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Abstract

Sparse coding is a crucial subroutine in algorithms for various
signal processing, deep learning, and other machine learn-
ing applications. The central goal is to learn an overcom-
plete dictionary that can sparsely represent a given dataset.
However, storage, transmission, and processing of the learned
dictionary can be untenably high if the data dimension is
high. In this paper, we consider the double-sparsity model in-
troduced by Rubinstein, Zibulevsky, and Elad (2010) where
the dictionary itself is the product of a fixed, known ba-
sis and a data-adaptive sparse component. First, we intro-
duce a simple algorithm for double-sparse coding that can
be amenable to efficient implementation via neural architec-
tures. Second, we theoretically analyze its performance and
demonstrate asymptotic sample complexity and running time
benefits over existing (provable) approaches for sparse cod-
ing. To our knowledge, our work introduces the first com-
putationally efficient algorithm for double-sparse coding that
enjoys rigorous statistical guarantees. Finally, we support our
analysis via several numerical experiments on simulated data,
confirming that our method can indeed be useful in problem
sizes encountered in practical applications.

Introduction
We consider the problem of dictionary learning (also known
as sparse coding), a common and powerful technique in un-
supervised feature learning. The high-level idea of sparse
coding is to represent a set of data vectors in terms of sparse
linear combinations of atoms from a learned basis (or dic-
tionary). Sparse coding has a rich history in diverse fields
such as image processing, machine learning, and neuro-
science (Krim et al. 1999; Elad and Aharon 2006; Rubin-
stein, Bruckstein, and Elad 2010; Mairal et al. 2009). Sparse
coding forms a core component of several neural learning
systems, both biological (Olshausen and Field 1997) and
artificial (Gregor and LeCun 2010; Boureau et al. 2010;
Mazumdar and Rawat 2017).

Formally, suppose we are given p data samples Y =
[y(1), y(2), . . . , y(p)] ∈ Rn×p. We wish to find a dictionary
D ∈ Rn×m (with n < m) and corresponding sparse code
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vectors X = [x(1), x(2), . . . , x(p)] ∈ Rm×p such that the
representation DX fits the data samples as well as possible.
The typical approach is to pose the dictionary (and codes) as
the solution to the constrained optimization problem:

min
D,X
L(D,X) =

1

2

p∑
j=1

‖y(j) −Dx(j)‖22,

s.t.
p∑
j=1

S(x(j)) ≤ S,
(1)

where S(·) is some sparsity-inducing penalty function, such
as the `1-norm. However, even a cursory attempt at solving
(1) reveals several conceptual obstacles:

Theoretical challenges. The constrained optimization
problem (1) involves a non-convex (bilinear) objective func-
tion, as well as potentially non-convex constraints depend-
ing on the function S. Therefore, design and analysis of
provably correct algorithms for this problem can be difficult.
Indeed, the vast majority of practical approaches for sparse
coding are based on heuristics; barring a few recent papers
from the learning theory community (Spielman, Wang, and
Wright 2012; Agarwal et al. 2014; Arora et al. 2015; Sun,
Qu, and Wright 2015), very few methods come equipped
with global correctness guarantees.

Challenges in applications. Even if we ignore theoreti-
cal correctness issues and somehow are able to learn good
enough sparse codes, we often find that applications using
such learned sparse codes encounter memory and running-
time issues. Indeed, in the overcomplete case, merely stor-
ing the learned dictionary D incurs mn = Ω(n2) memory
cost, which is prohibitive when n is large. In practical ap-
plications such as image analysis, one typically resorts to
chopping the data into smaller blocks (e.g., partitioning im-
age data into patches) to make the problem manageable.

An approach used to resolve those practical computa-
tional difficulties is to assume some type of structure in the
(learned) dictionary D; e.g., the dictionary is assumed to be
either separable, or obey a convolutional structure. One such
variant is double-sparse coding (Rubinstein, Zibulevsky, and
Elad 2010; Sulam et al. 2016) where the dictionary D itself
exhibits a sparse structure. More precisely,

D = ΦA,



Setting Reference
Sample complexity

(w/o noise)
Sample complexity

(w/ noise)
Upper bound on

running time
Expt

Regular

MOD (Engan, Aase, and Husoy 1999) 7 7 7 3

K-SVD (Aharon, Elad, and Bruckstein 2006) 7 7 7 3

(Spielman, Wang, and Wright 2012) O(n2 logn) 7 Ω̃(n4) 3

(Arora, Ge, and Moitra 2014) Õ(m2/k2) 7 Õ(np2) 7

(Gribonval, Jenatton, and Bach 2015) O(nm3) O(nm3) 7 7

(Arora et al. 2015) Õ(mk) 7 Õ(mn2p) 7

Double
Sparse

Double Sparsity (Rubinstein, Zibulevsky, and Elad 2010) 7 7 7 3

(Gribonval et al. 2015) Õ(mr) Õ(mr) 7 7

Trainlets (Sulam et al. 2016) 7 7 7 3

This paper Õ(mr) Õ(mr + σ2
ε

mnr
k ) Õ(mnp) 3

Table 1: Comparison of various sparse coding techniques. Expt: whether numerical experiments have been conducted. 7 in all other columns
indicates no provable guarantees. Here, n is the signal dimension, and m is the number of atoms. The sparsity levels for A and x are r and k
respectively, and p is the sample size.

with a known “base dictionary” Φ ∈ Rn×n and a learned
column-sparse “synthesis” matrix A ∈ Rn×m. The base
dictionary Φ is typically any orthonormal basis (such as
the canonical or wavelet basis) chosen according to domain
knowledge, while the synthesis matrix A is column-wise
sparse and is learned from the data. Such a double-sparsity
assumption is appealing conceptually, since it lets us com-
bine the knowledge of good dictionaries Φ to synthesize new
representations tailored to specific data families. Moreover,
the sparse structure of the synthesis matrix produces more
interpretable features than the regular model; see (Rubin-
stein, Zibulevsky, and Elad 2010; Sulam et al. 2016) for an
extensive discussion and illustration. If the columns ofA has
only (say) r � n non-zero elements, then the overall mem-
ory burden of storing and transmitting A is O(mr), which is
much lower than that for general unstructured dictionaries.
Moreover, this approach performs comparably with (regu-
lar) sparse coding approaches, as demonstrated by the ex-
tensive empirical evaluations in (Sulam et al. 2016). How-
ever, two obstacles remain: the associated training algo-
rithms used to learn double-sparse codes incur significant
running time, and no rigorous theoretical analysis of their
performance has been reported in the literature.

Our Contributions
We provide a new algorithmic approach to double-sparse
coding. To the best of our knowledge, our approach is the
first method that enjoys provable statistical and algorithmic
guarantees for the double-sparse coding problem. In addi-
tion, our approach enjoys three benefits: (i) our method is
tractable as well as neurally plausible, i.e., its execution can
plausibly be achieved using a neural network architecture;
(ii) our method enjoys noise robustness guarantees; (iii) we
demonstrate practical relevance via several simulations.

Inspired by the aforementioned recent theoretical pa-
pers in sparse coding, we assume a learning-theoretic setup
where the data samples arise from a ground-truth generative

model. Informally, suppose there exists a true (but unknown)
synthesis matrix A∗ ∈ Rn×m whose columns have only r
non-zero elements, and the ith data sample is generated as:

y(i) = ΦA∗x∗(i) + noise, i = 1, 2, . . . , p,

where the code vector x∗(i) is independently drawn from
a distribution supported on the set of k-sparse vectors. We
desire to learn the matrix A∗. We suppose that the synthesis
matrix A∗ is incoherent (the columns of A∗ are sufficiently
close to orthogonal) and has bounded spectral norm, that m
is at most a constant multiple of n, and that the noise is sub-
Gaussian. All these assumptions are standard1.

First, we propose and analyze an algorithm that produces
a coarse estimate of the synthesis matrix that is sufficiently
close to the ground truth A∗. Our method builds upon the
method of spectral initialization that have recently gained
popularity in non-convex machine learning (Zhang et al.
2016; Wang, Zhang, and Gu 2016).

Second, given such a coarse estimate of the synthesis ma-
trix A∗, we propose and analyze a gradient descent-style
algorithm to refine this estimate. This algorithm is simpler
than previously studied double-sparse coding algorithms
that rely on alternating minimization (such as the Trainlets
approach of (Sulam et al. 2016)), while still giving good sta-
tistical performance.

Put together, the above constitutes the first provably
polynomial-time method for double-sparse coding. In par-
ticular, in the absence of noise, we prove that p =
Ω(mr polylog n) samples are sufficient to obtain a good
enough estimate in the initialization, and also to obtain guar-
anteed linear convergence during descent to provably re-
cover A∗. See Table 1 for the summary and a comparison
with the existing work. Indeed, our sample complexity re-
sult matches with what is achieved in (Gribonval et al. 2015).
Nevertheless, we provide a practical polynomial-time algo-
rithm for learning the sparse dictionary whereas Gribonval

1We clarify the generative model in concrete terms below.



et al. only study properties of a theoretical estimator. Also,
our approach results in strict improvement in sample com-
plexity, as well as running time over rigorous methods for
(regular) sparse coding, such as (Arora et al. 2015).

We analyze our approach in a more realistic setting with
the presence of additive noise, and demonstrate its stability.
While our analysis mainly consists of sufficiency results and
involves several (absolute) unspecified constants, in practice
we have found that these constants are reasonable. We jus-
tify our observations by reporting a suite of numerical ex-
periments on synthetic test datasets.

Techniques
The remainder of the paper is fairly technical; therefore, for
clarity let us provide some non-rigorous intuition for our
approach. At a high level, our method extends the neural
sparse coding approach of (Arora et al. 2015) to the double-
sparse case. A major barrier in the analysis of sparse coding
algorithms is that the gradient of L in (1) with respect to
D inherently depends on the codes of the training samples
(i.e., the columns of X), but these codes are unknown a pri-
ori. However, the main insight in (Arora et al. 2015) is that
within a small enough neighborhood of the true dictionary,
an approximated version of X∗ can be estimated, and there-
fore the overall method is similar to performing approximate
gradient descent towards the population parameter A∗. Re-
garding the actual algorithm as its noisy variation allows us
to overcome the finite-sample variability of the loss, and ob-
tain a descent property directly related to A∗.

The descent stage of our approach leverages this intuition.
However, instead of standard gradient descent, we perform
approximate projected gradient descent so that the column-
wise r-sparsity property is enforced in each new estimate of
A∗. This extra projection step is critical in showing sample
complexity improvement over (regular) sparse coding meth-
ods. The key novelty is in figuring out how to perform the
projection in each gradient iteration. For this purpose, we
develop a novel initialization algorithm that identifies the
locations of the non-zeroes in A∗ even before commencing
the descent phase. This is non-trivially different from previ-
ous rigorous methods for sparse coding, and the analysis is
somewhat more involved.

In (Arora et al. 2015), (the principal eigenvector of)
the weighted covariance matrix of y, given by a suitable
weighted average of outer products yiyTi , is shown to pro-
vide a coarse estimate of a given dictionary atom. We lever-
age this idea and rigorously show that the diagonal of the
weighted covariance matrix serves as a good indicator of the
support of a column inA∗. The success relies on the concen-
tration of the diagonal vector with dimension n, instead of
the covariance matrix with dimensions n× n. With the sup-
port selected, our scheme only utilizes a truncated weighted
covariance matrix with dimensions r× r. This initialization
scheme enables us to effectively reduce the dimension of the
problem, and therefore leads to significant improvement in
sample complexity and running time over previous (prov-
able) sparse coding methods when the data representation
sparsity k is much smaller than m.

Further, we rigorously analyze the proposed algorithms

in the presence of noise with a bounded expected norm. Our
analysis shows that our method is stable, and in the case
of i.i.d. Gaussian noise with bounded expected `2-norms, is
at least a polynomial factor better than previous polynomial
time algorithms for sparse coding in terms of running time.
Our analysis of the descent stage follows from (Arora et al.
2015), where the descent property is first shown under an
ideal algorithm which uses the expectation of the noisy (ap-
proximate) gradient, and is later established to the practical
case via a concentration argument. Our novel initialization
algorithm allows an accurate determination of the support of
A∗, and therefore, for each column of A∗, we can focus on
an r-dimensional subvector of the noisy (approximate) gra-
dient vector, rather than the full n-dimensional vector. This
allows us to sharpen the sample complexity beyond what has
been established in the earlier work.

Setup and Definitions
Notation. Let [m] , {1, 2, . . . ,m} for some integer m. For
any vector x = [x1, x2, . . . , xm]T ∈ Rm, let supp(x) ,
{i ∈ [m] : xi 6= 0}. Given any subset S ⊆ [m], xS corre-
sponds to the sub-vector of x indexed by the elements of S.
For any matrixA ∈ Rn×m, we useA•i andATj• to represent
the ith column and the jth row respectively. For some appro-
priate sets R and S, let AR• (respectively, A•S) be the sub-
matrix ofAwith rows (respectively columns) indexed by the
elements in R (respectively S). For the ith column A•i, use
AR,i to denote the sub-vector indexed by the elements of R.
Use ATR• to indicate (AR•)

T . Let ◦ and sgn(·) represent the
(element-wise) Hadamard operator and sign function. Fur-
ther, thresholdK(x) is a thresholding operator that replaces
any elements of x with magnitude less than K by zero.

The `2-norm ‖x‖ for a vector x and the spectral norm
‖A‖ for a matrix A are used extensively in this paper. In
some cases, we also utilize the Frobenius norm ‖A‖F and a
special matrix operator norm ‖A‖1,2 , max‖x‖1≤1‖Ax‖.

For clarity purposes, we adopt big-Oh notation exten-
sively. The symbols Ω̃(·) and Õ(·) represent Ω(·) and O(·)
up to a multiplicative poly-logarithmic factor of n respec-
tively. Throughout the paper, we use the phrase “with high
probability” (abbreviated to w.h.p.) to describe an event
with failure probability of O(n−ω(1)). In addition, g(n) =
O∗(f(n)) means g(n) ≤ Kf(n) for some small enough
constant K.

Model. Suppose that the observed samples are given by

y(i) = Dx∗(i) + ε, i = 1, . . . , p;

i.e., we are given p samples of y generated from a fixed (but
unknown) dictionary D where the sparse code x∗ and the
error ε are drawn from a joint distribution D specified be-
low. In the double-sparse setting, the dictionary is assumed
to follow a decomposition D = ΦA∗, where Φ ∈ Rn×n is
a known orthonormal basis matrix and A∗ is an unknown,
ground truth synthesis matrix. Our approach relies upon the
following assumptions on the synthesis dictionary A∗:

A1 The dimensions of A∗ obey m = O(n).
A2 A∗ is µ-incoherent, i.e., for i 6= j, |〈A∗•i, A∗•j〉| ≤ µ/

√
n.



A3 A∗•i has exactly r non-zero elements, and is normalized
such that ‖A∗•i‖ = 1 for all i. Moreover, |A∗ij | ≥ τ for
A∗ij 6= 0 and τ = Ω(1/

√
r).

A4 A∗ has bounded spectral norm: ‖A∗‖ ≤ O(
√
m/n).

These assumptions are standard. In Assumption A2, the in-
coherence µ is O(1/ log n) with high probability for a nor-
mal random matrix (Arora, Ge, and Moitra 2014). Assump-
tion A3 is a common assumption for sparse signal recov-
ery 2. Assumption A4 is also standard (Arora et al. 2015).
In addition to Assumptions A1-A4, we make the following
distributional assumptions on D:

B1 The support S = supp(x∗) is of size at most k; its indices
are uniformly drawn without replacement from [m].

B2 The nonzero entries x∗S are pairwise independent and sub-
Gaussian conditioned on the support S, with E[x∗i |i ∈
S] = 0 and E[x∗2i |i ∈ S] = 1.

B3 For i ∈ S, |x∗i | ≥ C where 0 < C ≤ 1.

B4 The additive noise ε has i.i.d. Gaussian entries with vari-
ance σ2

ε with σε = O(1/
√
n).

Similar sub-Gaussian models for D have been previously
considered in (Jenatton, Gribonval, and Bach 2012).

For the rest of the paper, for notational simplicity we set
Φ = In, i.e., the identity matrix. This does not affect any-
thing, since one can study the equivalent problem:

y′ = A∗x∗ + ε′,

where y′ = ΦT y and ε′ = ΦT ε. Due to the Gaussian as-
sumption on ε, it follows that ε′ also has independent Gaus-
sian entries. The analysis can be extended to sub-Gaussian
noise with several minor (but tedious) changes.

Our goal is to devise an algorithm that produces an prov-
ably “good” estimate of A∗. For this, we need to define a
suitable measure of “goodness”. We use the following notion
of distance that measures the maximal column-wise differ-
ence in `2-norm under a suitable transformation.

Definition 1 ((δ, κ)-nearness). A is said to be δ-close to A∗
if there is a permutation π : [m] → [m] and a sign flip
σ : [m] : {±1} such that ‖σ(i)A•π(i) − A∗•i‖ ≤ δ for every
i. In addition, A is said to be (δ, κ)-near to A∗ if ‖A•π −
A∗‖ ≤ κ‖A∗‖ also holds.

For notational simplicity, in our theorems we simply re-
place π and σ in Definition 1 with the identity permutation
π(i) = i and the positive sign σ(·) = +1 while keeping
in mind that in reality we are referring to finding one ele-
ment of the equivalence class of all permutations and sign
flip transforms of A∗.

We will also need some technical tools from (Arora et
al. 2015) to analyze gradient descent-style methods. Con-
sider an iterative algorithm that looks for a desired solution
z∗ ∈ Rn to optimize some function f(z). Suppose that the

2The requirement of exactly r non-zero elements is merely for
simplicity and there is no technical difficulty to extend our algo-
rithms and corresponding analyses to the case with at most r non-
zero elements.

algorithm produces a sequence of estimates z1, . . . , zs via
the update rule:

zs+1 = zs − ηgs,
for some vector gs and scalar step size η. The goal is to char-
acterize “good” directions gs such that the sequence con-
verges to z∗ under the Euclidean distance. The following
gives one such sufficient condition for gs.

Definition 2. A vector gs at the sth iteration is (α, β, γs)-
correlated with a desired solution z∗ if

〈gs, zs − z∗〉 ≥ α‖zs − z∗‖2 + β‖gs‖2 − γs.

We know from convex optimization that if f is 2α-
strongly convex and 1/2β-smooth, and gs is chosen as the
gradient ∇zf(z), then gs is (α, β, 0)-correlated with z∗.
In our setting, the desired solution corresponds to A∗, the
ground-truth synthesis matrix. In (Arora et al. 2015), it
is shown that gs = Ey[(Asx − y)sgn(x)T ], where x =
thresholdC/2((As)T y) indeed satisfies Definition 2. This gs
is a population quantity and not explicitly available, but one
can estimate such gs using an empirical average. The corre-
sponding estimator ĝs is a random variable, so we also need
a related correlated-with-high-probability condition:

Definition 3. A direction ĝs at the sth iteration is (α, β, γs)-
correlated-w.h.p. with a desired solution z∗ if, w.h.p.,

〈ĝs, zs − z∗〉 ≥ α‖zs − z∗‖2 + β‖ĝs‖2 − γs.

From Definition 2, one can establish a form of descent
property in each update step, as shown in Theorem 1.

Theorem 1 (Convergence of approximate gradient descent).
Suppose that gs satisfies the condition described in Defini-
tion 2 for s = 1, 2, . . . , T . Moreover, 0 < η ≤ 2β and
γ = maxTs=1 γs. Then, the following holds for all s:

‖zs+1 − z∗‖2 ≤ (1− 2αη)‖zs − z∗‖2 + 2ηγs.

In particular, the above update converges geometrically to
z∗ with an error γ/α. That is,

‖zs+1 − z∗‖2 ≤ (1− 2αη)s‖z0 − z∗‖2 + 2γ/α.

We can obtain a similar result for Definition 3 except that
‖zs+1 − z∗‖2 is replaced with its expectation.

Armed with the above tools, we are now ready to intro-
duce our method. As discussed above, our approach con-
sists of two stages: an initialization algorithm that produces
a coarse estimate of A∗, and a descent-style algorithm that
refines this estimate to accurately recover A∗.

Stage 1: Initialization
The first stage of our approach iteratively estimates the
columns of A∗ (up to sign flips) in a manner similar
to (Arora et al. 2015). However, their initialization algorithm
incurs severe computational costs in terms of running time.
More precisely, the expected value of the running time is
Ω̃(mn2p), which is unrealistic for large m and n.

In contrast, we leverage the double-sparsity assumption
in our generative model to obtain a more efficient approach.



Algorithm 1 Truncated Pairwise Reweighting
Initialize L = ∅
Randomly divide p samples into two disjoint sets P1 and
P2 of sizes p1 and p2 respectively
While |L| < m. Pick u and v from P1 at random

For every l = 1, 2, . . . , n, compute

êl =
1

p2

p2∑
i=1

〈y(i), u〉〈y(i), v〉(y(i)
l )2

Sort ê1, ê2, . . . , ên in descending order
If ê(r) ≥ Ω(k/mr) ∧ ê(r+1)/ê(r) < O∗(r/ log2 n)

Let R̂ be set of the r largest entries of ê
M̂u,v = 1

p2

∑p2
i=1〈y(i), u〉〈y(i), v〉y(i)

R̂
(y

(i)

R̂
)T

δ1, δ2 ← top singular values of M̂u,v

zR̂ ← top singular vector of M̂u,v

If δ1 ≥ Ω(k/m) and δ2 < O∗(k/m log n)

If dist(±z, l) > 1/ log n for any l ∈ L
Update L = L ∪ {z}

Return A0 = (L1, . . . , Lm)

The key ingredient of our method is a novel spectral pro-
cedure that gives us an estimate of the column supports
purely from the observed samples. The full algorithm, that
we call Truncated Pairwise Reweighting, is listed in pseu-
docode form as Algorithm 1.

We first state a theoretical result characterizing the perfor-
mance of Algorithm 1.
Theorem 2. Suppose that Assumptions B1-B4 hold and As-
sumptions A1-A4 hold with parameters µ = O∗

( √
n

k log3 n

)
,

k = O∗
( √n

logn

)
and r = o(log2 n). Then, with high prob-

ability, Algorithm 1 returns an initial estimate A0 whose
columns share the same support as A∗ and is (δ, 2)-near to
A∗ with δ = O∗(1/ log n) if p1 = Ω̃(m) and p2 = Ω̃(mr).

The formal proof is available in our extended ver-
sion (Nguyen, Wong, and Hegde 2017). To provide some
intuition about the working of the algorithm (and proof of
Theorem 2), let us consider the setting where we have ac-
cess to infinitely many samples. Of course, this setting is
fictional. However, the analysis of this case is much simpler
since we can deal with expected values rather than empiri-
cal averages. Moreover, the analysis reveals several key lem-
mas, which we will reuse extensively for proving Theorem
2.

First, we give some intuition behind the definition of the
“scores”, êl. Fix a sample y = A∗x∗+ εy from the available
training set, and consider two other samples

u = A∗α+ εu, v = A∗α′ + εv.

Consider the (very coarse) estimate for the sparse code of u
with respect to A∗:

β = A∗Tu = A∗TA∗α+A∗T εu.

As long as A∗ is incoherent enough and εu, εy is small, the
estimate β “looks” like α in the following sense:

〈y, u〉 ≈ 〈x∗, β〉 ≈ 〈x∗, α〉.
Moreover, the above inner products are large only if α and
x∗ share some elements in their supports; else, they are
likely to be small. Likewise, the weight 〈y, u〉〈y, v〉 is large
only when x∗ shares common elements with both α and α′.
The following lemma leverages this intuition; given suffi-
ciently many samples, êl gives an indicator of how large the
“overlap” between α and α′ is.
Lemma 1. Fix samples u and v. Suppose that y = A∗x∗+ε
is a random sample independent of u and v, whose codes α
and α′ have supports U and V respectively. Then

el , E[〈y, u〉〈y, v〉y2
l ] =

∑
i∈U∩V

qiciβiβ
′
iA
∗2
li + E,

where qi = P[i ∈ S], qij = P[i, j ∈ S] and ci = E[x4
i |i ∈

S]. Also, E has absolute value O∗(k/m log2 n) w.h.p.
Now, suppose for a moment that u and v share exactly one

common atom in their codes, i.e., U ∩ V = {i}. Lemma 1
suggests that el is proportional to A∗2li ; therefore, the scores
el corresponding to the r largest coefficients of the shared
atom will dominate the rest. This lets us isolate the support,
R, of the shared atom. We still need a mechanism to esti-
mate its non-zero coefficients. This is handled in the follow-
ing two Lemmas, which shows that the spectrum of a certain
(truncated) weighted covariance matrix reveals this infor-
mation. This step is reminiscent of covariance-thresholding
methods for sparse PCA (Johnstone and Lu 2004; Desh-
pande and Montanari 2014), and distinguishes our approach
from that in (Arora et al. 2015).
Lemma 2. The truncated re-weighting matrix obeys:

MR
u,v , E[〈y, u〉〈y, v〉yRyTR]

=
∑

i∈U∩V
qiciβiβ

′
iA
∗
R,iA

∗T
R,i + E′,

whereE′ have spectrum norm at mostO∗(k/m log n) w.h.p.
Lemma 3. If U ∩ V = {i}, then the r largest entries of el
are of magnitude at least Ω(k/mr) and are supported on R.
Moreover, the top singular vector of MR

u,v is δ-close to A∗R,i
for δ = O∗(1/ log n).

Using the same argument for bounding E in Lemma 1,
we can see that M0 , qiciβiβ

′
iA
∗
R,iA

∗T
R,i has norm at least

Ω(k/m) when u and v share a unique element i. Therefore,
the spectral norm of M0 dominates those of the perturbation
term E′. Thus, given R, we can use the first singular vector
of MR

u,v as an estimate of A∗R,i.
The question remains when and how we can certify that

u and v share a unique single element in the support of their
code vectors. Fortunately, this condition can be confirmed by
checking the decay of the singular values of the (truncated)
covariance matrix. This is quantified as follows.
Lemma 4. If the top singular value of Mu,v is at
least Ω(k/m) and the second largest one is at most
O∗(k/m log n), then u and v share a unique dictionary ele-
ment with high probability.



Algorithm 2 Double-Sparse Coding Descent Algorithm
Initialize A0 is (δ, 2)-near to A∗. H = (hij)n×m where
hij = 1 if i ∈ supp(A0

•j) and 0 otherwise.
Repeat for s = 0, 1, . . . , T

Encode: x(i) = thresholdC/2((As)T y(i))

Update: As+1 = PH(As − ηĝs) = As − ηPH(ĝs),
where ĝs = 1

p

∑p
i=1(Asx(i) − y(i))sgn(x(i))T

and PH(G) = H ◦G

The above discussion assumes infinitely many available
samples. However, we can derive analogous finite-sample
lemmas which hold w.h.p. via concentration arguments. See
the appendix for details. Similar to (Arora et al. 2015), our
algorithm requires Õ(m) iterations to estimate all the atoms,
and hence the expected running time is Õ(mnp).

Lemma 3 indicates that the support, as well as a coarse
(δ-close) estimate, of each column of A∗ can be estimated
using our proposed initialization method. We now show how
to refine this estimate using a descent-style method.

Stage 2: Descent
We adapt the neural sparse coding approach of (Arora et al.
2015) to obtain an improved estimate of A∗. As mentioned
earlier, at a high level the algorithm is akin to performing
approximate gradient descent. The insight is that within a
small enough neighborhood (in the sense of δ-closeness) of
the true A∗, an estimate of the ground-truth code vectors,
X∗, can be constructed using a neurally plausible algorithm.
It can be used to construct a noisy approximate gradient ĝs.

The innovation, in our case, is the double-sparsity model
since we know a priori that A∗ is itself sparse. Under suf-
ficiently many samples, the support of A∗ can be deduced
from the initialization stage; therefore we perform an extra
projection step in each iteration of gradient descent. In this
sense, our method is non-trivially different from (Arora et
al. 2015). The full algorithm is presented as Algorithm 2.

As discussed in the Setup section above, convergence of
noisy approximate gradient descent can be achieved as long
as ĝs is correlated-w.h.p. with the true solution. However,
an analogous convergence result for projected gradient de-
scent does not exist in the literature. We fill this gap via a
careful analysis. Due to the projection, we only require the
correlated-w.h.p. property for a part of ĝs with A∗ when
it is restricted to some support set. The descent property is
still achieved via Theorem 3. Due to the various perturbation
terms, ĝ is only a biased estimate of∇AL(A,X); therefore,
we can only refine the estimate of A∗ until the column-wise
error is of the order of O(

√
k/n). The performance of Al-

gorithm 2 can be characterized via the following theorem.

Theorem 3. Suppose that the initial estimate A0 has the
correct column supports and is (δ, 2)-near to A∗ with δ =

O∗(1/ log n). If Algorithm 2 is provided with p = Ω̃(m +
σ2
ε
mnr
k ) samples at each step and η = Θ(m/k), then

E[‖As•i −A∗•i‖
2
] ≤ (1− ρ)s‖A0

•i −A∗•i‖
2

+O(k/n)

for some 0 < ρ < 1/2 and for s = 1, 2, . . . , T . Con-
sequently, As converges to A∗ geometrically until column-
wise error is O

(√
k/n

)
.

The formal proof of Theorem 3 is available in our ex-
tended version (Nguyen, Wong, and Hegde 2017). Here, we
shed some light on the analysis techniques by studying the
case of infinite samples. Therefore, the estimate ĝs can be
replaced by its expectation,

gs , E[(Asx− y)sgn(x)T ].

Let us focus on the ith column. Given the knowlege of the
support R of A∗•i, we only have to restrict our focus to gsR,i.
A key component is to establish the (α, β, γs)-correlation of
gsRi with A∗R,i so as to obtain a descent property, similar to
Theorem 3, for infinite number of samples. To this end, we
establish the following lemma, using the same strategy as in
(Arora et al. 2015).

Lemma 5. Suppose that the initial estimate A0 has the
correct column supports and is (δ, 2)-near to A∗ with
δ = O∗(1/ log n). The update is of the form gsR,i =

piqi(λ
s
iA

s
R,i −A∗R,i + ξsi ± ζ) where R = supp(A∗•i) and

ξsi = AsR,−idiag(qij)(A
s
•−i)

TA∗•i/qi

and λsi = 〈As•i, A∗•i〉. In addition, ‖ξsi ‖ ≤ O(k/n) and ζ is
negligible.

Intuitively, Lemma 5 suggests that gsR,i is almost equal
to piqi(A

s
R,i − A∗R,i) (since λsi ≈ 1), which is a desired

direction. Then, we can prove the correlation and descent
results accordingly:

Lemma 6. If As is (2δ, 2)-near to A∗ with δ =
O∗(1/ log n) and R = supp(A∗•i), then 2gsRi,i

is
(α, 1/2α, ε2/α)-correlated with A∗R,i by

〈2gsR,i, AsR,i−A∗R,i〉 ≥ α‖AsR,i−A∗R,i‖2+1/(2α)‖gsR,i‖2−ε2/α

where ε = O(k2/mn). In particular, gsR,i is (α, β, γ)-
correlated with A∗R,i for α = Ω(k/m), β = Ω(m/k) and
γ = O(k3/mn2).

After the results under infinite samples are achieved, we
study the concentration of the empirical average ĝs to its
mean. Again, due to the knowledge of the column supports,
for each column of ĝs, we only have to establish such con-
centration over a r-dimensional sub-vector. This helps to
achieve a better sample complexity especially when r is
small. To sum up, the respective sample complexities for the
descent and the initialization stage are Õ(m + σ2

ε
mnr
k ) and

Õ(mr). Overall, the sample complexity Õ(mr + σ2
ε
mnr
k )

sufficiently guarantees the success of our approach.
Regarding the running time, the running time per itera-

tion of Algorithm 2 is O(mmax(k, r)p) due to the sparsity
of both A and x. The main botteneck is at the initialization
stage with the expected running time is Õ(mnp). Conse-
quently, the total computational complexity of our approach
is Õ(mnp).
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Figure 1: (top) The performance of four methods on three metrics (recovery rate, reconstruction error and running time) in sample size in
the noiseless case. (bottom) The same metrics are measured for the noisy case.

Empirical Study
We compare our method with three different methods for
both standard sparse and double-sparse coding. For the stan-
dard approach, we implement the algorithm proposed in
(Arora et al. 2015), which currently is the best theoretically
sound method for provable sparse coding. However, since
their method does not explicitly leverage the double-sparsity
model, we also implement a heuristic modification that per-
forms a hard thresholding (HT)-based post-processing step
in the initialization and learning procedures (which we dub
Arora + HT). The final comparison is the Trainlets approach
of (Sulam et al. 2016).

We generate a synthetic training dataset according to the
model described in the Setup. The base dictionary Φ is the
identity matrix of size n = 64 and the square synthesis ma-
trixA∗ is a block diagonal matrix with 32 blocks. Each 2×2
block is of form [1 1; 1 −1] (i.e., the column sparsity r = 2) .
The support of x∗ is drawn uniformly over all 6-dimensional
subsets of [m], and the nonzero coefficients are randomly set
to ±1 with equal probability. In our simulations with noise,
we add Gaussian noise ε with entrywise variance σ2

ε = 0.01
to each of those above samples. For all the approaches ex-
cept Trainlets, we use T = 2000 iterations for the initializa-
tion procedure, and set the number of steps in the descent
stage to 25. Since Trainlets does not have a specified initial-
ization procedure, we initialize it with a random Gaussian
matrix upon which column-wise sparse thresholding is then
performed. The learning step of Trainlets3 is executed for
50 iterations, which tolerates its initialization deficiency. For
each Monte Carlo trial, we uniformly draw p samples, feed
these samples to the four different algorithms, and observe

3We utilize Trainlets’s implementation provided at
http://jsulam.cswp.cs.technion.ac.il/home/software/.

their ability to reconstruct A∗.
We evaluate these approaches on three metrics as a func-

tion of the number of available samples: (i) fraction of trials
in which each algorithm successfully recovers the ground
truthA∗; (ii) reconstruction error; and (iii) running time. The
synthesis matrix is said to be “successfully recovered” if the
Frobenius norm of the difference between the estimate Â
and the ground truth A∗ is smaller than a threshold which
is set to 10−4 in the noiseless case, and to 0.5 in the other.
All three metrics are averaged over 100 Monte Carlo sim-
ulations. As discussed above, the Frobenius norm is only
meaningful under a suitable permutation and sign flip trans-
formation linking Â and A∗. We estimate this transforma-
tion using a simple maximum weight matching algorithm.
Specifically, we construct a weighted bipartite graph with
nodes representing columns of A∗ and Â and adjacency ma-
trix defined asG = |A∗T Â|, where |·| is taken element-wise.
We compute the optimal matching using the Hungarian al-
gorithm, and then estimate the sign flips by looking at the
sign of the inner products between the matched columns.

The results of our experiments are shown in Figure 1
with the top and bottom rows respectively for the noise-
less and noisy cases. The two leftmost figures suggest that
all algorithms exhibit a “phase transitions” in sample com-
plexity that occurs in the range of 500-2000 samples. In
the noiseless case, our method achieves the phase transition
with the fewest number of samples. In the noisy case, our
method nearly matches the best sample complexity perfor-
mance (next to Trainlets, which is a heuristic and compu-
tationally expensive). Our method achieves the best perfor-
mance in terms of (wall-clock) running time in all cases.
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Auxiliary Lemma
Claim 1 (Maximal row `1-norm). Given that ‖A∗‖2F = m and ‖A∗‖ = O(

√
m/n), then ‖A∗T ‖1,2 = Θ(

√
m/n).

Proof. Recall the definition of the operator norm:

‖A∗T ‖1,2 = sup
x 6=0

‖ATx‖
‖x‖1

≤ sup
x 6=0

‖ATx‖
‖x‖

= ‖A∗T ‖ = O(
√
m/n).

Since ‖A∗‖2F = m, ‖A∗T ‖1,2 ≥ ‖A∗‖F /
√
n =

√
m/n. Combining with the above, we have ‖A∗T ‖1,2 = Θ(

√
m/n).

Along with Assumptions A1 and A3, the above claim implies the number of nonzero entries in each row is O(r). This Claim
is an important ingredient in our analysis of our initialization algorithm shown in Section “Stage 1: Initialization”.

Analysis of Initialization Algorithm
Proof of Lemma 1
The proof of Lemma 1 can be divided into three steps: 1) we first establish useful properties of β with respect to α; 2) we then
explicitly derive el in terms of the generative model parameters and β; and 3) we finally bound the error terms in E based on
the first result and appropriate assumptions.

Claim 2. In the generative model, ‖x∗‖ ≤ Õ(
√
k) and ‖ε‖ ≤ Õ(σε

√
n) with high probability.

Proof. The claim directly follows from the fact that x∗ is a k-sparse random vector whose nonzero entries are independent
sub-Gaussian with variance 1. Meanwhile, ε has n independent Gaussian entries of variance σ2

ε .
Despite its simplicity, this claim will be used in many proofs throughout the paper. Note also that in this section we will

calculate the expectation over y and often refer probabilistic bounds (w.h.p.) under the randomness of u and v.

Claim 3. Suppose that u = A∗α + εu is a random sample and U = supp(α). Let β = A∗Tu, then, w.h.p., we have (a)
|βi − αi| ≤ µk logn√

n
+ σε log n for each i and (b) ‖β‖ ≤ Õ(

√
k + σε

√
n)).

Proof. The proof mostly follows from Claim 36 of (Arora et al. 2015), with an additional consideration of the error εu. Write
W = U\{i} and observe that

|βi − αi| = |A∗T•i A∗•WαW +A∗T•i εu| ≤ |〈A∗T•WA∗•i, αW 〉|+ |〈A∗•i, εu〉|.

SinceA∗ is µ-incoherence, then ‖A∗T•i A∗•W ‖ ≤ µ
√
k/n. Moreover, αW has k−1 independent sub-Gaussian entries of variance

1, therefore |〈A∗T•WA∗•i, αW 〉| ≤
µk logn√

n
with high probability. Also recall that εu has independent Gaussian entries of variance

σ2
ε , thenA∗T•i εu is Gaussian with the same variance (‖A∗•i‖ = 1). Hence |A∗T•i ε| ≤ σε log nwith high probability. Consequently,
|βi − αi| ≤ µk logn√

n
+ σε log n, which is the first part of the claim.

Next, in order to bound ‖β‖, we express β as

‖β‖ = ‖A∗TA∗•UαU +A∗T εu‖ ≤ ‖A∗‖‖A∗•U‖‖αU‖+ ‖A∗‖‖εu‖.

Using Claim 2 to get ‖αU‖ ≤ Õ(
√
k) and ‖εu‖ ≤ Õ(σε

√
n) w.h.p., and further noticing that ‖A∗•U‖ ≤ ‖A∗‖ ≤ O(1), we

complete the proof for the second part.
Claim 3 suggests that the difference between βi and αi is bounded above by O∗(1/ log2 n) w.h.p. if µ = O∗(

√
n

k log3 n
).

Therefore, w.h.p., C − o(1) ≤ |βi| ≤ |αi| + o(1) ≤ O(logm) for i ∈ U and |βi| ≤ O∗(1/ log2 n) otherwise. On the other
hand, under Assumption B4, ‖β‖ ≤ Õ(

√
k) w.h.p. We will use these results multiple times in the next few proofs.

Proof of Lemma 1. We decompose el into small parts so that the stochastic model D is made use.

el = E[〈y, u〉〈y, v〉y2
l ] = E[〈A∗x∗ + ε, u〉〈A∗x∗ + ε, v〉(〈A∗l·, x∗〉+ ε)2]

= E
[{
〈x∗, β〉〈x∗, β′〉+ x∗T (βvT + β′uT )ε+ uT εεT v

}{
〈A∗l•, x∗〉

2
+ 2〈A∗l•, x∗〉εl + εl

}]
= E1 + E2 + · · ·+ E9.



where the terms are

E1 = E[〈x∗, β〉〈x∗, β′〉〈A∗l•, x∗〉
2
]

E2 = 2E[〈x∗, β〉〈x∗, β′〉〈A∗l•, x∗〉εl]
E3 = E[〈x∗, β〉〈x∗, β′〉ε2

l ]

E4 = E
[
〈A∗l·, x∗〉

2
x∗T (βvT + β′uT )ε

]
E5 = E

[
〈A∗l·, x∗〉x∗T (βvT + β′uT )εεl

]
E6 = E

[
(βvT + β′uT )εε2

l

]
E7 = E[uT εεT v〈A∗l•, x∗〉

2
]

E8 = 2E[uT εεT v〈A∗l•, x∗〉εl]
E9 = E[uT εεT vε2

l ].

(2)

Because x∗ and ε are independent and have zero mean, E2 and E4 are clearly zero. E6 = (βvT + β′uT )E[εε2
l ] = 0 due to

the fact that E[εjε
2
l ] = 0, for j 6= l, and E[ε3

l ] = 0; and E8 = A∗Tl• E[x∗]E
[
uT εεT vεl

]
= 0. We bound the remaining terms

separately in the following claims.

Claim 4. In the decomposition (2), E1 is of the form

E1 =
∑

i∈U∩V
qiciβiβ

′
iA
∗2
li +

∑
i/∈U∩V

qiciβiβ
′
iA
∗2
li +

∑
j 6=i

qij(βiβ
′
iA
∗2
lj + 2βiβ

′
jA
∗
liA
∗
lj),

where all those terms except
∑
i∈U∩V qiciβiβ

′
iA
∗2
li have magnitude at most O∗(k/m log2 n) w.h.p.

Proof. Using the generative model in Assumptions B1-B4, we have

E1 = E[〈x∗, β〉〈x∗, β′〉〈A∗l•, x∗〉
2
]

= ES
[
Ex∗|S [

∑
i∈S

βix
∗
i

∑
i∈S

β′ix
∗
i

(∑
i∈S

A∗lix
∗
i

)2
]
]

=
∑
i∈[m]

qiciβiβ
′
iA
∗2
li +

∑
i,j∈[m],j 6=i

qij(βiβ
′
iA
∗2
lj + 2βiβ

′
jA
∗
liA
∗
lj)

=
∑

i∈U∩V
qiciβiβ

′
iA
∗2
li +

∑
i/∈U∩V

qiciβiβ
′
iA
∗2
li +

∑
j 6=i

qij(βiβ
′
iA
∗2
lj + 2βiβ

′
jA
∗
liA
∗
lj),

where we have used qi = P[i ∈ S], qij = P[i, j ∈ S] and ci = E[x4
i |i ∈ S] and Assumptions B1-B4. We now prove that the

last three terms are upper bounded by O∗(k/m log2 n). The key observation is that all these terms typically involve a quadratic
form of the l-th row A∗Tl• whose norm is bounded by O(1) (by Claim 1). Moreover, |βiβ′i| is relatively small for i /∈ U ∩ V
while qij = O(k2/m2). For the second term, we apply Claim 3 for i ∈ [m]\(U ∩ V ) to get |βiβ′i| ≤ O∗( 1

log4 n
) w.h.p. for

µ = O∗(
√
n

k log3 n
) and use the bound qici = Θ(k/m), then, w.h.p.,∣∣∣ ∑
i/∈U∩V

qiciβiβ
′
iA
∗2
li

∣∣∣ ≤ max
i
|qiciβiβ′i|

∑
i/∈U∩V

A∗2li ≤ max
i
|qiciβiβ′i|‖A∗‖

2
1,2 ≤ O

∗(k/m log4 n).

For the third term, we make use of the bounds on ‖β‖ and ‖β′‖ from the previous claim where ‖β‖‖β′‖ ≤ Õ(k) w.h.p., and
on qij = Θ(k2/m2). More precisely, w.h.p.,∣∣∣∑

j 6=i

qijβiβ
′
iA
∗2
lj

∣∣∣ =
∣∣∣∑
i

βiβ
′
i

∑
j 6=i

qijA
∗2
lj

∣∣∣ ≤∑
i

|βiβ′i|
(∑
j 6=i

qijA
∗2
lj

)
≤ (max

i6=j
qij)

∑
i

|βiβ′i|
(∑

j

A∗2lj

)
≤ (max

i 6=j
qij)‖β‖‖β′‖‖A∗‖21,2 ≤ Õ(k3/m2),

where the second last inequality follows from the Cauchy-Schwarz inequality. For the last term, we write it in a matrix form as∑
j 6=i qijβiβ

′
jA
∗
liA
∗
lj = A∗Tl• QβA

∗
l• where (Qβ)ij = qijβiβ

′
j for i 6= j and (Qβ)ij = 0 for i = j. Then

|A∗Tl• QβA∗l•| ≤ ‖Qβ‖‖A∗l•‖
2 ≤ ‖Qβ‖F ‖A

∗‖21,2,



where ‖Qβ‖2F =
∑
i6=j q

2
ijβ

2
i (β′j)

2 ≤ (maxi 6=j q
2
ij)
∑
i β

2
i

∑
j(β
′
j)

2 ≤ (maxi 6=j q
2
ij)‖β‖

2‖β′‖2. Finally,∣∣∣∑
j 6=i

qijβiβ
′
jA
∗
liA
∗
lj

∣∣∣ ≤ (max
i 6=j

qij)‖β‖‖β′‖‖A∗‖21,2 ≤ Õ(k3/m2).

Under Assumption k = O∗(
√
n

logn ) and hence Õ(k3/m2) ≤ O∗(k/m log2 n), we have the same bound O∗(k/m log2 n) for
those last two terms w.h.p. Therefore, we have completed the proof of the claim.

Claim 5. In the decomposition (2), |E3|, |E5|, |E7| and |E9| are at most O∗(k/m log2 n).

Proof. Recall that E[x2
i |S] = 1 and qi = P[i ∈ S] = Θ(k/m) for S = supp(x∗), then

E3 = E[〈x∗, β〉〈x∗, β′〉ε2
l ] = σ2

εES
[
Ex∗|S [

∑
i,j∈S

βiβ
′
jx
∗
i x
∗
j ]
]

= σ2
εES [

∑
i∈S

βiβ
′
i] =

∑
i

σ2
εqiβiβ

′
i.

Write Q = diag(q1, q2, . . . , qm). It is verified that |E3| = |σ2
ε〈Qβ, β′〉| ≤ σ2

ε‖Q‖‖β‖‖β′‖ ≤ Õ(σ2
εk

2/m) = Õ(k3/mn)

where we have used ‖β‖ ≤ Õ(
√
k) and σε = O(1/

√
n). For convenience, we handle the seventh term before E5:

E7 = E[uT εεT v〈A∗l•, x∗〉
2
] = E[〈A∗l•, x∗〉

2
]uTE[εεT ]v =

∑
i

σ2
ε〈u, v〉qiA2

li = σ2
ε〈u, v〉ATl•QAl•.

To bound this term, we use Claim 9 in Appendix Section “Sample Complexity” below to get ‖u‖ = ‖A∗α+εu‖ ≤ Õ(k) w.h.p.
and 〈u, v〉 ≤ ‖u‖‖v‖ ≤ Õ(

√
k) w.h.p. Consequently, |E7| ≤ σ2

ε‖Q‖‖Al•‖
2|〈u, v〉| ≤ Õ(k3/mn) because ‖Al•‖2 ≤ O(m/n).

Now, we work on the fifth term E5 as follows:

E5 = E
[
〈A∗l·, x∗〉x∗T (βvT + β′uT )εεl

]
= A∗Tl• E

[
x∗x∗T

]
(βvT + β′uT )E[εεl]

= σ2
εA
∗T
l• Q(vlβ + ulβ

′),

and |E5| ≤ σ2
ε‖A∗Tl• ‖‖Q(vlβ + ulβ

′)‖ ≤ σ2
ε‖A∗Tl• ‖‖Q‖‖vlβ + ulβ

′‖. To show that E5 is bounded by Õ(k3/mn), it suffices
to show that ‖vlβ+ ulβ

′‖ ≤ 2‖u‖‖β‖ ≤ Õ(k) w.h.p. using the result ‖u‖ ≤ Õ(k), which follows from Claim 9. The last term

E9 = E[uT εεT vε2
l ] = uTE

[
εεT ε2

l

]
v = 9σ4

ε〈u, v〉,
due to the independent entries of ε and E[ε4

l ] = 9σ4
ε . Therefore, |E9| ≤ 9σ4

ε‖u‖‖v‖ ≤ O(k3/n2). Since m = O(n) and
k ≤ O∗(

√
n

logn ), we have the same bound Õ(k/m log2 n) for all |E3|, |E5|, |E7| and |E9|, and conclude the proof of the
claim.

Combining the bounds from Claims 4 and 5 for every single term in (2), we go to finish the proof for Lemma 1.

Proof of Lemma 2
We prove this lemma by using the same strategy used to prove Lemma 1.

Mu,v , E[〈y, u〉〈y, v〉yRyTR] = E[〈A∗x∗ + ε, u〉〈A∗x∗ + ε, v〉(A∗R•x∗ + εR)(A∗R•x
∗ + εR)T ]

= E
[{
〈x∗, β〉〈x∗, β′〉+ x∗T (βvT + β′uT )ε+ uT εεT v

}{
A∗R•x

∗x∗TA∗TR• +A∗R•x
∗εTR + εRx

∗TA∗TR• + εRε
T
R

}]
= M1 + · · ·+M8,

in which only nontrivial terms are kept in place, including

M1 = E[〈x∗, β〉〈x∗, β′〉A∗R•x∗x∗TA∗TR•]
M2 = E[〈x∗, β〉〈x∗, β′〉εRεTR]

M3 = E[x∗T (βvT + β′uT )εA∗R•x
∗εTR]

M4 = E[x∗T (βvT + β′uT )εεRx
∗TA∗TR•]

M5 = E[uT εεT vA∗R•x
∗x∗TA∗TR•]

M6 = E[uT εεT vA∗R•x
∗εTR]

M7 = E[uT εεT vεTRx
∗TA∗TR•]

M8 = E[uT εεT vεRε
T
R].

(3)



By swapping inner product terms and taking advantage of the independence, we can show thatM6 = E[A∗R•x
∗uT εεT vεTR] = 0

and M7 = E[uT εεT vεTRx
∗TA∗TR•] = 0. The remaining are bounded in the next claims.

Claim 6. In the decomposition (3),

M1 =
∑

i∈U∩V
qiciβiβ

′
iA
∗
R,iA

∗T
R,i + E′1 + E′2 + E′3,

where E′1 =
∑
i/∈U∩V qiciβiβ

′
iA
∗
R,iA

∗T
R,i, E

′
2 =

∑
i 6=j qijβiβ

′
iA
∗
R,jA

∗T
R,j and E′3 =

∑
i 6=j qij(βiA

∗
R,iβ

′
jA
∗T
R,j + β′iA

∗
R,iβjA

∗T
R,j)

have norms bounded by O∗(k/m log n) w.h.p.

Proof. The derivation of M1 is similar to the way E1 is derived in the proof of Lemma 1, we state and use the expression of
M1 without proof. To prove the claim, we bound all the terms with respect to the spectral norm of A∗R• and use the spectral
norm bound (Assumption A4) to obtain the exact upper bounds.

For the first term E′1, rewrite E′1 = A∗R,SD1A
∗T
R,S where S = [m]\(U ∩ V ) and D1 is a diagonal matrix whose entries are

qiciβiβ
′
i. Clearly, ‖D1‖ ≤ maxi∈S |qiciβiβ′i| ≤ O∗(k/m log2 n) as shown in Claim 4, then

‖E′1‖ ≤ max
i∈S
|qiciβiβ′i|‖A∗R,S‖

2 ≤ max
i∈S
|qiciβiβ′i|‖A∗R•‖

2
,

where ‖A∗R,S‖ ≤ ‖A∗R•‖. The second term E′2 is a sum of positive semidefinite matrices, then

E′2 =
∑
i6=j

qijβiβ
′
iA
∗
R,jA

∗T
R,j � max

i 6=j
qij

(∑
i

βiβ
′
i

)(∑
j

A∗R,jA
∗T
R,j

)
� (max

i 6=j
qij)‖β‖‖β′‖A∗R•A∗TR•,

which implies that ‖E′2‖ ≤ (maxi 6=j qij)‖β‖‖β′‖‖A∗R•‖
2. Observe that E′3 has the same form as the last term in Claim 4.

Effectively, E′3 = A∗TR•QβA
∗
R•, then

‖E′3‖ ≤ ‖Qβ‖‖A∗R•‖
2 ≤ (max

i6=j
qij)‖β‖‖β′‖‖A∗R•‖

2
.

By Claim 3, we have ‖β‖ and ‖β′‖ are bounded by O(
√
k log n) w.h.p. In addition, ‖A∗R•‖ ≤ ‖A∗‖ ≤ O(1) and note that

k ≤ O∗(
√
n/ log n), then we complete the proof for Lemma 6.

Claim 7. In the decomposition (3), M2, M3, M4, M5 and M8 have norms bounded by O∗(k/m log n) w.h.p.

Proof. Recall the definition of Q in Claim 5 and use the fact that E[x∗x∗T ] = Q, we can get M2 = E[〈x∗, β〉〈x∗, β′〉εRεTR] =∑
i σ

2
εqiβiβ

′
iIr. Then, ‖M2‖ ≤ σ2

ε maxi qi‖β‖‖β′‖ ≤ Õ(k3/mn). The next three terms all involve A∗R• whose norm is
bounded, so we work on them at the same time.

M3 = E[x∗T (βvT + β′uT )εA∗R•x
∗εTR] = E[A∗R•x

∗x∗T (βvT + β′uT )εεTR]

= A∗R•E[x∗x∗T ](βvT + β′uT )E[εεTR]

= A∗R•Q(βvT + β′uT )E[εεTR],

and
M4 = E[x∗T (βvT + β′uT )εεRx

∗TA∗TR•] = E[εRε
T (vβT + uβ′T )x∗x∗TA∗TR•]

= E[εRε
T ](vβT + uβ′T )E[x∗x∗T ]A∗TR•

= E[εRε
T ](vβT + uβ′T )QA∗TR•,

and the fifth term M5 = E[uT εεT vA∗R•x
∗x∗TA∗TR•] = σ2

εu
T vA∗R•E[x∗x∗T ]A∗TR• = σ2

εu
T vA∗R•QA

∗T
R•. We already have

‖E[εεTR]‖ = σ2
ε , ‖Q‖ ≤ O(k/m) and |uT v| ≤ Õ(k) (Claim 9). The remaining work is to bound ‖βvT + β′uT ‖, from which

the bound of vβT + uβ′T directly follows. We have ‖βvT ‖ = ‖A∗uvT ‖ ≤ ‖A∗‖‖u‖‖v‖ ≤ Õ(k), hence all three terms M3,
M4 and M5 are bounded in norm by Õ(σ2

εk
2/m) ≤ Õ(k3/mn) w.h.p.

The remaining term is

M8 = E[uT εεT vεRε
T
R] = E[

(∑
i,j

uivjεiεj
)
εRε

T
R]

= E[
(∑
i∈R

uiviε
2
i εRε

T
R

)
] + E[

(∑
i 6=j

uivjεiεj
)
εRε

T
R]

= σ4
εuRv

T
R,

where uR = A∗R•α + (εu)R and vR = A∗R•α
′ + (εv)R. We can see that ‖uR‖ ≤ ‖A∗R•‖‖α‖ + ‖(εu)R‖ ≤ O(

√
k log n), so

‖M8‖ ≤ Õ(σ4
εk) = Õ(k3/n2). Since m = O(n) and k ≤ O∗(

√
n

logn ), we can bound all the above terms by O∗(k/m log n) and
finish the proof of Claim 7.

Combining the results of Claims 6 and 7, we complete the proof of Lemma 2.



Proof of Lemma 3
The recovery of A∗•i’s support directly follows from Lemma 1. For the latter part, recall from Lemma 2 that

Mu,v = qiciβiβ
′
iA
∗
R,iA

∗T
R,i + perturbation terms.

The perturbation terms have norms bounded by O∗(1/ log n) w.h.p. On the other hand, the first term has norm at least Ω(k/m)
since ‖A∗R,i‖ = 1 for the correct support R and |qiciβiβ′i| ≥ Ω(k/m). Then applying Wedin’s Theorem to Mu,v , we can
conclude that the top singular vector must be O∗(k/m log n)/Ω(k/m) = O∗(1/ log n) -close to A∗R,i.

Proof of Lemma 4
The proof follows from that of Lemma 37 in (Arora et al. 2015). The main idea is to separate the possible cases of how u and v
share support and to use Lemma 2 with the bounded perturbation terms to conclude when u and v share exactly one. We note
that due to the condition where the ordered statistics e(r) ≥ Ω(k/mr) and e(r+1)/e(r) ≤ O∗(r/ log2 n), then it must be the
case that u and v share only one atom or share more than one atoms with the same support. When their supports overlap more
than one, then the first singular value cannot dominate the second one, and hence u and v can only share a unique element.

Analysis of Main Algorithm
Simple Encoding
Lemma 7. Assume that As is δ-close to A∗ for δ = O∗(1/ log n) and µ ≤

√
n

2k , and k ≥ Ω(logm). Then with high probability
over random samples y = A∗x∗ + ε,

sgn(thresholdC/2
(
(As)T y

)
= sgn(x∗). (4)

Proof. We follow the same proof strategy from (Arora et al. 2015) (Lemmas 16 and 17) to prove a more general version in
which the noise ε is taken into account. Write S = supp(x∗) and skip the superscript s on As for the readability. What we need
is to show S = {i ∈ [m] : 〈A•i, y〉 ≥ C/2} and then sgn(〈As•i, y〉) = sgn(x∗i ) for each i ∈ S with high probability. Following
the same argument of (Arora et al. 2015), we prove in below a stronger statement that, even conditioned on the support S,
S = {i ∈ [m] : 〈A•i, y〉 ≥ C/2} with high probability.

Rewrite
〈A•i, y〉 = 〈A•i, A∗x∗ + ε〉 = 〈A•i, A∗•i〉x∗i +

∑
j 6=i

〈A•i, A∗•j〉x∗j + 〈A•i, ε〉,

and observe that, due to the closeness of A•i and A∗•i, the first term is either close to x∗i or equal to 0 depending on whether or
not i ∈ S. Meanwhile, the rest are small due to the incoherence and the concentration in the weighted average of noise. We will
show that both Zi =

∑
S\{i}〈A•i, A∗•j〉x∗j and 〈A•i, ε〉 are bounded by C/8 with high probability.

The cross-term Zi =
∑
S\{i}〈A•i, A∗•j〉x∗j is a sum of zero-mean independent sub-Gaussian random variables, which is

another sub-Gaussian random variable with variance σ2
Zi

=
∑
S\{i}〈A•i, A∗•j〉

2. Note that

〈A•i, A∗•j〉
2 ≤ 2

(
〈A∗•i, A∗•j〉

2
+ 〈A•i −A∗•i, A∗•j〉

2) ≤ 2µ2/n+ 2〈A•i −A∗•i, A∗•j〉
2
,

where we use Cauchy-Schwarz inequality and the µ-incoherence of A∗. Therefore,

σ2
Zi
≤ 2µ2k/n+ 2‖A∗T•S (A•i −A∗•i)‖

2
F ≤ 2µ2k/n+ 2‖A∗•S‖

2‖A•i −A∗•i‖
2 ≤ O(1/ log n),

under the condition µ ≤
√
n

2k and k = Ω(logm). Applying Bernstein’s inequality, we get |Zi| ≤ C/8 with high probability.
What remains is to bound the noise term 〈A•i, ε〉. In fact, 〈A•i, ε〉 is a sum of n Gaussian random variables, which is a sub-
Gaussian with variance σ2

ε . It is easy to see that |〈A•i, ε〉| ≤ σε log n with high probability. Notice that σε = O(1/
√
n).

Finally, we combine these bounds to have |Zi + 〈A•i, ε〉| ≤ C/4. Therefore, for i ∈ S, then |〈A•i, y〉| ≥ C/2 and negligible
otherwise. Using union bound for every i = 1, 2, . . . ,m, we finish the proof of the lemma.

Approximate Gradient in Expectation
Proof of Lemma 5. Having the result from Lemma 7, we are now able to study the expected update direction gs = E[(Asx −
y)sgn(x)T ]. Recall that As is the update at the s-th iteration and x , thresholdC/2((As)T y). Based on the generative model,
denote pi = E[x∗i sgn(x∗i )|i ∈ S], qi = P[i ∈ S] and qij = P[i, j ∈ S]. Throughout this section, we will use ζ to denote
any vector whose norm is negligible although they can be different across their appearances. A−i denotes the sub-matrix of
A whose i-th column is removed. To avoid overwhelming appearance of the superscript s, we skip it from As for neatness.
Write Fx∗ as the event under which the support of x is the same as that of x∗, and F̄x∗ is its complement. In other words,
1Fx∗ = 1[sgn(x) = sgn(x∗)] and 1Fx∗ + 1F̄x∗ = 1. Note that

gs•i = E[(Ax− y)sgn(xi)] = E[(Ax− y)sgn(xi)1Fx∗ ]± ζ.



Using the fact that y = A∗x∗+ε and that under Fx∗ , we have Ax = A•SxS = A•SA
T
•Sy = A•SA

T
•SA

∗x∗+A•SA
T
•Sε. Using

the independence of ε and x∗ to get rid of the noise term, we get

gs•i = E[(A•SA
T
•S − In)A∗x∗1Fx∗ ] + E[(A•SA

T
•S − In)εsgn(xi)1Fx∗ ]± ζ

= E[(A•SA
T
•S − In)A∗x∗sgn(xi)1Fx∗ ]± ζ (Independence of ε and x’s)

= E[(A•SA
T
•S − In)A∗x∗sgn(x∗i )(1− 1F̄x∗ )]± ζ (Under Fx∗ event)

= E[(A•SA
T
•S − In)A∗x∗sgn(x∗i )]± ζ.

Recall from the generative model assumptions that S = supp(x∗) is random and the entries of x∗ are pairwise independent
given the support, so

gs•i = ESEx∗|S [(A•SA
T
•S − In)A∗x∗sgn(x∗i )]± ζ

= piES,i∈S [(A•SA
T
•S − In)A∗•i]± ζ

= piES,i∈S [(A•iA
T
•i − In)A∗•i] + piES,i∈S [

∑
l∈S,l 6=i

A•lA
T
•lA
∗
•i]± ζ

= piqi(A•iA
T
•i − In)A∗•i + pi

∑
l∈[m],l 6=i

qilA•lA
T
•lA
∗
•i ± ζ

= piqi(λiA•i −A∗•i) + piA•−idiag(qij)A
T
•−iA

∗
•i ± ζ,

where λsi = 〈As•i, A∗•i〉. Let ξsi = AR,−idiag(qij)A
T
•−iA

∗
•i/qi for j = 1, . . . ,m. We now have the full expression of the

expected approximate gradient
gsR,i = piqi(λiA

s
R,i −A∗R,i + ξsi )± ζR. (5)

What remains is to bound the norms of ξs and ζ. It follows from the nearness that ‖AsR,−i‖ ≤ O(
√
m/n) and ‖As−i‖ ≤

O(
√
m/n). Then, along with the fact that ‖A∗i ‖ = 1, we can see that

‖ξsi ‖ ≤ ‖AsRi,−i‖max
j 6=i

qij
qi
‖As−i‖ ≤ O(k/n). (6)

Next, we show that ζ is negligible in norm. Since Fx∗ happens with very high probability, it suffices to bound norm of (Ax−
y)sgn(xi) which can easily be done using Lemma 12 and Lemma 11 in Section “Sample Complexity”. This concludes the proof
for Lemma 5.

(α, β, γs)-Correlation
Proof of Lemma 6. Throughout the proof, we omit the superscript s for simplicity and denote 2α = piqi. First, we rewrite gs•i
as a combination of the true direction As•i −A∗•i and a term with small norm:

gR,i = 2α(AR,i −A∗R,i) + v, (7)

where v = 2α[(λi − 1)A•i + εi] with norm bounded. In fact, since A•i is δ-close to A∗•i, and both have unit norm, then
‖2α(λi − 1)A•i‖ = α‖A•i −A∗•i‖

2 ≤ α‖A•i −A∗•i‖ and ‖ξi‖ ≤ O(k/n) from (6). Therefore,

‖v‖ = ‖2α(λi − 1)AR,i + 2αξi‖ ≤ α‖AR,i −A∗R,i‖+ ε,

where ε = O
(
k2/mn

)
. Now, we make use of (7) to show the first part of Lemma 6:

〈2gR,i, AR,i −A∗R,i〉 = 4α‖AR,i −A∗R,i‖
2

+ 〈2v,AR,i −A∗R,i〉. (8)

We want to lower bound the inner product term in ‖gRi,i‖
2 and ‖AR,i −A∗R,i‖

2. Effectively, from (7)

4α〈v,A•i −A∗•i〉 = ‖gR,i‖2 − 4α2‖AR,i −A∗R,i‖
2 − ‖v‖2

≥ ‖gR,i‖2 − 6α2‖AR,i −A∗R,i‖
2 − 2ε2, (9)

where the last step is due to Cauchy-Schwarz inequality: ‖v‖2 ≤ 2(α2‖AR,i −A∗R,i‖
2

+ ε2).
Substitute 2〈v,A•i −A∗•i〉 in (8) for the right hand side of (9), we get the first result:

〈2gR,i, AR,i −A∗R,i〉 ≥ α‖AR,i −A∗R,i‖
2

+
1

2α
‖gR,i‖2 −

ε2

α
.

The second part directly follows from the correlation and Theorem 1. Moreover, we have pi = Θ(k/m) and qi = Θ(1), then
α = Θ(k/m), β = Θ(m/k) and γs = O(k3/mn2). Then gsR,i is (Ω(k/m),Ω(m/k), O(k3/mn2))-correlated with the true
solution.



Nearness
Lemma 8. If As is (2δ, 2)-near to A∗, then ‖As+1 −A∗‖ ≤ 2‖A∗‖.

Proof. From Lemma 5 we have gs•i = piqi(λiA
s
•i −A∗•i) +A•−idiag(qij)A

T
•−iA

∗
•i ± ζ. Denote R̄ = [n]\R, then it is obvious

that gs
R̄,i

= AR̄,−idiag(qij)A
T
•−iA

∗
•i ± ζ is bounded by O(k2/m2). Then we follows the proof of Lemma 24 in (Arora et al.

2015) for the nearness with full gs = gsR,i + gs
R̄,i

to finish the proof for this lemma.

Sample Complexity
In previous sections, we rigorously analyzed both initialization and learning algorithms as if the expectations gs, e and Mu,v

were given. Here we show that corresponding estimates based on empirical means are sufficient for the algorithms to succeed,
and identify how may samples are required. Technically, this requires the study of their concentrations around their expectations.
Having had these concentrations, we are ready to prove Theorems 2 and 3.

The entire section involves a variety of concentration bounds. Here we make heavy use of Bernstein’s inequality for different
types of random variables (including scalar, vector and matrix). The Bernstein’s inequality is stated as follows.

Lemma 9 (Bernstein’s Inequality). Suppose that Z(1), Z(2), . . . , Z(p) are p i.i.d. samples from some distribution D. If E[Z] =
0, ‖Z(j)‖ ≤ R almost surely and ‖E[Z(j)(Z(j))T ‖ ≤ σ2 for each j, then

1

p

∥∥∥ p∑
j=1

Z(j)
∥∥∥ ≤ Õ(R

p
+

√
σ2

p

)
(10)

holds with probability 1− n−ω(1).

Since all random variables (or their norms) are not bounded almost surely in our model setting, we make use of a technical
lemma that is used in (Arora et al. 2015) to handle the issue.

Lemma 10 ((Arora et al. 2015)). Suppose a random variable Z satisfies P[‖Z‖ ≥ R(log(1/ρ))C ] ≤ ρ for some constant
C > 0, then

(a) If p = nO(1), it holds that ‖Z(j)‖ ≤ Õ(R) for each j with probability 1− n−ω(1).
(b) ‖E[Z1‖Z‖≥Ω̃(R)]‖ = n−ω(1).

This lemma suggests that if 1
p

∑p
i=1 Z

(j)(1 − 1‖Z(j)‖≥Ω̃(R)) concentrates around its mean with high probability, then so
does 1

p

∑p
i=1 Z

(j) because the part outside the truncation level can be ignored. Since all random variables of our interest are
sub-Gaussian or a product of sub-Gaussian that satisfy this lemma, we can apply Lemma 9 to the corresponding truncated
random variables with carefully chosen truncation levels. Then the original random variables concentrate likewise.

In the next proofs, we define suitable random variables and identify good bounds of R and σ2 for them. Note that in this
section, the expectations are taken over y by conditioning on u and v. This aligns with the construction that the estimators of e
and Mu,v are empirical averages over i.i.d. samples of y, while u and v are kept fixed. Due to the dependency on u and v, these
(conditional) expectations inherit randomness from u and v, and we will formulate probabilistic bounds for them.

The application of Bernstein’s inequality requires a bound on ‖E[ZZT (1− 1‖Z‖≥Ω̃(R))]‖. We achieve that by the following

technical lemma, where Z̃ is a standardized version of Z.

Lemma 11. Suppose a random variable Z̃Z̃T = aT where a ≥ 0 and T is positive semi-definite. They are both random.
Suppose P[a ≥ A] = n−ω(1) and B > 0 is a constant. Then,

‖E[Z̃Z̃T (1− 1‖Z̃‖≥B)]‖ ≤ A‖E[T ]‖+O(n−ω(1))

Proof. To show this, we make use of the decomposition Z̃Z̃T = aT and a truncation for a. Specifically,

‖E[Z̃Z̃T (1− 1‖Z̃‖≥B)]‖ = E[aT (1− 1‖Z̃‖≥B)]

≤ ‖E[a(1− 1a≥A)T (1− 1‖Z̃‖≥B)]‖+ ‖E[a1a≥AT (1− 1‖Z̃‖≥B)]‖
≤ ‖E[a(1− 1a≥A)T ]‖+ E[a1a≥A‖T‖(1− 1‖Z̃‖≥B)]

≤ A‖E[T ]‖+
(
E[‖aT‖2(1− 1‖Z̃‖≥B)]E[1a≥A]

)1/2
≤ A‖E[T ]‖+

(
E[‖Z̃‖4(1− 1‖Z̃‖≥B)]P[a ≥ A]

)1/2
≤ A‖E[T ]‖+ B2

(
P[a ≥ A]

)1/2
≤ A‖E[T ]‖+O(n−ω(1)),



where at the third step we used T (1− 1‖Z̃‖≥B)] � T because of the fact that T is the positive semi-definite and 1− 1‖Z̃‖≥B ∈
{0, 1} . Then, we finish the proof of the lemma.

Sample Complexity of Algorithm 1
In Algorithm 1, we empirically compute the “scores” ê and the reduced weighted covariance matrix M̂u,v to produce an estimate
for each column of A∗. Since the construction of M̂u,v depends upon the support estimate R̂ given by ranking ê, we denote it
by M̂ R̂

u,v . We will show that we only need p = Õ(m) samples to be able to recover the support of one particular atom and up to
some specified level of column-wise error with high probability.

Lemma 12. Consider Algorithm 1 in which p is the given number of samples. For any pair u and v, then with high probability
a) ‖ê − e‖ ≤ O∗(k/m log2 n) when p = Ω̃(m) and b) ‖M̂ R̂

u,v −MR
u,v‖ ≤ O∗(k/m log n) when p = Ω̃(mr) where R̂ and R

are respectively the estimated and correct support sets of one particular atom.

Proof of Theorem 2 Using Lemma 12, we are ready to prove the Thereom 2. According to Lemma 1 when U ∩V = {i}, we
can write ê as

ê = qiciβiβ
′
iA
∗
R,i ◦A∗R,i + perturbation terms + (ê− e),

and consider ê − e as an additional perturbation with the same magnitude O∗(k/m log2 n) in the sense of ‖ · ‖∞ w.h.p. The
first part of Lemma 3 suggests that when u and v share exactly one atom i, then the set R̂ including r largest elements of ê is
the same as supp(A∗i ) with high probability.

Once we have R̂, we again write M̂ R̂
u,v using Lemma 2 as

M̂ R̂
u,v = qiciβiβ

′
iA
∗
R,iA

∗T
R,i + perturbation terms + (M̂ R̂

u,v −MR
u,v),

and consider M̂ R̂
u,v −MR

u,v as an additional perturbation with the same magnitude O∗(k/m log n) in the sense of the spectral

norm ‖ · ‖ w.h.p. Using the second part of Lemma 3, we have the top singular vectors of M̂ R̂
u,v is O∗(1/ log n) -close to A∗R,i

with high probability.
Since every vector added to the listL in Algorithm is close to one of the dictionary, thenA0 must be δ-close toA∗. In addition,

the nearness ofA0 to A∗ is guaranteed via an appropriate projection onto the convex set B = {A|A close to A0 and ‖A‖ ≤
2‖A∗‖}. Finally, we finish the proof of Theorem 2.

Proof of Lemma 12, Part a For some fixed l ∈ [n], consider p i.i.d. realizations Z(1), Z(2), . . . , Z(p) of the random variable
Z , 〈y, u〉〈y, v〉y2

l , then êl = 1
p

∑p
i=1 Z

(i) and el = E[Z]. To show that ‖ê − e‖∞ ≤ O∗(k/m log2 n) holds with high
probability, we first study the concentration for the l-th entry of ê − e and then take the union bound over all l = 1, 2, . . . , n.
We derive upper bounds for |Z| and its variance E[Z2] in order to apply Bernstein’s inequality in (12) to the truncated version
of Z.

Claim 8. |Z| ≤ Õ(k) and E[Z2] ≤ Õ(k2/m) with high probability.

Again, the expectation is taken over y by conditioning on u and v, and therefore is still random due to the randomness of u
and v. To show Claim 8, we begin with proving the following auxiliary claim.

Claim 9. ‖y‖ ≤ Õ(
√
k) and |〈y, u〉| ≤ Õ(

√
k) with high probability.

Proof. From the generative model, we have

‖y‖ = ‖A∗•Sx∗S + ε‖ ≤ ‖A∗•Sx∗S‖+ ‖ε‖ ≤ ‖A∗•S‖‖x∗S‖+ ‖ε‖,

where S = supp(x∗). From Claim 2, ‖x∗S‖ ≤ Õ(
√
k) and ‖ε‖ ≤ Õ(σε

√
n) w.h.p. In addition, A∗ is overcomplete and has

bounded spectral norm, then ‖A∗•S‖ ≤ ‖A∗‖ ≤ O(1). Therefore, ‖y‖ ≤ Õ(
√
k) w.h.p., which is the first part of the proof. To

bound the second term, we write it as

|〈y, u〉| = |〈A∗•Sx∗S + ε, u〉| ≤ |〈x∗S , A∗T•Su〉|+ |〈ε, u〉|.

Similar to y, we have ‖u‖ ≤ Õ(
√
k) w.h.p. and hence ‖A∗T•Su‖ ≤ ‖A∗T•S‖‖u‖ ≤ O(

√
k) with high probability. Since u and x∗

are independent sub-Gaussian and 〈x∗S , A∗T•Su〉 are sub-exponential with variance at most O(
√
k), |〈x∗S , A∗T•Su〉| ≤ Õ(k) w.h.p.

Similarly, |〈ε, u〉| ≤ Õ(
√
k) w.h.p. Consequently, |〈y, u〉| ≤ Õ(

√
k) w.h.p., and we conclude the proof of the claim.



Proof of Claim 8. We have Z = 〈y, u〉〈y, v〉y2
l = 〈y, u〉〈y, v〉(〈A∗l•, x∗〉 + εl)

2 with 〈y, u〉〈y, v〉 ≤ Õ(k) w.h.p. according to
Claim 9. What remains is to bound y2

l = (〈A∗l•, x∗〉+ εl)
2. Because 〈A∗l•, x∗〉 is sub-Gaussian with variance ES(

∑
i∈S A

∗2
li ) ≤

‖A∗T ‖21,2 = O(1), then |〈A∗l•, x∗〉| ≤ O(log n) w.h.p. Similarly for εl, |εl| ≤ O(σε log n) w.h.p. Ultimately, |〈A∗l•, x∗〉+ εl| ≤
O(log n), and hence we obtain with high probability the bound |Z| ≤ Õ(k).

To bound the variance term, we write Z2 = 〈y, v〉2y2
l 〈y, u〉

2
y2
l . Note that, from the first part, we get 〈y, v〉2y2

l ≤ Õ(k) and
|Z| ≤ Õ(k) w.h.p.. We apply Lemma 11 with some appropriate scaling to both terms, then

E[Z2(1− 1|Z|≥Ω̃(k))] ≤ Õ(k)E[〈y, u〉2y2
l ] +O(n−ω(1)),

where E[〈y, u〉2y2
l ] is equal to el for pair u, v with v = u. From Lemma 1 and its proof in Appendix Section “Analysis of

Initialization Algorithm”,

E[〈y, u〉2y2
l ] =

m∑
i=1

qiciβ
2
iA
∗2
li + perturbation terms,

in which the perturbation terms are bounded by O∗(k/m log2 n) w.h.p. (following Claims 4 and 5). The dominant term∑
i qiciβ

2
iA
∗2
li ≤ (max qiciβ

2
i )‖A∗l•‖

2 ≤ Õ(k/m) w.h.p. because |βi| ≤ O(logm) (Claim 3). Then we complete the proof of
the second part.

Proof of Lemma 12, Part a. We are now ready to prove Part a of Lemma 12. We apply Bernstein’s inequality in Lemma 9 for
the truncated random variable Z(i)(1− 1|Z(i)|≥Ω̃(R)) withR = Õ(k) and variance σ2 = Õ(k2/m) from Claim 8, then∥∥∥∥1

p

p∑
i=1

Z(i)(1− 1|Z(i)|≥Ω̃(R))− E[Z(1− 1|Z|≥Ω̃(R))]

∥∥∥∥ ≤ Õ(k)

p
+

√
Õ(k2/m)

p
≤ O∗(k/m log2 n), (11)

w.h.p. for p = Ω̃(m). Then êl = 1
p

∑p
i=1 Z

(i) also concentrates with high probability. Take the union bound over
l = 1, 2, . . . , n, we get ‖ê− e‖∞ ≤ O∗(k/m log2 n) with high probability and complete the proof of 12, Part a.

Proof of Lemma 12, Part b Next, we will prove that ‖M̂ R̂
u,v −MR

u,v‖ ≤ O∗(k/m log n) with high probability. We only need
to prove the concentration inequalities for the case when conditioned on the event that R̂ is equivalent to R w.h.p. Again, what
we need to derive are an upper norm boundR of the matrix random variable Z , 〈y, u〉〈y, v〉yRyTR and its variance.

Claim 10. ‖Z‖ ≤ Õ(kr) and ‖E[ZZT ]‖ ≤ Õ(k2r/m) hold with high probability.

Proof. We have ‖Z‖ ≤ |〈y, u〉〈y, v〉|‖yR‖2 with |〈y, u〉〈y, v〉| ≤ Õ(k) w.h.p. (according to Claim 9) whereas ‖yR‖2 =∑
i∈R y

2
l ≤ O(r log2 n) w.h.p. because yl ≤ O(log n) w.h.p. (proof of Claim 8). This implies ‖Z‖ ≤ Õ(kr) w.h.p. The second

part is handled similarly as in the proof of Claim 8. We take advantage of the bounds of M̂u,v in Lemma 2. Specifically, using
the first part ‖Z‖ ≤ Õ(kr) and 〈y, v〉2‖yR‖2 ≤ Õ(kr), and applying Lemma 11, then

‖E[ZZT (1− 1‖Z‖≥Ω̃(kr))]‖ ≤ Õ(kr)‖E[〈y, u〉2yRyTR]‖+ Õ(kr)O(n−ω(1)) ≤ Õ(kr)‖Mu,u‖,

where Mu,u arises from the application of Lemma 2. Recall that

Mu,u =
∑
i

qiciβ
2
iA
∗
R,iA

∗T
R,i + perturbation terms,

where the perturbation terms are all bounded by O∗(k/m log n) w.h.p. by Claims 6 and 7. In addition,

‖
∑
i

qiciβ
2
iA
∗
R,iA

∗T
R,i‖ ≤ (max

i
qiciβ

2
i )‖A∗R•‖

2 ≤ Õ(k/m)‖A∗‖2 ≤ Õ(k/m)

w.h.p. Finally, the variance bound is Õ(k2r/m) w.h.p.
Then, applying Bernstein’s inequality in Lemma 9 to the truncated version of Z with R = Õ(kr) and variance σ2 =

Õ(k2r/m) and obtain the concentration for the full Z to get

‖M̂R
u,v −MR

u,v‖ ≤
Õ(kr)

p
+

√
Õ(k2r/m)

p
≤ O∗(k/m log n)



w.h.p. when the number of samples is p = Ω̃(mr) under Assumption A4.1.
We have proved that ‖M̂R

u,v−MR
u,v‖ ≤ O∗(k/m log n) as conditioned on the support consistency event holds w.h.p. ‖M̂ R̂

u,v−
MR
u,v‖ ≤ O∗(k/m log n) is easily followed by the law of total probability through the tail bounds on the conditional and

marginal probabilities (i.e. P[‖M̂R
u,v −MR

u,v‖ ≤ O∗(k/m log n)|R̂ = R]) and P[R̂ 6= R]. We finish the proof of Lemma 12,
Part b for both cases of the spectral bounds.

Proof of Theorem 3 and Sample Complexity of Algorithm 2
In this section, we prove Theorem 3 and identify sample complexity per iteration of Algorithm 2. We divide the proof into two
steps: 1) show that when As is (δs, 2)-near to A∗ for δs = O∗(1/ log n), the approximate gradient estimate ĝs is (α, β, γs)-
correlated-whp with A∗ with γs ≤ O(k2/mn) + αo(δ2

s) , and 2) show that the nearness is preserved at each iteration. These
correspond to showing the following lemmas:

Lemma 13. At iteration s of Algorithm 2, suppose that As has each column correctly supported and is (δs, 2)-near to A∗ and
that η = O(m/k). Denote R = supp(As•i), then the update ĝsR,i is (α, β, γs)-correlated-whp with A∗R,i where α = Ω(k/m),
β = Ω(m/k) and γs ≤ O(k2/mn) + αo(δ2

s) for δs = O∗(1/ log n).

Note that this is a finite-sample version of Lemma 6.

Lemma 14. If As is (δs, 2)-near to A∗ and number of samples used in step s is p = Ω̃(m), then with high probability
‖As+1 −A∗‖ ≤ 2‖A∗‖.

Proof of Theorem 3. The correlation of ĝi withA∗i , described in Lemma 13, implies the descent of column-wise error according
to Theorem 1. Along with Lemma 14, the theorem follows directly.

Proof of Lemma 13 We prove Lemma 13 by obtaining a tail bound on the difference between ĝsR,i and gsR,i using the
Bernstein’s inequality in Lemma 9.

Lemma 15. At iteration s of Algorithm 2, suppose that As has each column correctly supported and is (δs, 2)-near to A∗. For
R = supp(Asi ) = supp(A∗i ), then ‖ĝsR,i − gsR,i‖ ≤ O(k/m) · (o(δs) +O(εs)) with high probability for δs = O∗(1/ log n) and
εs = O(

√
k/n) when p = Ω̃(m+ σ2

ε
mnr
k ).

To prove this lemma, we study the concentration of ĝsR,i, which is a sum of random vector of the form (y − Ax)Rsgn(xi).
We consider random variable Z , (y − Ax)Rsgn(xi)|i ∈ S, with S = supp(x∗) and x = thresholdC/2(AT y). Then, using
the following technical lemma to bridge the gap in concentration of the two variables. We adopt this strategy from (Arora et al.
2015) for our purpose.

Claim 11. Suppose that Z(1), Z(2), . . . , Z(N) are i.i.d. samples of the random variable Z = (y −Ax)Rsgn(xi)|i ∈ S. Then,∥∥∥ 1

N

N∑
j=1

Z(j) − E[Z]
∥∥∥ ≤ o(δs) +O(εs) (12)

holds with probability when N = Ω̃(k + σ2
εnr), δs = O∗(1/ log n) and εs = O(

√
k/n).

Proof of Lemma 15. Once we have done the proof of Claim 11, we can easily prove Lemma 15. We recycle the proof of Lemma
43 in (Arora et al. 2015).

Write W = {j : i ∈ supp(x∗(j))} and N = |W |, then express ĝR,i as

ĝR,i =
N

p

1

N

∑
j

(y(j) −Ax(j))Rsgn(x
(j)
i ),

where 1
|W |

∑
j(y

(j) − Ax(j))Rsgn(x
(j)
i ) is distributed as 1

N

∑N
j=1 Z

(j) with N = |W |. Note that E[(y − Ax)Rsgn(xi)] =

E[(y −Ax)Rsgn(xi)1i∈S ] = E[Z]P[i ∈ S] = qiE[Z] with qi = Θ(k/m). Following Claim 11, we have

‖ĝsR,i − gsR,i‖ ≤ O(k/m)
∥∥∥ 1

N

N∑
j=1

Z(j) − E[Z]
∥∥∥ ≤ O(k/m) · (o(δs) +O(εs)),

holds with high probability as p = Ω(mN/k). Substituting N in Claim 11, we obtain the results in Lemma 15.

Proof of Claim 11. We are now ready to prove the claim. What we need are good bounds for ‖Z‖ and its variance, then we can
apply Bernstein’s inequality in Lemma 9 for the truncated version of Z, then Z is also concentrates likewise.



Claim 12. ‖Z‖ ≤ R holds with high probability forR = Õ(δs
√
k + µk/

√
n+ σε

√
r) with δs = O∗(1/ log n).

Proof. From the generative model and the support consistency of the encoding step, we have y = A∗x∗ + ε = A∗•Sx
∗
S + ε and

xS = AT•Sy = AT•SA
∗
•Sx
∗
S +AT•Sε. Then,

(y −Ax)R = (A∗R,Sx
∗
S + εR)−AR,SAT•SA∗•Sx∗S −AR,SAT•Sε

= (A∗R,S −AR,S)x∗S +AR,S(Ik −AT•SA∗•S)x∗S + (In −A•SAT•S)R•ε.

Using the fact that x∗S and ε are sub-Gaussian and that ‖Mw‖ ≤ Õ(σw‖M‖F ) holds with high probability for a fixed M and
a sub-Gaussian w of variance σ2

w, we have

‖(y −Ax)Rsgn(xi)‖ ≤ Õ(‖A∗R,S −AR,S‖F + ‖AR,S(Ik −AT•SA∗•S)‖F + σε‖(In −A•SAT•S)R•‖F ).

Now, we need to bound those Frobenius norms. The first quantity is easily bounded as

‖A∗R,S −AR,S‖F ≤ ‖A
∗
•S −A•S‖F ≤ δs

√
k, (13)

since A is δs-close to A∗. To handle the other two, we use the fact that ‖UV ‖F ≤ ‖U‖‖V ‖F . Using this fact for the second
term, we have

‖AR,S(Ik −AT•SA∗•S)‖F ≤ ‖AR,S‖‖(Ik −A
T
•SA

∗
•S)‖F ,

where ‖AR,S‖ ≤ ‖AR•‖ ≤ O(1) due to the nearness. The second part is rearranged to take advantage of the closeness and
incoherence properties:

‖Ik −AT•SA∗•S‖F ≤ ‖Ik −A
∗T
•SA

∗
•S − (A•S −A∗•S)TA∗•S‖F

≤ ‖Ik −A∗T•SA∗•S‖F + ‖(A•S −A∗•S)TA∗•S‖F
≤ ‖Ik −A∗T•SA∗•S‖F + ‖A∗•S‖‖A•S −A∗•S‖F
≤ µk/

√
n+O(δs

√
k),

where we have used ‖Ik − A∗T•SA∗•S‖F ≤ µk/
√
n because of the µ-incoherence of A∗, ‖A•S − A∗•S‖F ≤ δs

√
k in (13) and

‖A∗•S‖ ≤ ‖A∗‖ ≤ O(1). Accordingly, the second Frobenius norm is bounded by

‖AR,S(Ik −AT•SA∗•S)‖F ≤ O
(
µk/
√
n+ δs

√
k
)
. (14)

The noise term is handled using the eigen-decomposition UΛUT of A•SAT•S , then with high probability

‖(In −A•SAT•S)R•‖F = ‖(UUT − UΛUT )R•‖F = ‖UR•(In − Λ)‖F ≤ ‖In − Λ‖‖UR•‖F ≤ O(
√
r), (15)

where the last inequality ‖In − Λ‖ ≤ O(1) follows by ‖A•S‖ ≤ ‖A‖ ≤ ‖A − A∗‖ + ‖A∗‖ ≤ 3‖A∗‖ ≤ O(1) due to the
nearness. Putting (13), (14) and (15) together, we obtain the bounds in Claim 12.

Next, we determine a bound for the variance of Z.

Claim 13. E[‖Z‖2] = E[‖(y −Ax)Rsgn(xi)‖2|i ∈ S] ≤ σ2 holds with high probability for σ2 = O(δ2
sk + k2/n+ σ2

εr) with
δs = O∗(1/ log n).

Proof. We explicitly calculate the variance using the fact that x∗S is conditionally independent given S, and so is ε. x∗S and ε
are also independent and have zero mean. Then we can decompose the norm into three terms in which the dot product is zero
in expectation and the others can be shortened using the fact that E[x∗Sx

∗T
S ] = Ik, E[εεT ] = σεIn.

E[‖(y −Ax)Rsgn(xi)‖2|i ∈ S] = E[‖(A∗R,S −AR,SAT•SA∗•S)x∗S + (In −A•SAT•S)R·ε‖2|i ∈ S]]

= E[‖A∗R,S −AR,SAT•SA∗•S‖
2
F |i ∈ S] + σ2

εE[‖In −A•SAT•S)R•‖2F |i ∈ S].

Then, by re-writing A∗R,S −AR,SAT•SA∗•S as before, we get the form (A∗R,S −AR,S) +AR,S(Ik −AT•SA∗•S) in which the first
term has norm bounded by δs

√
k. The second is further decomposed as

E[‖AR,S(Ik −AT•SA∗•S)‖2F |i ∈ S] ≤ sup
S
‖AR,S‖2E[‖Ik −AT•SA∗•S‖

2
F |i ∈ S], (16)

where supS‖AR,S‖ ≤ ‖AR•‖ ≤ O(1). We will bound E[‖Ik −AT•SA∗•S‖
2
F |i ∈ S] ≤ O(kδ2

s) +O(k2/n) using the proof from
(Arora et al. 2015):

E[‖Ik −AT•SA∗•S‖
2
F |i ∈ S] = E[

∑
j∈S

(1−AT•jA∗•j)2 +
∑
j∈S
‖AT•jA∗•,−j‖

2|i ∈ S]

= E[
∑
j∈S

1

4
‖A•j −A∗•j‖

2
] + qij

∑
j 6=i

‖AT•jA∗•,−j‖
2

+ qi‖AT•iA∗•,−i‖
2

+ qi‖AT•,−iA∗•i‖
2
,



where A•,−i is the matrix A with the i-th column removed, qij ≤ O(k2/m2) and qi ≤ O(k/m). For any j = 1, 2, . . . ,m,

‖AT•jA∗•,−j‖
2

= ‖A∗
T

•j A
∗
•,−j + (A•j −A∗•j)TA∗•,−j‖

2

≤
∑
l 6=j

〈A∗•j , A∗•l〉
2

+ ‖(A•j −A∗•j)TA∗•,−j‖
2

≤
∑
l 6=j

〈A∗•j , A∗•l〉
2

+ ‖A•j −A∗•j‖
2‖A∗•,−j‖

2 ≤ µ2 + δ2
s .

The last inequality invokes the µ-incoherence, δ-closeness and the spectral norm of A∗. Similarly, we come up with the same
bound for ‖AT•iA∗•,−i‖

2 and ‖AT•,−iA∗•i‖
2. Consequently,

E[‖Ik −AT•SA∗•S‖
2
F |i ∈ S] ≤ O(kδ2

s) +O(k2/n). (17)

For the last term, we invoke the inequality (15) (Claim 12) to get

E[‖(In −A•SAT•S)R•‖2F |i ∈ S] ≤ r (18)

Putting (16), (17) and (18) together and using ‖AR•‖ ≤ 1, we obtain the variance bound of Z: σ2 = O(δ2
sk + k2/n + σ2

εr)
with δs = O(1/ log2 n) . Finally, we complete the proof.

We now apply truncated Bernstein’s inequality to the random variable Z(j)(1− 1‖Z(j)‖≥Ω(R)) with R and σ2 in Claims 12
and 13, which areR = Õ(δs

√
k+µk/

√
n+σε

√
r) and σ2 = O(δ2

sk+k2/n+σ2
εr). Then, (1/N)

∑N
j= Z

(j) also concentrates:∥∥∥ 1

N

N∑
i=1

Z(j) − E[Z]
∥∥∥ ≤ Õ(R

N

)
+ Õ

(√
σ2

N

)
= o(δs) +O(

√
k/n)

holds with high probability when N = Ω̃(k + σ2
εnr). Then, we finally finish the proof of Claim 11.

Proof of Lemma 13. With Claim 11, we study the concentration of ĝsR,i around its mean gsR,i. Now, we consider this difference
as an error term of the expectation gsR,i and using Lemma 6 to show the correlation of ĝsR,i. Using the expression in Lemma 5
with high probability, we can write

ĝsR,i = gsR,i + (gsR,i − ĝsR,i) = 2α(AR,i −A∗R,i) + v,

where ‖v‖ ≤ α‖AR,i−A∗R,i‖+O(k/m) · (o(δs) +O(εs)). By Lemma 6, we have ĝsR,i is (α, β, γs)-correlated-whp with A∗R,i
where α = Ω(k/m), β = Ω(m/k) and γs ≤ O(k/m) · (o(δs) +O(

√
k/n)) , then we have done the proof Lemma 13.

Proof of Lemma 14 We have shown the correlation of ĝs with A∗ w.h.p. and established the descent property of Algorithm
2. The next step is to show that the nearness is preserved at each iteration. To prove ‖As+1 − A∗‖ ≤ 2‖A∗‖ holds with high
probability, we recall the update rule

As+1 = As − ηPH(ĝs),

where PH(ĝs) = H ◦ ĝs. Here H = (hij) where hij = 1 if i ∈ supp(A•j) and hij = 0 otherwise. Also, note that As is
(δs, 2)-near to A∗ for δs = O∗(1/ log n). We already proved that this holds for the exact expectation gs in Lemma 8. To prove
for ĝs, we again apply matrix Bernstein’s inequality to bound ‖PH(gs) − PH(ĝs)‖ by O(k/m) because η = Θ(m/k) and
‖A∗‖ = O(1).

Consider a matrix random variable Z , PH((y − Ax)sgn(x)T ). Our goal is to bound the spectral norm ‖Z‖ and, both
‖E[ZZT ]‖ and ‖E[ZTZ]‖ since Z is asymmetric. To simplify our notations, we denote by xR the vector x by zeroing out the
elements not in R. Also, denote Ri = supp(hi) and S = supp(x). Then Z can be written explicitly as

Z = [(y −Ax)R1sgn(x1), . . . , (y −Ax)Rmsgn(xm)],

where many columns are zero since x is k-sparse. The following claims follow from the proof of Claim 42 in (Arora et al.
2015). Here we state and detail some important steps.

Claim 14. ‖Z‖ ≤ Õ(k) holds with high probability.

Proof. With high probability

‖Z‖ ≤
√∑
i∈S
‖(y −Ax)Ri

sgn(xi)‖2 ≤
√
k‖(y −Ax)Ri

‖

where we use Claim 12 with ‖(y −Ax)R‖ ≤ Õ(δs
√
k) w.h.p., then ‖Z‖ ≤ Õ(k) holds w.h.p.



Claim 15. ‖E[ZZT ]‖ ≤ O(k2/n) and ‖E[ZTZ]‖ ≤ Õ(k2/n) with high probability.

Proof. The first term is easily handled. Specifically, with high probability

‖E[ZZT ]‖ ≤ ‖E[
∑
i∈S

(y −Ax)Ri
sgn(xi)

2(y −Ax)TRi
]‖ = ‖E[

∑
i∈S

(y −Ax)Ri
(y −Ax)TRi

]‖ ≤ O(k2/n),

where the last inequality follows from the proof of Claim 42 in (Arora et al. 2015), which is tedious to be repeated.
To bound ‖E[ZTZ]‖, we use bound of the full matrix (y − Ax)sgn(x)T . Note that ‖y − Ax‖ ≤ Õ(

√
k) w.h.p. is similar to

what derived in Claim 12. Then with high probability,

‖E[ZTZ]‖ ≤ ‖E[sgn(x)(y −Ax)T (y −Ax)sgn(x)T ]‖ ≤ Õ(k)‖E[sgn(x)sgn(x)T ]‖ ≤ Õ(k2/m).

where E[sgn(x)sgn(x)T ] = diag(q1, q2, . . . , qm) has norm bounded by O(k/m). We now can apply Bernstein’s inequality for
the truncated version of Z withR = Õ(k) and σ2 = Õ(k2/m), then with p = Õ(m),

‖PH(gs)− PH(ĝs)‖ ≤ Õ(k)

p
+

√
Õ(k2/m)

p
≤ O∗(k/m)

holds with high probability. Finally, we invoke the bound η = O(m/k) and complete the proof.

Neural Implementation of Our Approach
We now briefly describe why our algorithm is “neurally plausible”. Basically, similar to the argument in (Arora et al. 2015),
we describe at a very high level how our algorithm can be implemented via a neural network architecture. One should note that
although both our initialization and descent stages are non-trivial modifications of those in (Arora et al. 2015), both still inherit
the nice neural plausiblity property.

Neural implementation of Stage 1: Initialization
Recall that the initialization stage includes two main steps: (i) estimate the support of each column of the synthesis matrix, and
(ii) compute the top principal component(s) of a certain truncated weighted covariance matrix. Both steps involve simple vector
and matrix-vector manipulations that can be implemented plausibly using basic neuronal manipulations.

For the support estimation step, we compute the product 〈y, u〉〈y, u〉y ◦ y, followed by a thresholding. The inner products,
〈y, u〉 and 〈y, v〉 can be computed using neurons via an online manner where the samples arrive in sequence; the thresholding
can be implemented via a ReLU-type non-linearity.

For the second step, it is well known that the top principal components of a matrix can be computed in a neural (Hebbian)
fashion using Oja’s Rule (Oja 1992).

Neural implementation of Stage 2: Descent
Our neural implementation of the descent stage (Alg. 2) mimics the architecture of (Arora et al. 2015), which describes a simple
two-layer network architecture for computing a single gradient update of A. The only difference in our case is that most of the
value in A are set to zero, or in other words, our network is sparse. The network takes values y from the input layer and produce
x as the output; there is an intermediate layer in between connecting the middle layer with the output via synapses. The synaptic
weights are stored on A. The weights are updated by Hebbian learning. In our case, since A is sparse (with support given by R,
as estimated in the first stage), we enforce the condition the corresponding synapses are inactive. In the output layer, as in the
initialization stage, the neurons can use a ReLU-type non-linear activation function to enforce the sparsity of x.


