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ABSTRACT

Current algorithms for low-rank matrix completion often suffer from
scalability issues — both in terms of memory as well as running
time — when presented with very large datasets. In this paper, we
introduce new parallel computing heuristics that can greatly accelerate
matrix completion algorithms when used in GPU-based computing
environments. Our heuristics enable speeding up popular algorithms
for nonlinear matrix completion on standard real-world test datasets
by orders of magnitude, while being highly memory-efficient.

1. INTRODUCTION

Motivation. The problem of recovering a data matrix from a small
sample of its entries, also called the matrix completion problem, arises
in several real-world applications including content recommender
systems, sensor localization, and system identification.

For real-world applications, this problem poses several challenges.
First, the application of standard approaches for matrix completion to
the problem of content recommendation is not seamless. The matrix
completion literature assumes that the entries of the matrix are real-
valued; however, the ratings provided by users of content providers
are almost always “quantized” to some finite set of integers. To
remedy this, the use of 1-Bit matrix completion [1] has been shown to
outperform contemporary matrix completion methods by intrinsically
modeling the ratings as non-numeric entities.

Second, standard matrix completion algorithms do not leverage any
“side-information” known about the rows (users) and items (columns)
of a given matrix. To remedy this, a new framework known as
inductive matrix completion (IMC) [2] has been proposed. However,
incorporating this extra information expands the memory footprint of
the associated algorithms.

In both of the above situations, current state-of-the-art methods suffer
from scalability issues. For example, in collaborative filtering ap-
plications used by content providers such as Netflix or Amazon, the
number of users and/or items can both be in the order of hundreds
of millions. In order to perform efficient matrix completion for very
large datasets, parallelization is paramount. The question to be asked
is: how best to leverage modern parallel computing environments for
matrix completion methods?

Our contributions. In this paper, we introduce two new parallel
computing heuristics for solving matrix completion problems.

Our heuristics, that we call GPUFISH and IMCFISH, are modular,
tunable, and leverage the massive number of multiple concurrent ker-
nel executions possible on a modern GPU. As stylized applications,
we demonstrate how to adapt GPUFISH to solve the 1-bit matrix

completion problem where the matrix observations are binary [1].
Our results demonstrate that we achieve a 150x speedup over existing
serial algorithms, while maintaining comparable prediction accuracy.
Our work demonstrates that a standard workstation equipped with a
single GPU can be effectively deployed to solve very large scale ma-
trix completion problems. We also demonstrate the use of IMCFISH
to solve inductive matrix completion problems. For very large IMC
problems IMCFISH is able to obtain competitive solutions while only
having access to a fraction of the dataset.

Our work is open-source and a CUDA implementation of our pro-
posed heuristics is available at https://github.com/cghubbard/gpu-fish.

Our techniques. The algorithmic core of GPUFISH is an optimized
implementation of the JELLYFISH framework [3]. Similar to the ap-
proach proposed in [3], our approach also employs a randomized, in-
cremental stochastic gradient descent approach. However, GPUFISH
generalizes the previous approach in two distinct ways: (i) GPUFISH
enables the user to transparently adapt to domain-dependent prob-
lems, thus extending the matrix completion framework to numeric
as well as non-numeric observations. (ii) GPUFISH enables the user
to leverage the full parallel processing power of a GPU, and can
concurrently process hundreds of available samples in training.

For inductive matrix completion (IMC) problems, a straightforward
application of the above parallelization scheme does not work. In-
stead, our proposed heuristic IMCFISH uses a partial gradient de-
scent scheme that enables parallel updates in a manner similar to
JELLYFISH. This gradient descent scheme relies on a novel data parti-
tioning approach that we call striping. Together with the paralleliza-
tion heuristics described above, this leads to improved performance.

Relation to prior work. The recent, large body of work in matrix
completion has shown that as long as the matrix M possesses suf-
ficiently low rank, we can recover the missing entries of M via a
convex optimization procedure [4–7]. However, convex optimization
approaches are not particularly suitable for matrices larger than a few
hundred rows/columns. To resolve this, a non-convex, incremental
heuristic for matrix completion was introduced in [3].

The problem of completing a matrix whilst taking into account the
available rows/column features is known as inductive matrix comple-
tion (IMC). Theory, applications, and expansions of IMC are explored
in [2, 8–10]. However, to our knowledge there have been no works
that explore the effect of parallelization for IMC algorithms.

Finally, a very recent work [11] advocates a new algorithm for GPU-
based matrix completion based on cyclic coordinate descent (CCD).
Our method differs in two respects: we consider the more complicated
problems of 1-bit matrix completion as well as inductive matrix
completion, and our update rules involve large portions of the matrix
variables (as opposed to individual coordinates). Due to space (and
time) constraints, we defer a thorough comparison to future work.



2. PARALLEL 1-BIT MATRIX COMPLETION

As our first application, we describe an instantiation of GPUFISH
for solving large scale instances of the matrix completion problem
where the user ratings are available in the form of binary (like/dislike)
observations. We adopt the 1-bit matrix completion model of [1].
The goal is to fill in any missing entries of a rank-r matrix M with
nr rows and nc columns. However, in a departure from classical
matrix completion, we do not get to directly observe the entries of M.
Instead, consider any twice-differentiable function p : R → [0, 1].
We record observations Y such that:

Yi,j =

{
+1 with probability p(Mi,j),

−1 with probability 1− p(Mi,j),
for (i, j) ∈ Ω.

(2.1)
As with previous work in matrix completion, it is important that Ω is
chosen uniformly at random. In [1], the Probit and Logit functions
are explored as natural functions to model the underlying distribution
p(·) of the entries of Y. In this work, we focus on the Logit function
p(x) = ex

1+ex
. To recover an estimate of M we can maximize the

log-likelihood function of the optimization variable X over the set of
observations Ω. Denote 1A as the indicator function over a Boolean
condition A. Then the log-likelihood function corresponding to the
Logit model is given by:

L(X) :=
∑

(i,j)∈Ω

(
1Yi,j=1 log(p(Xi,j)) (2.2)

+1Yi,j=−1 log(1− p(Xi,j)
)

The estimate of M, therefore, is given by the solution to the con-
strained optimization problem1:

M̂ = argmax
X

L(X), rank(X) ≤ r . (2.3)

The optimization problem (2.3) is non-convex, due to the presence
of the rank constraint on X. The standard method adopted in matrix
completion approaches is to perform a nuclear norm relaxation of the
rank constraint. However, nuclear norm-regularized matrix recovery
formulations can incur a high running time [3,4,6]. In order to resolve
this issue, we adopt the JELLYFISH approach of [3]. We factorize
the variable X into two variables L and R and obtain the bilinear
optimization problem:

min L(LR∗) s.t. ‖L‖22,∞ ≤ B, ‖R‖22,∞ ≤ B. (2.4)
To solve (2.4), we adopt an incremental projected gradient descent
approach. We alternately update L (resp., R) while keeping R (resp.,
L) fixed. In each iteration, the updates to the ith row of L and the
jth row of R are given by:

L
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ik

= ΠB

(
Lik − αkL′(L(k)

ik
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)R
(k)
jk

)
R

(k+1)
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(
Rik − αkL′(L(k)
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(k)∗
jk

)L
(k)
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) (2.5)

where the projection operator Π onto the constraint set in (2.4) admits
the closed form expression ΠB(v) =

√
Bv
‖v‖ if ‖v‖2 ≥ B and v

otherwise. The step size parameterαk decreases by a constant amount
at every iteration.

The above gradient descent method has several computational advan-
tages. We observe that the updates performed in (2.5) operate on

1To be precise, the problem formulation in [1] also included a boundedness
constraint on ‖M‖∞, but we omit that constraint here.

highly local portions of the matrices L and R. Therefore, if the ob-
served data points in Ω were suitably partitioned into non-overlapping
blocks, then each block can be independently processed. We will refer
to these blocks as chunks and index any chunk C as Ca,b where a and
b are row and column indices of the chunk in the partitioned matrix.
Moreover, if we have the means to process p chunks in parallel, then
we can divide M into p2 chunks, and further group the chunks into p
rounds. Now, we can process each round sequentially, such that no
two parallel processes will ever be manipulating the same rows of R
or L at the same time, thus eschewing any locking delays2. This is the
intuition exploited in [3]; however, they assume a standard multi-core
CPU-based computing model, and also do not consider the problem
of nonlinear (one-bit) matrix completion.

GPUFish: Parallel matrix completion on GPU. We provide a high
level description of the organization of a GPU. Each process instanti-
ated on the GPU is known as a kernel. A kernel can be executed in
parallel across several threads of the GPU. A compiler hierarchically
groups the parallel threads into blocks, and blocks into a grid of
blocks. When launching a kernel on the GPU, the user controls the
number of blocks to launch as well as the number of threads per block
to launch. Each thread launched by the kernel executes an instance of
that kernel. Threads in a block execute concurrently.

We now leverage this special architecture for our incremental gradient
descent algorithm. Suppose that we have divided Ω into p2 chunks.
We launch a single kernel for each of the p rounds we have created.
As noted above, the kernels must be launched sequentially to perform
the parallel updates without fine-grained locking. Each round will
contain p chunks so we will instantiate our kernel with p blocks.
Each block is responsible for performing gradient updates (2.5) for
all data points (samples) in the corresponding chunk. Each block of
the kernel contains r worker threads; each thread, tk, in a given block
is responsible for updating Lik and Rjk, that is, the kth entry in the
rows of L and R being updated by (2.5) according to the data point
(i, j, Yi,j). In this way, we not only perform the gradient updates for
a large number of data points, but also update in parallel the r entries
of any row of L or R. Therefore, using this procedure we get an
r-fold speedup per round over the JELLYFISH algorithm.

We can further optimize running time as follows. While a given
kernel (corresponding to one of the rounds) is being processed by
the GPU, we simultaneous loading the data required to execute the
next kernel onto the GPU. At the completion of the given we remove
its data from the GPU and continue to the next round. The process
of chunking our data and then performing parallel gradient updates
over p kernels is known as an epoch. Because each epoch requires
a new shuffle of our dataset, we begin each epoch by launching a
separate CPU thread to compute the shuffle required for the next
epoch; this extra CPU thread is executed in parallel with the GPU
kernel launches being handled by the main CPU.

Each of the above optimization heuristics are specific to GPU-based
computing and enable considerable improvements in running time
over the standard JellyFish algorithm. Therefore, we call our modified
approach GPUFISH, summarized as Algorithm 1.

We discuss some specific schemes for managing the various observa-
tions and variables in practical implementations of GPUFish. Before
the first epoch, the matrices L and R are loaded into the global mem-
ory of the GPU where they can be accessed by all threads of the
GPU. Thread access to global memory is generally slow, so rather

2The JELLYFISH algorithm further generate random permutations of the
row and column indices of our matrix M, πrow and πcol to ensure that the
data points in any chunk differ between subsequent passes over that data set.



Algorithm 1 GPUFish

1: Permute rows and columns of M, shuffle Ω
2: Separate Ω into p2 chunks
3: Round[i] = p chunks s.t. all chunks are non-overlapping
4: Transfer data for Round[1] to GPU
5: for i = 1 to p in parallel do
6: GPU Gradient Updates(p blocks, r threads per block)
7: Transfer data for Round[i+1] to GPU overwriting Round[i-1]
8: end for

Algorithm 2 GPU Gradient Updates

1: for each of p chunks in parallel do
2: for each data point (i, j, rating) in the chunk do
3: apply (2.5) to L and R
4: end for
5: end for

than make repeated calls to global memory we begin by loading the
relevant rows of L and R into shared memory on the GPU. This
memory is shared only between the threads of each block and access
to it is significantly faster than global memory. After completing our
computation of (2.4) from our copies of L and R in shared memory
we write the our updates to L and R back to global memory.

In addition to making use of the GPU’s faster shared memory, we
also make use of the ability of the GPU’s ability to transfer data
while processing a kernel(s). At the beginning of each epoch we
transfer the data needed for the first round of gradient updates and
launch the kernel responsible for performing updates on the data.
As this kernel processes the first round we gather the data required
to process round two and load it onto the GPU. This procedure is
repeated until the epoch has finished. While providing an obvious
speedup over performing all of the data transfers at once, this data
management scheme also enables us to only have two rounds worth
of data (approximately 2×|Ω|

p
data points) on the GPU at any given

time. This enables GPUFish to process ultra-large data sets even on
memory-limited GPUs.

3. PARALLEL INDUCTIVE MATRIX COMPLETION

We now extend the above ideas for a different matrix recovery prob-
lem known as inductive matrix completion (IMC). In IMC, we define
two new feature matrices: A ∈ Rnr×nd1 that contains side infor-
mation about the rows of M, and B ∈ Rnc×nd2 that contains side
informations about the columns of M. Under this model, any obser-
vation can be written as

Mi,j = AiZBj
∗

where Z ∈ Rd1×d2 describes a latent low-rank matrix variable3. In
the same manner as our previous formulation we will factorize our
decision variable Z as X = LR∗ where L ∈ Rd1×k and R ∈
Rd2×k.

As above, in order to estimate Z, we obtain a bilinear optimization
problem:

min L(AL(BR)∗) s.t. ‖L‖22,∞ ≤ B, ‖R‖22,∞ ≤ B. (3.1)

3The feature vectors for the rows and columns M are often constructed
from meta-information: e.g., “likes” and “reblogs” information in [12] and
phenotype relationships in [9]. From this meta-information, we can create
adjacency matrices that describe user-user and item-item relationships, and
take the leading eigenvectors of these adjacency matrices as feature vectors [9].

=

Fig. 1. Multiplication by a striped vector gives a striped product.

Proceeding in an identical fashion as (2.5), we can use incremen-
tal projected gradient descent to solve (3.1); our updates for each
iteration are:
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(3.2)

The updates in (3.2) differ from the standard one-bit matrix comple-
tion problem in a rather fundamental fashion. Crucially, the gradient
updates are no longer local; every incremental update step affects all
of L and all of R, in sharp contrast with our earlier case. Therefore,
existing “block”-based data partitioning techniques (such as that pro-
posed in [3]) are no longer applicable. We resolve this issue using a
novel algorithm described as follows.

IMCFish: Parallel inductive matrix completion. We first intro-
duce the notion of striping. Suppose we choose an integer parameter
s (for simplicity, a divisor of both m and n); then, the qth stripe of
a vector v ∈ R1×n, denoted vq , is given by: vq[k] = 0 for k <
q ∗ (m/s) and k ≥ (q + 1) ∗ (m/s), and v[k] otherwise. If we
multiply the transpose of our striped vector, v∗ ∈ Rn×1 with some
other vector t ∈ R1×m we observe that the product of these two
vectors, Y, is a striped matrix (see Fig. 1): a row of Y is zero if
the corresponding row of v∗ is zero. Using this knowledge we can
rewrite out updates (3.3) in terms of stripes of A and B:

L
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(3.3)

In this way, we are able to confine our gradient updates to local
portions of L and R allowing us to do many updates in parallel. We
call this algorithm IMCFish, and omit its pseudocode description due
to space constraints.

We now describe an efficient GPU-based implementation of IMC-
FISH. Examining (3.3), we find that while our updates to are local,
individual rows of L and R cannot be updated in parallel; rather,
stripes of L and R need to be processed. We retain the chunking
strategy that we have described above for GPUFISH and divide Ω
into q2 chunks divided across q rounds. Given q stripes of A and B
there are q2 combinations of the stripes of A and B; each chunk of
Ω will be responsible for performing gradient updates with a unique
combination of stripes. As with GPUFISH, we launch q GPU kernels
each containing q blocks. The qth stripe of A and the q′th stripe of
B used by a single chunk is determined by the index of that block
and the current round.

Note that in each gradient update of IMCFISH, we only require a
small portion of the feature matrices A and B. In particular, a sin-
gle gradient update only requires d2

q
feature values from A and d2

q
.

Given nr rows and nc columns we require nr∗d1
q

features from A

and nc∗d2
q

features from B to perform all the gradient updates in a



Original Rating 1 2 3 4 5 Overall Runtime(s)
GPUFISH: ML 100k 80% 77% 58% 71% 87% 72% 0.30

1-Bit: ML 100k 79% 73% 58% 75% 89% 73% 47
GPUFISH: ML 1m 86% 74% 55% 75% 92% 74% 1.1

1-Bit: ML 1m 84% 76% 53% 77% 94% 75% 3130

Table 1. A comparison between 1-bit matrix completion from [1] and the 1-bit matrix completion implemented in GPUFISH. GPUFISH
produces results on par with the traditional 1-bit approach and is able to do so in a fraction of the runtime.

given round. Therefore, this scheme reduces the on-GPU memory
requirement by a factor of q for each feature matrix; if q is chosen
large enough, this can be a significant space complexity improvement
over standard stochastic gradient descent algorithms, and enables in-
ductive matrix completion even on memory-limited GPUs. Moreover,
at the beginning of each epoch, we compute an estimate for each
point in Ω using the GPU-enabled linear algebra library, cuBLAS.
The computation of the gradient for a single data sample in Ω requires
only a single row of A and a single row of B.

4. PERFORMANCE EVALUATION

All experiments were performed on a Dell workstation equipped with:
a 6-core Xeon E5-2620 v3 CPU, 64GB of RAM, a 256GB Class 30
SSD, and an NVIDIA GeForce GTX 1080 GPU. For our experiments,
we use Linux 3.10.0-327 along with NVCC V8.0.26.

GPUFish. We test the ability of GPUFISH to make predictions in the
collaborative filtering environment on real-world data. Specifically
we make predictions about user interest in movies for the Movielens
(100k , 1m and 20m) data set [13]. Where possible we compare our
results to those produced from the code released with [1].

We transform the user-movie ratings from the Movielens data set
(integers in [1, 5]) to one-bit observations by subtracting the average
over all ratings (approximately 3.5) from each rating and recording
the sign. Our input parameters, including rank, are again determined
by a grid search. Each instance of GPUFISH was terminated after
20 epochs. For each Movielens data set (100k, 1M and 20M) we
remove 5,000 ratings for testing purposes, and train the model with
the remaining ratings. In Table 1 we present the percentage of one-bit
ratings correctly recovered by GPUFISH as a function of the original
rating. We also display the overall percentage of ratings correctly
recovered as well as the runtime of the algorithm.

We empirically determine the number of blocks per kernel (the num-
ber of chunks in a round) that results in the smallest run time. The
results are presented in Figure 2. For each epoch we perform two
processes in parallel: gradient updates on the GPU, and the permuting
and chunking Ω; the run time of each epoch is the maximum of the
time taken by either of these two processes. Examining Figure 2,
we see that executing GPUFISH with a larger number of blocks per
kernel can only decrease our runtime to the extent that it is no longer
determined by the execution of gradient updates. At approximately 30
blocks per kernel our GPU gradient updates can be performed faster
than our permutations and chunking of Ω, and therefore we no longer
see a decrease in runtime beyond this level of block granularity.

IMCFish. We now test IMCFISH on a synthetic matrix dataset.
Where possible we compare our results to those produced from the
code released with [9].

We present phase transitions for the recovery of a random ma-
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Fig. 2. The runtime of 20 epochs of GPUFISH vs the number of
blocks per kernel on MovieLens (20M)
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Fig. 3. Phase transitions for the recovery of a rank one (a) and rank
ten (b) matrices using IMCFISH and LEML.

trix, M ∈ R1000×1000 with rank-one and rank-ten latent feature
spaces Z ∈ R50×50. Z is the product of a matrix in R50×r and
another in Rr×50; the entries of both matrices are drawn from the
standard normal distribution. To create our random feature matrices
A,B, we draw from the standard normal distribution two matrices in
R1000×50. We obtain M by multiplying our feature matrices with Z.

The phase transitions for IMCFISH with 5,10 and 25 stripes are
presented in Fig. 3, as are the phase transition for the LEML [14]-
based IMC algorithm detailed in [9]. Given the output of IMCFISH

Ẑ, and the IMC algorithm’s estimate of the latent feature space as
the “ground truth” Z, we compute the relative error of this estimate
‖Ẑ−Z‖2F
‖Z‖2

F
. In the same manner as GPUFISH, we manually tune our

step size and regularization term for optimal recovery of Z. In Fig. 3
the relative error of our recovery is plotted against the fraction of
visible entries of M. We note that all versions of IMCFISH, though
they only use a portion of the feature matrices to perform gradient
updates, are able to recover Z with fewer visible entires than the IMC
algorithm proposed in [9].
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