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Abstract—Demixing, or source separation, involves disentan-
gling a complicated signal into simpler, more informative com-
ponents. Algorithms for signal demixing impact several applica-
tions, ranging from interference cancellation in communication
signals, to foreground-background separation in images and
video, and outlier suppression in machine learning. Central to
several modern demixing algorithms is an assumption of low-
dimensional structure being present in the signal components.
However, the majority of these modern algorithms are based on
convex optimization, and their computational complexity can be
high (polynomial) in terms of the signal size.

In this paper, we propose a new algorithmic approach for
signal demixing based on structured sparsity models. Our ap-
proach leverages recent advances in constructing sparsity models
via appropriately chosen graphs; this graphical approach can be
shown to model a diverse variety of low-dimensional structures in
signals. Despite being highly nonconvex, our algorithm exhibits a
nearly-linear running time, and therefore is scalable to very high-
dimensional signals. We supplement our proposed algorithm with
a theoretical analysis, providing sufficient conditions for provable
reconstruction of the underlying components. Finally, we demon-
strate the validity of the method via numerical experiments on
real 2D image data.

I. INTRODUCTION

A. Motivation

Demixing, or source separation, refers to the process of
separating out a pair of signals from a (possibly noisy) obser-
vation of their superposition. Demixing methods are of spe-
cial importance in diverse applications spanning audio signal
analysis [1], interference cancellation in medical imaging [2],
image processing in astronomy [3], [4], surveillance video
analysis and compression [5], and machine learning [6].

As succinctly described in the recent survey article [7], mod-
ern approaches for demixing rely on two main assumptions: (i)
that the component signals have a simple, or low-dimensional,
representation relative to the ambient signal dimension, and
(ii) that the components are sufficiently different-looking, or
incoherent, with respect to each other. A flexible (and conve-
nient) mathematical model for signal simplicity presupposes
that each component signal is sparse with respect to a given
basis or dictionary.

Sparsity models form the foundation of numerous advances
in signal compression [8], compressive sensing [9], [10], and
machine learning [11]. However, recovering sparse signals

from noisy measurements has long been acknowledged as
being a very challenging combinatorial optimization problem
even for very simple cases [12], and the typical solution is to
relax the problem into a convex optimization formulation [13].
Such a relaxation is advantageous in many respects. First, one
can immediately use algorithms for convex optimization in a
black-box fashion to demixing problems. Second, precise and
rigorous theory that can characterize the performance of these
algorithms is also available [14], [15].

An added advantage is that by appropriately modifying
the convex penalties in the optimization problem, one can
model much more refined structures beyond sparsity in the
components. Such a “structured sparsity” assumption is appli-
cable in several settings. For example, the (overlapping) group-
sparsity penalty is used in cases where the basis coefficients
of the components are additionally expected to be clustered.
A general framework for constructing penalties tailored to
various structures can be developed via the notion of atomic
norms [15]–[17].

B. Our contributions

In this paper, we depart from the above trends, and propose
an alternative approach for demixing signals with structured
sparsity. Our signal demixing approach relies on the graph-
structured sparsity framework proposed in [18]. The graph-
based approach is widely applicable, and can model diverse
structures in high-dimensional data including group structures,
hierarchical structures, and spatio-temporal correlations [19].
We describe this model in greater detail in Section II below.

The core of our approach is a novel, nonconvex algorithm
for demixing the source components. Our algorithm can be
interpreted as a variant of [20], specialized to demixing. A key
feature of our algorithm is that despite its non-convex nature,
the algorithm enjoys a nearly-linear running time for a large
class of demixing problems. To the best of our knowledge,
this is the first nearly-linear time algorithm for demixing with
structured sparsity. This is particularly important for massive
data applications where convex algorithms that exhibit even a
(low-degree) polynomial running time can become intractable.

We supplement our proposed algorithms with a rigorous the-
oretical analysis, providing sufficient conditions under which
the methods provably reconstruct the underlying components.
Our analysis reveals that the algorithm is stable to noise,978-1-5090-1746-1/16/$31.00 c© 2016 IEEE



and additionally exhibits a linear rate of convergence for a
range of signal sparsity parameters. We also provide numerical
experiments on 2D image data, and obtain promising results.

C. Techniques

At a high level, our demixing approach is an application
of the graph-structured sparsity framework of [18]. There,
the authors proposed a framework for solving general linear
inverse problems where the support of the unknown coefficient
vector can be modeled as a union of small connected com-
ponents over a pre-defined graph. However, the main focus
of that work is on recovering structured signals from under-
sampled linear measurements, and the algorithm proposed in
that paper is somewhat different. In contrast, our proposed al-
gorithm (that we call STRUCTDEMIX) is more closely related
to the approximate model-iterative thresholding (AM-IHT)
algorithm developed in [20], [21]. Our theoretical analysis of
STRUCTDEMIX is an immediate consequence of the derivation
provided in [20].

Due to the nature of the demixing problem, the imple-
mentation of the algorithm appears somewhat different and
can be achieved via a series of alternating projections. (As
opposed to traditional alternating projection methods, our
method relies on projections onto nonconvex constraint sets.)
The key algorithmic challenge here is to design the update
rules within each iteration such that linear convergence to
the desired solution occurs even for this challenging case. We
achieve this via a sequence of approximate projections onto
the feasible signal sets, coupled with suitable gradient steps.
Section II details precisely how these approximate projections
are defined. Executing a specific sequence of projection steps
seem to be crucial for proving algorithm convergence.

We instantiate our approach in the context of demixing 2D
images. We consider as input a sparse image with spatially
clustered nonzeros that is corrupted by sinusoidal noise. We
model the image domain as a 2D lattice graph, and consider
the image as belonging to a graph-sparsity model. The combi-
natorial optimization approach of [18] readily gives us the ap-
proximate projection steps required to establish convergence.
Moreover, each of the approximate projections provably have
a nearly-linear running time; therefore, iterating a logarithmic
number of times gives us the desired running time of our
overall algorithm. Section IV contains the details.

II. SETUP

A. Notation

A vector x ∈ Rn is said to be s-sparse if it contains no
more than s nonzero coefficients. The support of a vector is
the set of indices corresponding to its nonzero entries, i.e.,
supp(x) = {i : |xi| > 0}. The symbol ‖·‖ denotes the `2-
norm unless explicitly specified.

In order to express structures in signals beyond sparsity, we
will use the model-based approach of [22]. Specifically, let
M = {S1, S2, . . . , Sq} denote a family of supports such that

Si ⊆ [n]. Then, the set of all vectors supported on any of the
Si is called the sparsity model induced by M:

M = {x ∈ Rn : supp(x) ⊆ Si for some Si ∈M}.

B. Modeling assumptions
For the demixing problem, we use the MCA signal model

of [3]. We express the observed signal y ∈ Rn as a (possibly
noisy) superposition of two structured signals:

y = Ax+Bz + e,

where A,B ∈ Rn×n are (known) orthonormal bases, x and
z represent the unknown coefficient vectors, and e denotes
the noise. For convenience, let us suppose that x corresponds
to the “signal” of interest, and z corresponds to the “inter-
ference”. By an appropriate change of coordinates, we can
assume without loss of generality that A is the canonical
(identity) basis. Hence, we rewrite the observation model as:

y = x+ Fz + e, (1)

for some known orthonormal basis F . We will assume that
F is ε-incoherent with the canonical basis, i.e., |Fij | ≤ ε for
1 ≤ i, j ≤ n. The goal is to investigate reliable and efficient
demixing methods that recover the signal representations x
and z from the observations y.

Equation (1) provides an under-determined system of linear
equations with n observations and 2n unknowns, and as such
cannot be solved without additional information. Therefore,
we will make two extra modeling assumptions. First, we will
assume that the coefficient vector z is at most k-sparse for
some parameter k, i.e., z ∈ Σk, where Σk = {x ∈ Rn :
|supp(x)| ≤ k}.

Further, we will assume that x belongs to a graph-sparsity
model [18], formally defined as follows. Consider a graph G =
(V,E) with n nodes and m edges, where the nodes correspond
to coordinates of vectors in Rn. Then, we can identify supports
S ⊆ [n] with subgraphs of G. Let cc(S) denote the number
of connected components in the subgraph of G corresponding
to the support S. Consider the set of supports M, defined as:

M = {S ⊆ [n] : |S| ≤ s, cc(S) ≤ g},

Then, the corresponding model induced by M is called the
graph-sparsity model M(G, s, g). We will assume that x ∈
M(G, s, g).

The choice of the graph G depends on the particular appli-
cation, and reflects the structural interactions between signal
coefficients. Different choices of G yield different sparsity
models. For example, a natural choice of G for modeling
1D time series is the line graph, and the corresponding
sparsity model can be used to express sparse signals whose
coefficients are clustered as contiguous groups [23]. Another
common choice of G for modeling 2D images is the 2D
lattice graph, which can be used to model both “thin” as
well as ”thick” clusters of pixel intensity values over a two-
dimensional spatial domain [24], [25].



C. Comparison with prior work
Before we present our approach, let us acknowledge that

sparsity-constrained linear inverse problems of the form (1)
have a very long history, dating back to [12] and earlier. The
work of Elad et al. [3] and Bobin et al. [4] posed the demixing
problem as an instance of morphological components analysis
(MCA), and formalized the observation model (1). These
authors posed the recovery problem in terms of a convex
optimization procedure, such as the LASSO [11]:

(x̂, ẑ) = min
x,z
‖y − x− Fz‖22 (2)

s.t. ‖x‖1 ≤ τx, ‖z‖1 ≤ τz.

where τx and τz are user-specified parameters. These works
provided upper bounds on successful recovery as a function
of the problem dimensions n, s, k. The work of Pope et
al. [26] analyzed somewhat more general conditions under
which stable demixing could be achieved.

More recently, the work of McCoy et al. [14], [15] showed
a curious phase transition behavior in the performance of
the convex optimization methods, under a random model on
the interference basis F . Specifically, they demonstrated a
sharp statistical characterization of the achievable and non-
achievable parameters for which successful demixing of the
signal components can be achieved. Moreover, they extended
the demixing problem to a large variety of signal structures
beyond sparsity via the use of general atomic norms in place
of the `1-norm in the above optimization [16]. See [7], [15]
for an in-depth discussion of atomic norms, their statistical
and geometric properties, and their applications to demixing.

While a very good statistical understanding of demixing
algorithms is now available, the computational implications
of these algorithms are somewhat less clear. One could ap-
ply standard black-box convex optimization solvers (such as
interior-point methods) to solve (2), but these are typically too
slow for large problem sizes. The survey article [7] advocates
the use of the alternating direction method of multipliers
(ADMM) in conjunction with appropriate proximal operators
for the corresponding atomic norms. However, the rate of
convergence for this algorithm can be sublinear in general,
and no better bounds seem to be available for our problem.

A related paper by Rao et al. [17] also consider extensions
of (2) to more general atomic norms, and develop a variant of
the Frank-Wolfe algorithm to efficiently solve this problem.
However, this algorithm also seems to exhibit a sublinear rate
of convergence in the worst case. Moreover, while atomic-
norm methods can (in principle) be used in the context of the
graph-structured sparsity model that we have defined above,
the proximal operators can incur a high-degree polynomial
running time; for a detailed discussion of this matter, see the
appendix of [18].

The majority of modern approaches for demixing rely on
convex relaxation procedures. In contrast, the work of [27]
proposes an alternative, nonconvex algorithm called SPIN.
In that work, the signal and interference vectors are mod-
eled as belonging to a pair of incoherent submanifolds of

Algorithm 1 STRUCTDEMIX

1: Input: y ∈ Rn

2: Outputs: x̂, ẑ ∈ Rn

3: Parameters: s, g, G, k, number of iterations t.
4: x̂0 ← 0, ẑ0 ← 0
5: for i← 0, . . . , t− 1 do
6: b← x̂i +H(y − x̂i − F ẑi)
7: x̂i+1 ← T (b)
8: b′ ← ẑi + P (F ∗y − F ∗x̂i − ẑi)
9: ẑi+1 ← P (b′)

10: return x̂← x̂t, ẑ ← ẑt

Rn, and exact projection operators onto these submanifolds
are assumed to be available. Under some relatively mild
conditions, a simple iterative projection algorithm is shown
to converge linearly to a solution that is close to the best
possible. However, this method heavily relies on efficient,
exact projection operators. In the graph-sparsity case, such an
exact projection is known to be NP-hard due to a reduction
from the Steiner Tree problem [28], and projection operators
with even a polynomial running time are unlikely to exist.

III. A NONCONVEX DEMIXING ALGORITHM

We now describe our proposed demixing algorithm. Sup-
pose we are given an input signal y obeying (1) where z ∈ Σk

and x ∈ M(G, s, g) where k, s, g,G are known parameters.
Our goal is to produce estimates of coefficient vectors x̂, ẑ
such that ‖x− x̂‖ and ‖z − ẑ‖ are comparable to the noise
level, i.e., max(‖x− x̂‖, ‖z − ẑ‖) ≤ C‖e‖, for some constant
C. In order to achieve this, we assume availability of the
following (nonconvex) projection oracles:

1) Exact projection onto Σk: There exists an oracle P (·)
such that for any arbitrary w ∈ Rn, the oracle returns a
vector in Σk such that:

‖w − P (w)‖ ≤ min
w′∈Σk

‖w − w′‖.

2) Approximate tail projection ontoM(G, s, g): There exists
an oracle T (·) such that for any arbitrary w ∈ Rn, the
oracle returns a vector in M(O(s), g,G):

‖w − T (w)‖ ≤ cT min
w′∈M(s,g,G)

‖w − w′‖,

where cT > 1 is a constant.
3) Approximate head projection onto M(G, s, g): There

exists an oracle H(·) such that for any arbitrary w ∈ Rn,
the oracle returns a vector in M(O(s), O(g), G):

‖H(w)‖ ≥ cH max
w′∈M(s,g,G)

‖w − w′‖,

where cH < 1 is a constant.
The exact projection oracle P (·) is equivalent to a hard-
thresholding operator. The approximate tail and head projec-
tion oracles, T (·) and H(·), can be implemented using the
prize-collecting Steiner Forest (PCSF) framework of [18].



Given these projection oracles, we propose an alternating
projection algorithm to produce the estimates x̂ and ẑ. The
algorithm, that we call STRUCTDEMIX, is described in pseu-
docode form as Algorithm 1. Intuitively, the algorithm itera-
tively builds up an approximation of x̂ and ẑ by considering
the residual at the current iteration, r = y − x̂i − F ẑi, and
performing an appropriate sequence of projections. Operating
upon the residual r is equivalent to processing the gradient of
the squared-loss function f(x, z) = ‖y − x− Fz‖22.

Therefore, in this sense, this method can be viewed as
a form of block co-ordinate descent (BCD), coupled with
projections onto the feasible sets. A rather similar BCD-like
method was also used in [27]. However, the key differences
are that we perform two projection operations in each iteration
(instead of one) for updating the estimate of x̂ as well as
ẑ. Moreover, we merely use approximate projection oracles
(instead of exact projection oracles). These refinements appear
to be crucial in order to achieve provable convergence for
demixing using the graph-sparsity model.

We can bound the running time of the overall algorithm
by multiplying the number of iterations t by the time taken
per iteration. The main computational challenges in each
iteration involve implementing the three projection oracles,
plus the time taken for matrix-vector multiplication with the
orthonormal basis F . For a large class of problems, each
of the three projection oracles listed above can be imple-
mented (for arbitrary w ∈ Rn) in nearly-linear time. The
hard thresholding operator P (·) can be implemented using a
(generalized) median finding routine in O(n) time. For graph-
sparsity models M(s, g,G), the approximate tail and head
projection oracles can be implemented in O(n log3 n) time in
the case of bounded-degree graphs G, as detailed in [18].

Multiplying with the orthonormal basis matrix F can take
O(nω) time for general F , where ω is the matrix multiplication
constant. However, several structured matrices, such as the dis-
crete cosine transform (DCT) matrix, or the Walsh-Hadamard
Transform (WHT) matrix, satisfy the incoherence condition
specified above, support fast matrix-vector multiplications in
O(n log n)-time, and also can model interference signals of
various kinds. For these specific cases, the per-iteration cost of
STRUCTDEMIX is nearly-linear in the input size. We still need
to bound the number of iterations of the overall algorithm,
which we show for some special cases below.

IV. CASE STUDY: DEMIXING FOR 2D IMAGES

For illustration purposes, we consider a concrete setting
where our signal is a 2D foreground image x ∈ Rn obeying a
graph-sparsity structure. This signal is superimposed with an
interference image Fz where F ∈ Rn×n is the DCT basis and
z ∈ Rn is an arbitrary k-sparse vector. Finally, the composite
signal is corrupted with an additive noise vector e ∈ Rn.

We prove the following theoretical result:

Theorem 1. There exist constants c, C > 0 for which the
following statement is true: if k+ s < c

√
n, then Algorithm 1

produces a signal coefficient vector x̂ ∈ M(5s, g,G) and an
interference coefficient vector ẑ such that:

max(‖x− x̂‖, ‖z − ẑ‖) ≤ C‖e‖.

Moreover, the running time of the algorithm is
O
(
n log3 n log ‖y‖‖e‖

)
.

Proof sketch. The proof is a straightforward concatenation
of existing results. First, we observe that the incoherence
parameter ε of the DCT basis F equals

√
2/n [29]. This

is nothing but the mutual coherence of the composite matrix
Q = [I F ]. For a given sparsity parameter p, the restricted
isometry constant of Q is defined as the smallest nonnegative
number δ such that:

(1− δ)‖u‖2 ≤ ‖Qu‖2 ≤ (1 + δ)‖u‖2 ,

for any p-sparse vector u ∈ R2n. By an application of Ger-
shgorin’s disc theorem, we can show that δ < pε = p

√
2/n.

Assuming that p < c
√
n for sufficiently small c, we can upper-

bound the restricted isometry constant of Q.
Next, we can adapt Theorem 11 of [20], which details the

convergence of an algorithm for recovering signals belonging
to arbitrary sparsity models from linear observations. Suppose
we are given a matrix Q with restricted isometry constant δ for
sparsity p, and linear observations y = Qu+e. From [18], we
also possess approximate projection oracles onto the signal
model M(s, g,G). Then, the AM-IHT algorithm returns a
sequence of estimates {ui}ti=1 such that:

‖u− ui‖ ≤ α‖u− ui−1‖+ β‖e‖ ,

for fixed α and β that depend on the approximation constants
cT and cH . Iterating t = O(log ‖y‖‖e‖ ) times, we can reduce the
error ‖u− ut‖ down to C‖e‖ for some constant C. Invoking
this fact for Q = [I F ] and u = [x∗ z∗]∗, we obtain the
desired convergence result of Alg. 1.

We have implemented and tested our algorithm on realistic
2D image data. Due to space constraints, we only show a
single representative result, and will report more compre-
hensive experiments in a future manuscript. We consider a
sparse grayscale image (x) of the silhouette of a tree with
size n = 256 × 256, sparsity level s = 6500, and number
of connected components g = 2 with respect to the 2D
lattice graph G. This image is corrupted by an interference
image (Fz) that is sparse in the DCT basis F with sparsity
parameter k = 7800, as well as a small amount of additive
white Gaussian noise (e), to yield the input image (y). This
image is shown as Fig. 1(a).

We applied three demixing algorithms on this input image:
basis pursuit denoising (BPDN) [7], [13], a version of SPIN
that only enforces sparsity constraints in both x and z [20], and
Alg. 1 (STRUCTDEMIX) with the approximate tail and head
projection oracles of [18]. All algorithms were assumed to
possess oracle knowledge of the “right” parameter settings for



(a) Input image (b) BPDN [7], [13] (c) SPIN [27] (d) Alg. 1 of this paper
(RNSR = 2.11dB) (RSNR = 0.87dB) (RSNR = 19.66dB)

Fig. 1. Comparison of StructDemix (Alg. 1 of this paper) with previous approaches. (a) Corrupted input image with parameters n = 256× 256, s = 6500,
g = 2, k = 7800. (b,c,d) Recovered images using various algorithms. Our proposed algorithm leverages the implicit clustering of the nonzero coefficients of
the true image in the 2D plane, and is able to achieve superior results compared to standard sparsity-based techniques that ignore this additional structure.

respectively achieving best performance. A rigorous method
for automatically choosing the best possible algorithm pa-
rameters is currently unavailable for our approach, and is an
important point of consideration for future work.

We measure algorithm performance using the recovery SNR
(or RSNR) metric, calculated as ‖x− x̂‖/‖x‖, and expressed
in decibels. Figures 1(b), (c), and (d) display the recovered
images x̂ produced by the three different demixing algorithms.
We observe that enforcing the graph-sparsity structure using
our method results in dramatic benefits, resulting in over
17dB improvement over the previous two methods. Moreover,
despite the nonconvex nature of our method, we have observed
very rapid convergence to the final solution. For this experi-
ment, the signal sparsity s is much larger than

√
n, indicating

that our above theoretical results are somewhat pessimistic,
and that there is considerable scope for improvement.
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