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ABSTRACT
In recent works, both sparsity-based methods as well as learning-
based methods have proven to be successful in solving several chal-
lenging linear inverse problems. However, sparsity priors for natural
signals and images suffer from poor discriminative capability, while
learning-based methods seldom provide concrete theoretical guaran-
tees. In this work, we advocate the idea of replacing hand-crafted pri-
ors, such as sparsity, with a Generative Adversarial Network (GAN)
to solve linear inverse problems such as compressive sensing. In
particular, we propose a projected gradient descent (PGD) algorithm
for effective use of GAN priors for linear inverse problems, and
also provide theoretical guarantees on the rate of convergence of this
algorithm. Moreover, we show empirically that our algorithm demon-
strates superior performance over an existing method of leveraging
GANs for compressive sensing.

Index Terms— Inverse problems, compressive sensing, genera-
tive adversarial networks

1. INTRODUCTION

1.1. Motivation

Linear inverse problems arise in diverse range of application domains
such as computational imaging, optics, astrophysics, and seismic
geo-exploration. Formally put, the basic structure of a linear inverse
problem can be represented in terms of a linear equation of the form:

y = Ax∗ + e, (1.1)

where x∗ ∈ Rn is the target signal (or image), A ∈ Rm×n is a linear
operator that captures the forward process, y ∈ Rm denotes the given
observations, and e ∈ Rm represents stochastic noise. The aim is to
recover (an estimate of) the unknown signal x∗ given y and A.

Many important problems in signal and image processing can be
modeled as linear inverse problems. For example, the classical prob-
lem of super-resolution corresponds to the case where the operator A
represents a low-pass filter followed by downsampling. The problem
of image inpainting corresponds to the case where A can be mod-
eled as a pixel-wise selection operator applied to the original image.
Similar challenges arise in image denoising as well as compressive
sensing [1, 2, 3].

In general, when m < n the inverse problem is ill-posed. A
common approach for resolving this issue is to obtain an estimate of
x∗ as the solution to the constrained optimization problem:

x̂ = argmin f(y;Ax), (1.2)
s. t. x ∈ S,
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where f is a suitably defined measure of error (called the loss func-
tion) and S j Rn is a set that captures some sort of known structure
that x∗ is a priori assumed to obey. A very common modeling as-
sumption on x∗ is sparsity, and S comprises the set of sparse vectors
in some (known) basis representation. For example, smooth sig-
nals and images are (approximately) sparse when represented in the
Fourier basis. This premise alleviates the ill-posed nature of the in-
verse problem, and in fact, it is well-known that accurate recovery
of x∗ is possible if (i) the signal x∗ is sufficiently sparse, and (ii)
measurement matrix A satisfies certain algebraic conditions, such as
the Restricted Isometry Property [1].

However, while being powerful from a computational standpoint,
the sparsity prior has somewhat limited discriminatory capability.
A sparse signal (or image) populated with random coefficients ap-
pears very distinct from the signals (or images) that abound in natural
applications, and it is certainly true that nature exhibits far richer
nonlinear structure than sparsity alone. This has spurred the develop-
ment of estimation algorithms that use more refined priors, such as
structured sparsity [4, 5], dictionary models [6, 7], or bounded total
variation [8]. While these priors often provide far better performance
than using standard sparsity-based methods, they still suffer from the
aforementioned limitations on modeling capability.

We focus on a newly emerging family of priors that are learned
from massive amounts of training data using a generative adversar-
ial network (GAN) [9]. These priors are constructed by training the
parameters of a certain neural network that simulates a nonlinear map-
ping from some latent parameter space of dimension k � n to the
high-dimensional ambient space Rn. GANs have found remarkable
applications in modeling image distributions [10, 11, 12, 13], and a
well-trained GAN closely captures the notion of a signal (or image)
being ‘natural’ [14]. Indeed, GAN-based neural network learning
algorithms have been successfully employed to solve linear inverse
problems such as image super-resolution and inpainting [15, 16].
However, these methods are mostly heuristic, and their theoretical
properties are not yet well understood. Our goal in this paper is to
take some initial steps towards a principled use of GAN priors for
inverse problems.

1.2. Our Contributions

In this paper, we propose and analyze the well known projected
gradient descent (PGD) algorithm for solving (1.2). We adopt a set-
ting similar to the recent, seminal work of [17], and assume that the
generator network (say, G) well approximates the high-dimensional
probability distribution of the set S, i.e., we expect that for each
vector x∗ in S , there exists a vector x̂ = G(ẑ) very close to x∗ in the
support of distribution defined by G. The authors of [17] rigorously
analyze the statistical properties of the minimizer of (1.2). However,
they do not explicitly discuss an algorithm to perform this minimiza-
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Fig. 1: Illustration of our algorithm. Starting from a zero vector, we
perform a gradient descent update step (red arrow) and projection
step (blue arrow) alternatively to reach the final estimate.

tion. Instead, they re-parameterize (1.2) in terms of the latent variable
z, and assume that gradient descent (or stochastic gradient descent)
in the latent space provides an estimate of sufficiently high qual-
ity. However, if initialized incorrectly, (stochastic) gradient descent
can get stuck in local minima, and therefore in practice their algo-
rithm requires several restarts in order to provide good performance.
Moreover, the rate of convergence of this method is not analyzed.

In contrast, we advocate using PGD to solve (1.2) directly in the
ambient space. The high level idea in our approach is that through it-
erative projections, we are able to mitigate the effects of local minima
and are able to explore the space outside the range of the generator
(G). Our procedure is depicted in Fig. 1. We choose a zero vector
as our initial estimate(x0), and in each iteration, we update our es-
timate by following the standard gradient descent update rule (red
arrow in Fig. 1), followed by projection of the output onto the span
of generator (G) (blue arrow in Fig. 1).

We support our PGD algorithm via a rigorous theoretical anal-
ysis. We show that the final estimate at the end of T iterations is
an approximate reconstruction of the original signal x∗, with very
small reconstruction error; moreover, under certain sufficiency condi-
tions on the linear operator A, PGD demonstrates linear convergence,
meaning that T = log(1/ε) is sufficient to achieve ε-accuracy. As
further validation of our algorithm, we present a series of numerical
results. We train two GANs: our first is a relatively simple two-layer
generative model trained on the MNIST dataset [18]; our second is a
more complicated Deep Convolutional GAN [19, 20] trained on the
CelebA [21] dataset. In all experiments, we compare the performance
of our algorithm with that of [17] and a baseline algorithm using spar-
sity priors (specifically, the Lasso with a DCT basis). Our algorithm
achieves the best performance both in terms of quantitative metrics
(such as the structural similarity index) as well as visual quality.

1.3. Related Work

Approaches to solve linear inverse problems can be classified broadly
in two categories. The approaches in the first category mainly use
hand-crafted signal priors to distinguish ‘natural’ signals from the
infinite set of feasible solutions. The prior can be encoded in the form
of either a constraint set (as in Eq. 1.2) or an extra regularization
penalty. Several works (including [22, 23, 24]) employ sparsity priors
to solve inverse problems such as denoising, super-resolution and
inpainting. In [6, 7], sparse and redundant dictionaries are learned for
image denoising, whereas in [25, 26, 8], total variation is used as a
regularizer. Despite their successful practical and theoretical results,
all such hand-designed priors often fail to restrict the solution space
only to natural images, and it is easily possible to generate signals
satisfying the prior but do not resemble natural data.

The second category consists of learning-based methods involv-

ing the training of an end-to-end network mapping from the mea-
surement space to the image space. Given a large dataset xi, i ∈
1, 2, .., N and a measurement matrix A, the inverse mapping from
Axi to xi can be learned through a deep neural network training [27].
This approach is used in [28, 29, 30, 31, 32, 33] to solve different
inverse problems, and has met with considerable success. However,
the major limitations are that a separate network is required for each
new linear inverse problem; moreover, most of these methods lack
concrete theoretical guarantees. The recent papers [34, 35] resolve
this issue by training a single quasi-projection operator to project
each candidate solution on the manifold of natural images, and indeed
in some sense is complementary to our approach. On the other hand,
we train a generative model that simulates the space of natural signals
(or images) for a given application; moreover, our method can be
rigorously analyzed.

Recently, due to advances in adversarial training techniques [9],
GANs have been explored as the powerful tool to solve challenging
inverse problems. GANs can approximate the real data distribution
closely, with visually striking results [36, 14]. In [15, 16], GANs
are used to solve the image inpainting and super-resolution problems
respectively. The work closest to our work is the approach of leverag-
ing GANs for compressive sensing [17], which provides the basis for
our work. Our method improves on the results of [17] empirically,
along with providing mathematical analysis of convergence.

2. ALGORITHM AND MAIN RESULTS

2.1. Setup

Let S ⊆ Rn be the set of ‘natural’ images in data space with a vector
x∗ ∈ S. We consider an ill-posed linear inverse problem (1.1) with
the linear operator A being a Gaussian random matrix. For simplicity,
we do not consider the additive noise term. To solve for x̂, we choose
Euclidean measurement error as the loss function f(·) in Eqn. (1.2).
Therefore, given y and A, we seek

x̂ = argmin
x∈S

‖y −Ax‖2. (2.1)

All norms represented by ‖ · ‖ in this paper are Euclidean norms
unless stated otherwise.

2.2. Algorithm

We train the generator G : Rk → Rn that maps a standard normal
vector z ∈ Rk to the high dimensional sample space G(z) ∈ Rn.
We assume that our generator network well approximates the high-
dimensional probability distribution of the set S. With this assump-
tion, we limit our search for x̂ only to the range of the generator
function (G(z)). The function G is assumed to be differentiable, and
hence we use back-propagation for calculating the gradients of the
loss functions involving G for gradient descent updates.

The optimization problem in Eqn. 2.1 is similar to a least squares
estimation problem, and a typical approach to solve such problems is
to use gradient descent. However, the candidate solutions obtained
after each gradient descent update need not represent a ‘natural’ image
and may not belong to set S. We solve this limitation by projecting
the candidate solution on the range of the generator function after
each gradient descent update. Here, the projection of any vector u on
the generator is the image closest to u in the span of the generator.

Thus, in each iteration of our proposed algorithm 1, two steps
are performed in alternation: a gradient descent update step and a
projection step.



Algorithm 1 PGD-GAN

1: Inputs: y, A, G, T , Output: x̂
2: x0 ← 0
3: while t < T do
4: wt ← xt + ηAT (y −Axt)
5: xt+1 ← PG(wt) = G (argminz ‖wt −G(z)‖)
6: t← t+ 1
7: end while
8: x̂← xT

2.3. Gradient Descent Update

The first step is simply an application of a gradient descent update
rule on the loss function f(·) given as,

f(x) := ‖y −Ax‖2.

Thus, the gradient descent update at tth iteration is,

wt ← xt + ηAT (y −Axt),

where η is the learning rate.

2.4. Projection Step

In projection step, we aim to find an image from the span of the
generator which is closest to our current estimate wt. We define the
projection operator PG as follows:

PG (wt) := G

(
argmin

z
fin(z)

)
,

where the inner loss function is defined as,

fin(z) := ‖wt −G(z)‖.

We solve the inner optimization problem by running gradient descent
with Tin number of updates on fin(z). The learning rate ηin is
chosen empirically for this inner optimization. Though the inner
loss function is highly non-convex due to the presence of G, we
find empirically that the gradient descent (implemented via back-
propagation) works very well. In each of the T iterations, we run Tin
updates for calculating the projection. Therefore, T × Tin is the total
number of gradient descent updates required in our approach.

2.5. Analysis

From standard compressive sensing theory, we know that conditions
such as the restricted isometry property (RIP) on A are sufficient to
guarantee robust signal recovery. It has also been demonstrated that
the RIP is a sufficient condition for recovery using iterative projec-
tions on manifolds [37]. These conditions ensure that the operator
A preserves the uniqueness of the signal, i.e., the measurements
corresponding to two different signals in the model would also be suf-
ficiently different. In our case, we need to ensure that the difference
vector of any two signals in the set S lies away from the nullspace
of the matrix A. This condition is encoded via the S-REC (Set Re-
stricted Eigenvalue Condition) defined in [17]. We slightly modify
this condition and present it in the form of squared l2-norm :

Definition 2.1. Let S ∈ Rn. A is m × n matrix. For parameters
γ > 0, δ ≥ 0, matrix A is said to satisfy the S-REC(S, γ, δ) if,

‖A(x1 − x2)‖2 ≥ γ‖x1 − x2‖2 − δ,

for ∀x1, x2 ∈ S.

Further, based on [37, 38], we propose the following theorem
about the convergence of our algorithm:

Theorem 2.2. Let G : Rk → Rn be a differentiable generator
function with range S. Let A be a random Gaussian matrix with
Ai,j ∼ N(0, 1/m) such that it satisfies the S-REC(S, γ, δ) with
probability 1 − p, and has ‖Av‖ ≤ ρ‖v‖ for every v ∈ Rn with
probability 1 − q with ρ2 ≤ γ. Then, for every vector x∗ ∈ S, the
sequence (xt) defined by the algorithm PGD-GAN [1] with y = Ax∗

converges to x∗ with probability at least 1− p− q.

Proof. Define the squared error loss function ψ(v) := ‖y − Av‖2.
Then, we have:

ψ(xt+1)− ψ(xt)
= ‖Axt+1‖2 − 2〈y,Axt+1〉+ 2〈y,Axt〉 − ‖Axt‖2,

= ‖Axt+1 −Axt‖2 + 2〈xt − xt+1, A
TA(x∗ − xt)〉.

Substituting y = Ax∗ and rearranging yields,

2〈xt − xt+1, A
T (y −Axt)〉 = ψ(xt+1)− ψ(xt)

− ‖Axt+1 −Axt‖2. (2.2)

Define:

wt := xt + ηAT (y −Axt) = xt + ηATA(x∗ − xt)

Then, by definition of the projection operator PG, the vector xt+1 is
a better (or equally good) approximation to w as the true image x∗.
Therefore, we have:

‖xt+1 − wt‖2 ≤ ‖x∗ − wt‖2.

Substituting for wt and expanding both sides, we get:

‖xt+1 − xt‖2 − 2η〈xt+1 − xt, AT (y −Axt)〉

≤ ‖x∗ − xt‖2 − 2η〈x∗ − xt, AT (y −Axt)〉.

Substituting y = Ax∗ and rearranging yields,

2〈xt − xt+1, A
T (y −Axt)〉

≤ 1

η
‖x∗ − xt‖2 −

1

η
‖xt+1 − xt‖2 − 2ψ(xt). (2.3)

We now use 2.2 and 2.3 to obtain,

ψ(xt+1) ≤
1

η
‖x∗ − xt‖2 − ψ(xt)

−
(
1

η
‖xt+1 − xt‖2 − ‖Axt+1 −Axt‖2

)
. (2.4)

Now, from the S-REC, we know that,

‖A(x1 − x2)‖2 ≥ γ‖x1 − x2‖2 − δ.

As x∗, xt and xt+1 are ‘natural’ vectors,

1

η
‖x∗ − xt‖2 ≤

1

ηγ
‖y −Axt‖2 +

δ

ηγ
. (2.5)

Substituting 2.5 in 2.4,

ψ(xt+1) ≤
(

1

ηγ
− 1

)
ψ(xt)

−
(
1

η
‖xt+1 − xt‖2 − ‖Axt+1 −Axt‖2

)
+

δ

ηγ
.
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Fig. 2: (a) Comparison of our algorithm with CSGM [17] and Lasso on MNIST; (b) Reconstruction results with m = 100 measurements; (c)
Reconstruction results on celebA dataset with m = 1000 measurements.

From our assumption that ‖Av‖ ≤ ρ‖v‖, ∀v ∈ Rn with proba-
bility 1− q, we write:

‖Axt+1 −Axt‖2 ≤ ρ2‖xt+1 − xt‖2,

‖Axt+1 −Axt‖2 −
1

η
‖xt+1 − xt‖2 ≤

(
ρ2 − 1

η

)
‖xt+1 − xt‖2.

Let us choose learning rate(η) such that 1
2γ
< η < 1

γ
. We also have

ρ2 ≤ γ. Combining both, we get ρ2 < 1
η

, which makes the L.H.S. in
the above equation negative. Therefore,

ψ(xt+1) ≤
(

1

ηγ
− 1

)
ψ(xt) +

δ

ηγ
,

where δ is inversely proportional to the number of measurements m
[17]. Provided sufficient number of measurements, δ is small enough
and can be ignored. Also, 1

2γ
< η < 1

γ
yields,

0 <

(
1

ηγ
− 1

)
< 1.

Hence,

ψ(xt+1) ≤ αψ(xt); 0 < α < 1, (2.6)

with probability at least 1− p− q.

3. MODELS AND EXPERIMENTS

In this section, we describe our experimental setup and report the
performance comparisons of our algorithm with that of [17] as well
as the LASSO. We use two different GAN architectures and two
different datasets in our experiments to show that our approach can
work with variety of GAN architectures and datasets.

In our experiments, we choose the entries of the matrix A in-
dependently from a Gaussian distribution with zero mean and 1/m
standard deviation. We ignore the presence of noise; however, our
experiments can be replicated with additive Gaussian noise. We use a
gradient descent optimizer keeping the total number of update steps
(T ×Tin) fixed for both algorithms and doesn’t allow random restarts.

In the first experiment, we use a very simple GAN model trained
on the MNIST dataset, which is collection of 60, 000 handwritten

digit images, each of size 28× 28 [18]. In our GAN, both the gener-
ator and the discriminator are fully-connected neural networks with
only one hidden layer. The generator consists of 20 input neurons,
200 hidden-layer neurons and 784 output neurons, while the discrim-
inator consists of 784 input neurons, 128 hidden layer neurons and
1 output neuron. The size of the latent space is set to k = 20, i.e.,
the input to our generator is a standard normal vector z ∈ R20. We
train the GAN using the method described in [9]. We use the Adam
optimizer [39] with learning rate 0.001 and mini-batch size 128 for
the training.

We test the MNIST GAN with 10 images taken from the span
of generator to get rid of the representation error, and provide both
quantitative and qualitative results. For PGD-GAN, because of the
zero initialization, a high learning rate is required to get a meaningful
output before passing it to the projection step. Therefore, we choose
η ≥ 0.5. The parameter ηin is set to 0.01 with T = 15 and Tin =
200. Thus, the total number of update steps is fixed to 3000. Similarly,
the algorithm of [17] is tested with 3000 updates and η = 0.01. For
comparison, we use the reconstruction error = ‖x̂ − x∗‖2. In Fig.
2(a), we show the reconstruction error comparisons for increasing
values of number of measurements. We observe that our algorithm
performs better than the other two methods. Also, as the input images
are chosen from the span of the generator itself, it is possible to get
close to zero error with only 100 measurements. Fig. 2(b) depicts
reconstruction results for selected MNIST images.

The second set of our experiments are performed on a Deep
Convolutional GAN (DCGAN) trained on the celebA dataset, which
contains more than 200, 000 face images of celebrities [21]. We use a
pre-trained DCGAN model, which was made available by [17]. Thus,
the details of the model and training are the same as described in
[17]. The dimension of latent space for DCGAN is k = 100. We
report the results on a held out test dataset, unseen by the GAN at
the time of training. Total number of updates is set to 1000, with
T = 10 and Tin = 100. Learning rates for PGD-GAN are set as
η = 0.5 and ηin = 0.1. The algorithm of [17] is run with η = 0.1
and 1000 update steps. Image reconstruction results from m = 1000
measurements with our algorithm are displayed in Fig. 2(c). We
observe that our algorithm produces better reconstructions compared
to the other baselines.
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