define supp(X) ⊆ [h]× [w] as the
set of nonzero entries accordingly. Given the support of a matrix Ω,
we define the support of a column as col-supp(Ω, c) = {r | (r, c) ∈
Ω}.

3.1. Signal Model

The core ingredient of our signal model is the classical Earth
Mover’s Distance (EMD), commonly used as a metric between prob-
ability distributions and successfully applied to several problems in
computer vision and image retrieval [12]. We define a generalized
notion of the EMD that will be suitable for our purposes.

Definition 1 (Generalized EMD). The Generalized EMD (GEMD)
of two index sets P,Q ⊆ [h] with |P | = |Q| = s is defined as:

GEMDf (P,Q) = min
π:P→Q

∑
p∈P

f(|p− π(p)|) ,

where π ranges over all one-to-one mappings from P to Q and f is
a function from {0, 1, . . . , h} to R.

Definition 2 (Generalized EMD of a matrix support). Let Ω ⊆ [h]×
[w] be the support of a matrix with exactly s-sparse columns, i.e.,
|col-supp(Ω, c)| = s for c ∈ [w]. Then the GEMD of Ω is defined as

GEMDf (Ω) =

w−1∑
c=1

GEMDf (col-supp(Ω, c), col-supp(Ω, c+ 1)) ,

where f is again a function from [s] to R.

Definition 3 (Maximum support distance). Let P and Q be two
index sets with |P | = |Q| = s. Moreover, let (p1, . . . , ps) and
(q1, . . . , qs) be the elements of P and Q in ascending order. Then
the maximum support distance of P and Q is

MSD(P,Q) = max
i∈[s]
|pi − qi| .

As before, we extend this definition to the support of a matrix with
exactly s-sparse columns, Ω ⊆ [h]× [w]:

MSD(Ω) =

w−1∑
c=1

MSD(col-supp(Ω, c), col-supp(Ω, c+ 1)) .

Definition 4 (Constrained Generalized EMD model). The Con-
strained Generalized EMD model (CGEMD) is the structured spar-
sity modelMk,B,f,∆ defined by the set of supports

Mk,B,f,∆ = {Ω ⊆ [h]× [w] | GEMDf (Ω) ≤ B
and MSD(Ω) ≤ ∆

and |col-supp(Ω, c)| = s for c ∈ [w]} .

The CGEMD model is a generalization of the Constrained EMD
model introduced and analyzed in [1, 2]. For f(x) = x and ∆ = h,
the CGEMD model is identical to the EMD model. We refer the
reader to these two papers for a more detailed discussion of the EMD
model. Here, we focus on the two main modifications.

We introduce the maximum support distance in order to de-
crease the computational complexity of our model-approximation
algorithm. The algorithm is based on a reduction to the min-cost



flow problem (see section 3.2) and the size of the underlying graph
is O(wh2) for the CEMD model. For the CGEMD model, we can
run the same algorithm on a graph of size O(wh∆). Since the sig-
nals occuring in some applications like fault detection usually have
only small variations in the support locations, we can choose a value
∆ � h and thereby significantly increase the performance of the
model-approximation algorithm.

Associating an arbitrary cost with the standard EMD-distance
via the cost function f allows us to more carefully model the under-
lying problem. In the context of fault detection, we can adjust the
costs so that small variations in the support become cheaper, there-
fore making the subsequent fault detection step more robust to small
variations in the fault lines.

3.2. Algorithm

Our overall technique works in two stages. In the first stage, given an
arbitrary seismic image, we perform a model-approximation step in
order to extract the best s paths from left to right in the image, corre-
sponding to the dominant subsurface layers. In the second stage, we
post-process the s paths to localize the faults. For clarity, we present
the two stages as separate algorithms.

3.2.1. Model Approximation

In order to find a good projection of an arbitrary signal into the
CGEMD model, we use the characterization of the EMD as a
min-cost matching and embed the approximation problem into a se-
quence of min-cost flow instances. The basic reduction is described
in [1]. We need the following modifications to the flow network:
• Instead of fully connected layers, we only connect each node

to the nodes in the next layer with support distance at most
∆. Hence the out-degree of each node is at most 2∆ + 1.

• We modify the edge costs to reflect the GEMD: the cost of an
edge from vi,j to vk,j+1 is λf(|i− k|).

Figure 2 illustrates the above construction with an example.
Since solving a min-cost flow problem on GX,k,f,∆,λ still cor-
responds to the optimization problem maxΩ∈Mk,nk,f,∆‖XΩ‖22 +
λGEMDf (Ω), we can perform a binary search over λ to find a suit-
able trade-off between the signal approximation and GEMD terms.
We refer the reader to [1, 2] for the full model-projection algorithm
and corresponding correctness proofs.

For solving the embedded min-cost flow problems, we use a ca-
pacity scaling algorithm because the per-column sparsity s, which
is also the capacity at the source in the network, is typically small.
Each scaling step can be implemented with a shortest path search,
resulting in a total running time of O(tsn∆ logn), where t is the
number of calls to MINCOSTFLOW. We use a stopping criterion
based on the number of iterations t in order to get a controllable
running time.

Algorithm 1 Fault extraction algorithm
function FAULTEXTRACT(Ω, α)

L← ∅
for i = 1 to k do

pi ← ith path in Ω
m← median y-displacement in pi
for Xj ∈ pi do

if y-displacement in Xj > m+ α then
L← L ∪Xj

Return L
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Fig. 2. A signal X with the corresponding flow network GX,k,f,∆,λ
for f(x) = x2 and ∆ = 2. The node costs are the negated, squared
coefficients of the corresponding signal components. All capacities
in the flow network are 1. The edge costs are given by λf(x), where
x is the vertical distance between the start and end node of an edge
(for instance, the edge cost 4λ comes from 22λ because the edge
connects two nodes with vertical distance 2). Most edge costs are
omitted for clarity. Note that due to the choice of ∆ = 2, there is
no edge between the top left and bottom right vertices (and also the
bottom left and top right vertices).

3.2.2. Fault Extraction

The model-projection algorithm returns a binary matrix Ω ∈
{0, 1}h×w that comprises the support of the (near)-optimal approxi-
mation of the input image X in the CGEMD model. Essentially, the
matrix Ω consists of k paths from left to right, with a global spatial
displacement no greater than B. Furthermore, the local (column-
wise) displacement of each path is also limited by the maximum
support distance ∆.

For simplicity, consider the path traced by any one of these k
paths. This path (typically) would coincide with one of the k dom-
inant reflectors in the subsurface. Therefore, this path is expected
to be mostly continuous, except where the subsurface reflector in-
tersects with the fault profile. At these precise locations, the path
will experience a jump in the vertical direction by several pixels. If
the fault profile is significantly large, such a vertical jump can be
observed at paths corresponding to several flows.

This intuition motivates an algorithm to identify the fault loca-
tions from the optimal support. The algorithm simply returns a list
of 2D image locations where the vertical jump of the corresponding
flow path differs from the median vertical displacement of all the
flows combined by at least a scalar parameter α. The optimal choice
of α is a function of the maximum vertical displacement exacted by
the fault (sometimes referred to in the literature as the fault throw) as
well as the median incline of each of the subsurface reflectors, and
will vary from dataset to dataset.

Once the complete list of potential fault locations is identified,
the actual fault profiles are reconstructed using standard interpola-
tion techniques. The simplest option is to perform piecewise linear
interpolation between the labeled locations, but more sophisticated
interpolation schemes are also possible. For instance, prior to the in-
terpolation, a simple outlier rejection can be achieved by removing
spurious 2D locations that are spatially isolated from all other identi-
fied locations. This (optional) step offers some amount of robustness
in the final solution. The entire procedure is summarized as Alg. 1.
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Fig. 4. Results of our fault localization algorithm on a real-world seismic dataset. (a) Results on a 2D section of the Forcados-Yokri
dataset [13]. Manual labeling of the fault present in this section tends to be error-prone. Instead, our algorithm is able to approximate the fault
well. (b) Results on a 3D section of the same dataset. Applying our algorithm frame-by-frame yields favorable results.
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Fig. 3. Automatic fault localization in a seismic image, challenging
case. (left) We construct an original (test) image comprising a small
number of nonlinear subsurface layers (strata) that are subjected to
a single linear shear-like fault at a particular angle. (center) we con-
taminate this image with a moderate amount of noise, equivalent to
an SNR = 0dB, and present the noisy image as input to our fault
localization algorithm. (right) Our algorithm is able to approximate
the location of the fault.

4. NUMERICAL EXPERIMENTS

We test our CGEMD-based fault localization approach on some rep-
resentative synthetic and real-world seismic images. Our algorithm
is computationally very efficient; specifically, for each of the test
cases below, the algorithm took only a few seconds to execute in
MATLAB.

Figure 1 (in Section 1) illustrates a challenging test case. The
test image of size 50 × 25 consists of k = 5 strata and a linear
sloping fault. However, in this case the input to the algorithm is
corrupted with a heavy amount of Gaussian noise (the SNR in this
case equals -5dB). Due to the high noise, it is very difficult to lo-
calize the fault, even via visual inspection (or “eyeballing”) of the
image. Instead, we run our model-projection algorithm on the noisy
image with parameters k = 5 and B = 50; identify the locations at
which the flow jumps by a particular threshold parameter α (equal
to 0.5∆); and interpolate these locations via straight line segments.
These line segments are overlaid onto the input image for visual-
ization purposes. We observe that our proposed approach is able to
successfully localize the fault.

Figure 3 demonstrates that our algorithm succeeds even in some-

what more complicated situations where the sparse subsurface lay-
ers are nonlinear and discontinuous, and the overall image is once
again contaminated with noise (the SNR in this case equals 0dB).
We use parameters k = 4 and B = 200 for this particular example.
Since our signal model only constrains the overall cumulative EMD,
our approximation algorithm is robust to wiggles in the strata and/or
faults and approximates the true location of the fault well.

Figure 4 demonstrates the performance of our algorithm on a
real-world data set. The Forcados-Yokri data set consists of a 3D
seismic data cube that has been manually annotated at the loca-
tions of the significant faults [13]. As our first test case, we use
a simple 75 × 75 2D section of this dataset that contains a single
fault. First, we run the model-projection algorithm with parameters
k = 15, B = 150, and locate the points where there are significant
jumps in the flows. Next, in order to eliminate spurious outliers, we
discard all isolated identified fault locations, i.e., identified locations
that are not in close proximity with any other identified location. The
remaining locations are overlaid onto the input image for visualiza-
tion purposes. From Fig. 4(a), we observe that our overall method is
able to successfully reconstruct the curved structure of the fault. In
fact, in this particular case the manual labeler seems to have missed
the curve near the top of the image.

Finally, Fig. 4(b) displays the result of our algorithm on a 75 ×
75 × 50 3D section of this dataset that contains a (roughly) planar
fault. To obtain this result, we simply run the 2D version of our
overall algorithm frame-by-frame, and stack the results to obtain an
initial estimate of the 3D fault profile. Next, we run a simple 3D-
median filtering algorithm to enforce consistency, as well as reject
outliers, across estimates obtained in successive frames. As visually
evident from Fig. 4(b), the final result well-approximates the loca-
tions of the faults identified by the manual process. It is likely that
sophisticated methods of outlier rejection and/or robust interpolation
can yield even better results, but we do not pursue this direction here.

Several avenues for improvement remain. The performance of
the algorithm (crucially) depends on the input sparsity parameter (k)
and the EMD-budget parameter (B), and a fully automatic method
to deduce these parameters would be of considerable interest. Also,
our algorithm is suitable for seismic images with a small number of
subsurface layers, but an interesting question remains: what happens
when the images are not sparse? Finally, given a series of colocated
sections automatically marked with faults via our algorithm, how
can we reconcile different estimates in order to produce geologically
consistent identifications of the fault locations? We defer such chal-
lenging questions to future work.
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