
On the Dynamics of Gradient Descent for Autoencoders

Thanh V. Nguyen∗, Raymond K. W. Wong†, Chinmay Hegde∗
∗Iowa State University, †Texas A&M University

Abstract

We provide a series of results for unsuper-
vised learning with autoencoders. Specifically,
we study shallow two-layer autoencoder ar-
chitectures with shared weights. We focus on
three generative models for data that are com-
mon in statistical machine learning: (i) the
mixture-of-gaussians model, (ii) the sparse
coding model, and (iii) the sparsity model
with non-negative coefficients. For each of
these models, we prove that under suitable
choices of hyperparameters, architectures, and
initialization, autoencoders learned by gradi-
ent descent can successfully recover the pa-
rameters of the corresponding model. To our
knowledge, this is the first result that rigor-
ously studies the dynamics of gradient descent
for weight-sharing autoencoders. Our analy-
sis can be viewed as theoretical evidence that
shallow autoencoder modules indeed can be
used as feature learning mechanisms for a va-
riety of data models, and may shed insight on
how to train larger stacked architectures with
autoencoders as basic building blocks.

1 Introduction

1.1 Motivation

Due to the resurgence of neural networks and deep
learning, there has been growing interest in the commu-
nity towards a thorough and principled understanding
of training neural networks in both theoretical and
algorithmic aspects. This has led to several important
breakthroughs recently, including provable algorithms
for learning shallow (1-hidden layer) networks with
nonlinear activations [1, 2, 3, 4], deep networks with
linear activations [5], and residual networks [6, 7].

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

A typical approach adopted by this line of work is as
follows: assume that the data obeys a ground truth
generative model (induced by simple but reasonably ex-
pressive data-generating distributions), and prove that
the weights learned by the proposed algorithms (either
exactly or approximately) recover the parameters of the
generative model. Indeed, such distributional assump-
tions are necessary to overcome known NP-hardness
barriers for learning neural networks [8]. Nevertheless,
the majority of these approaches have focused on neural
network architectures for supervised learning, barring
a few exceptions which we detail below.

1.2 Our contributions

In this paper, we complement this line of work by pro-
viding new theoretical results for unsupervised learning
using neural networks. Our focus here is on shallow two-
layer autoencoder architectures with shared weights.
Conceptually, we build upon previous theoretical re-
sults on learning autoencoder networks [9, 10, 11], and
we elaborate on the novelty of our work in the discus-
sion on prior work below.

Our setting is standard: we assume that the training
data consists of i.i.d. samples from a high-dimensional
distribution parameterized by a generative model, and
we train the weights of the autoencoder using ordinary
(batch) gradient descent. We consider three families
of generative models that are commonly adopted in
machine learning: (i) the Gaussian mixture model with
well-separated centers [12]; (ii) the k-sparse model,
specified by sparse linear combination of atoms [13];
and (iii) the non-negative k-sparse model [11]. While
these models are traditionally studied separately de-
pending on the application, all of these model families
can be expressed via a unified, generic form:

y = Ax∗ + η, (1)

which we (loosely) dub as the generative bilinear model.
In this form, A is a groundtruth n×m-matrix, x∗ is
an m-dimensional latent code vector and η is an inde-
pendent n-dimensional random noise vector. Samples
y’s are what we observe. Different choices of n and m,

On the Dynamics of Gradient Descent for Autoencoders

as well as different assumptions on A and x∗ lead to
the three aforementioned generative models.

Under these three generative models, and with suit-
able choice of hyper-parameters, initial estimates, and
autoencoder architectures, we rigorously prove that:

Two-layer autoencoders, trained with (normal-
ized) gradient descent over the reconstruction
loss, provably learn the parameters of the un-
derlying generative bilinear model.

To the best of our knowledge, our work is the first to
analytically characterize the dynamics of gradient de-
scent for training two-layer autoencoders. Our analysis
can be viewed as theoretical evidence that shallow au-
toencoders can be used as feature learning mechanisms
(provided the generative modeling assumptions hold), a
view that seems to be widely adopted in practice. Our
analysis highlights the following interesting conclusions:
(i) the activation function of the hidden (encoder) layer
influences the choice of bias; (ii) the bias of each hid-
den neuron in the encoder plays an important role in
achieving the convergence of the gradient descent; and
(iii) the gradient dynamics depends on the complexity
of the generative model. Further, we speculate that our
analysis may shed insight on practical considerations
for training deeper networks with stacked autoencoder
layers as building blocks [9].

1.3 Techniques

Our analysis is built upon recent algorithmic devel-
opments in the sparse coding literature [14, 15, 16].
Sparse coding corresponds to the setting where the syn-
thesis coefficient vector x∗(i) in (1) for each data sample
y(i) is assumed to be k-sparse, i.e., x∗(i) only has at
most k � m non-zero elements. The exact algorithms
proposed in these papers are all quite different, but at
a high level, all these methods involve establishing a
notion that we dub as “support consistency”. Broadly
speaking, for a given data sample y(i) = Ax∗(i) + η(i),
the idea is that when the parameter estimates are close
to the ground truth, it is possible to accurately esti-
mate the true support of the synthesis vector x∗(i) for
each data sample y(i).

We extend this to a broader family of generative mod-
els to form a notion that we call “code consistency”.
We prove that if initialized appropriately, the weights
of the hidden (encoder) layer of the autoencoder pro-
vides useful information about the sign pattern of the
corresponding synthesis vectors for every data sam-
ple. Somewhat surprisingly, the choice of activation
function of each neuron in the hidden layer plays an
important role in establishing code consistency and
affects the possible choices of bias.

The code consistency property is crucial for establishing
the correctness of gradient descent over the reconstruc-
tion loss. This turns out to be rather tedious due to
the weight sharing — a complication which requires
a substantial departure from the existing machinery
for analysis of sparse coding algorithms — and indeed
forms the bulk of the technical difficulty in our proofs.
Nevertheless, we are able to derive explicit linear con-
vergence rates for all the generative models listed above.
We do not attempt to analyze other training schemes
(such as stochastic gradient descent or dropout) but
anticipate that our analysis may lead to further work
along those directions.

1.4 Comparison with prior work

Recent advances in algorithmic learning theory has led
to numerous provably efficient algorithms for learning
Gaussian mixture models, sparse codes, topic models,
and ICA (see [12, 13, 14, 15, 16, 17, 18, 19] and refer-
ences therein). We omit a complete treatment of prior
work due to space constraints.

We would like to emphasize that we do not propose a
new algorithm or autoencoder architecture, nor are we
the first to highlight the applicability of autoencoders
with the aforementioned generative models. Indeed,
generative models such as k-sparsity models have served
as the motivation for the development of deep stacked
(denoising) autoencoders dating back to the work of [20].
The paper [9] proves that stacked weight-sharing au-
toencoders can recover the parameters of sparsity-based
generative models, but their analysis succeeds only for
certain generative models whose parameters are them-
selves randomly sampled from certain distributions.
In contrast, our analysis holds for a broader class of
networks; we make no randomness assumptions on the
parameters of the generative models themselves.

More recently, autoencoders have been shown to learn
sparse representations [21]. The recent paper [11]
demonstrates that under the sparse generative model,
the standard squared-error reconstruction loss of ReLU
autoencoders exhibits (with asymptotically many sam-
ples) critical points in a neighborhood of the ground
truth dictionary. However, they do not analyze gradi-
ent dynamics, nor do they establish convergence rates.
We complete this line of work by proving explicitly that
gradient descent (with column-wise normalization) in
the asymptotic limit exhibits linear convergence up to
a radius around the ground truth parameters.

2 Preliminaries

Notation Denote by xS the sub-vector of x ∈ Rm
indexed by the elements of S ⊆ [m]. Similarly, let WS

Thanh V. Nguyen∗, Raymond K. W. Wong†, Chinmay Hegde∗

be the sub-matrix of W ∈ Rn×m with columns indexed
by elements in S. Also, define supp(x) , {i ∈ [m] :
xi 6= 0} as the support of x, sgn(x) as the element-wise
sign of x and 1E as the indicator of an event E.

We adopt standard asymptotic notations: let f(n) =
O(g(n)) (or f(n) = Ω(g(n))) if there exists some con-
stant C > 0 such that |f(n)| ≤ C|g(n)| (respectively,
|f(n)| ≥ C|g(n)|). Next, f(n) = Θ(g(n)) is equivalent
to that f(n) = O(g(n)) and f(n) = Ω(g(n)). Also,
f(n) = ω(g(n)) if limn→∞ |f(n)/g(n)| = ∞. In ad-
dition, g(n) = O∗(f(n)) indicates |g(n)| ≤ K|f(n)|
for some small enough constant K. Throughout, we
use the phrase “with high probability” (abbreviated to
w.h.p.) to describe any event with failure probability
at most n−ω(1).

2.1 Two-Layer Autoencoders

We focus on shallow autoencoders with a single hid-
den layer, n neurons in the input/output layer and m
hidden neurons. We consider the weight-sharing archi-
tecture in which the encoder has weights WT ∈ Rm×n
and the decoder uses the shared weight W ∈ Rn×m.
The architecture of the autoencoder is shown in Fig.
1. Denote b ∈ Rm as the vector of biases for the en-
coder (we do not consider decoder bias.) As such, for a
given data sample y ∈ Rn, the encoding and decoding
respectively can be modeled as:

x = σ(WT y + b) and ŷ = Wx, (2)

where σ(·) denotes the activation function in the en-
coder neurons. We consider two types of activation
functions: (i) the rectified linear unit:

ReLU(z) = max(z, 0),

and (ii) the hard thresholding operator:

thresholdλ(z) = z1|z|≥λ.

When applied to a vector (or matrix), these functions
are operated on each element and return a vector (re-
spectively, matrix) of same size. Our choice of the
activation σ(·) function varies with different data gen-
erative models, and will be clear by context.

Herein, the loss function is the (squared) reconstruction
error:

L =
1

2
‖y − ŷ‖2 =

1

2
‖y −Wσ(WT y + b)‖2,

and we analyze the expected loss where the expec-
tation is taken over the data distribution (specified
below). Inspired by the literature of analysis of sparse
coding [11, 14, 22], we investigate the landscape of
the expected loss so as to shed light on dynamics of

y1

y2

yn

Input
layer

Hidden
layer

ŷ1

ŷ2

ŷn

Output
layer

...
...

Figure 1: Architecture of a shallow 2-layer autoencoder
network. The encoder and the decoder share the weights.

gradient descent for training the above autoencoder
architectures. Indeed, we show that for a variety of
data distributions, such autoencoders can recover the
distribution parameters via suitably initialized gradient
descent.

2.2 Generative Bilinear Model

We now describe an overarching generative model for
the data samples. Specifically, we posit that the data
samples {y(i)}Ni=1 ∈ Rn are drawn according to the
following “bilinear” model:

y = Ax∗ + η, (3)

where A ∈ Rn×m is a ground truth set of parameters,
x∗ ∈ Rm is a latent code vector, and η ∈ Rn represents
noise. Depending on different assumptions made on A
and x∗, this model generalizes various popular cases,
such as mixture of spherical Gaussians, sparse coding,
nonnegative sparse coding, and independent component
analysis (ICA). We will elaborate further on specific
cases, but in general our generative model satisfies the
following generic assumptions:

A1. The code x∗ is supported on set S of size at most
k, such that pi = P[i ∈ S] = Θ(k/m), pij =
P[i, j ∈ S] = Θ(k2/m2) and pijl = P[i, j, l ∈ S] =
Θ(k3/m3);

A2. Nonzero entries are independent; moreover,
E[x∗i |i ∈ S] = κ1 and E[x∗2i |i ∈ S] = κ2 <∞;

A3. For i ∈ S, |x∗i | ∈ [a1, a2] with 0 ≤ a1 ≤ a2 ≤ ∞;

A4. The noise term η is distributed according to
N (0, σ2

ηI) and is independent of x∗.

As special cases of the above model, we consider the
following variants.

Mixture of spherical Gaussians: We consider the
standard Gaussian mixture model with m centers,

On the Dynamics of Gradient Descent for Autoencoders

which is one of the most popular generative models en-
countered in machine learning applications. We model
the means of the Gaussians as columns of the matrix
A. To draw a data sample y, we sample x∗ uniformly
from the canonical basis {ei}mi=1 ∈ Rn with probability
pi = Θ(1/m). As such, x∗ has sparsity parameter k = 1
with only one nonzero element being 1. That means,
κ1 = κ2 = a1 = a2 = 1.

Sparse coding: This is a well-known instance of
the above structured linear model, where the goal is
basically to learn an overcomplete dictionary A that
sparsely represents the input y. It has a rich history
in various fields of signal processing, machine learning
and neuroscience [23]. The generative model described
above has successfully enabled recent theoretical ad-
vances in sparse coding [13, 14, 15, 16, 24]. The latent
code vector x∗ is assumed to be k-sparse, whose nonzero
entries are sub-Gaussian and bounded away from zero.
Therefore, a1 > 0 and a2 = ∞. We assume that the
distribution of nonzero entries are standardized such
that κ1 = 0, κ2 = 1. Note that the condition of κ2
further implies that a1 ≤ 1.

Non-negative sparse coding: This is another vari-
ant of the above sparse coding model where the ele-
ments of the latent code x∗ are additionally required
to be non-negative [11]. In some sense this is a gen-
eralization of the Gaussian mixture model described
above. Since the code vector is non-negative, we do
not impose the standardization as in the previous case
of general sparse coding (κ1 = 0 and κ2 = 1); instead,
we assume a compact interval of the nonzero entries;
that is, a1 and a2 are positive and bounded.

Having established probabilistic settings for these mod-
els, we now establish certain deterministic conditions
on the true parameters A to enable analysis. First,
we require each column Ai to be normalized to unit
norm in order to avoid the scaling ambiguity between A
and x∗. (Technically, this condition is not required for
the mixture of Gaussian model case since x∗ is binary;
however we make this assumption anyway to keep the
treatment generic.) Second, we require columns of A to
be “sufficiently distinct”; this is formalized by adopting
the notion of pairwise incoherence.

Definition 1. Suppose that A ∈ Rn×m has unit-norm
columns. A is said to be µ-incoherent if for every pair
of column indices (i, j), i 6= j we have |〈Ai, Aj〉| ≤ µ√

n
.

Though this definition is motivated from the sparse
coding literature, pairwise incoherence is sufficiently
general to enable identifiability of all aforementioned
models. For the mixture of Gaussians with unit-norm
means, pairwise incoherence states that the means are
well-separated, which is a standard assumption. In
the case of Gaussian mixtures, we assume that m =

O(1) � n. For sparse coding, we focus on learning
overcomplete dictionaries where n ≤ m = O(n) . For
the sparse coding case, we further require the spectral
norm bound on A, i.e., ‖A‖ ≤ O(

√
m/n). (In other

words, A is well-conditioned.)

Our eventual goal is to show that training autoencoder
via gradient descent can effectively recover the gen-
erative model parameter A. To this end, we need a
measure of goodness in recovery. Noting that any re-
covery method can only recover A up to a permutation
ambiguity in the columns (and a sign-flip ambiguity in
the case of sparse coding), we first define an operator
π that permutes the columns of the matrix (and multi-
plies by +1 or −1 individually to each column in the
case of sparse coding.) Then, we define our measure of
goodness:
Definition 2 (δ-closeness and (δ, ξ)-nearness). A ma-
trix W is said to be δ-close to A if there exists an
operator π(·) defined above such that ‖π(W)i−Ai‖ ≤ δ
for all i. We say W is (δ, ξ)-near to A if in addition
‖π(W)−A‖ ≤ ξ‖A‖.

To simplify notation, we simply replace π by the iden-
tity operator while keeping in mind that we are only
recovering an element from the equivalence class of all
permutations and sign-flips of A.

Armed with the above definitions and assumptions, we
are now ready to state our results. Since the actual
mathematical guarantees are somewhat tedious and
technical, we summarize our results in terms of informal
theorem statements, and elaborate more precisely in
the following sections.

Our first main result establishes the code consistency
of weight-sharing autoencoders under all the genera-
tive linear models described above, provided that the
weights are suitably initialized.
Theorem 1 (informal). Consider a sample y = Ax∗+
η. Let x = σ(WT y + b) be the output of the encoder
part of the autoencoder. Suppose that W is δ-close to
A with δ = O∗(1/ log n).

(i) If σ(·) is either the ReLU or the hard threshold-
ing activation, then the support of the true code
vector x∗ matches that of x for the mixture-of-
Gaussians and non-negative sparse coding gener-
ative models.

(ii) If σ(·) is the hard thresholding activation, then
the support of x∗ matches that of x for the sparse
coding generative model.

Our second main result leverages the above property.
We show that iterative gradient descent over the weights
W linearly converges to a small neighborhood of the
ground truth.

Thanh V. Nguyen∗, Raymond K. W. Wong†, Chinmay Hegde∗

Theorem 2 (informal). Provided that the initial weight
W 0 such that W 0 is (δ, 2)-near to A. Given asymptot-
ically many samples drawn from the above models, an
iterative gradient update of W can linearly converge to
a small neighborhood of the ground truth A.

We formally present these technical results in the next
sections. Note that we analyze the encoding and the
gradient givenW s at iteration s; however we often skip
the superscript for clarity.

3 Initialization

Our main result is a local analysis of the learning
dynamics for two-layer autoencoders. More specifically,
we prove that the (batch) gradient descent linearly
converges to the ground truth parameter A given an
initializationW 0 that is O∗(1/ log n) column-wise close
to the ground truth. Despite the fact that the recovery
error at the convergence is exponentially better than
the initial 1/ log n order, a natural question is how
to achieve this initialization requirement. In practice,
random initialization for autoencoders is a common
strategy and it often leads to surprisingly good results
[25, 26]. In theory, however, the validity of the random
initialization is still an open problem. For the k-sparse
model, the authors in [16] introduce an algorithm that
provably produces such a coarse estimate of A using
spectral methods. This algorithm applies perfectly
to this context of the autoencoder architecture. We
conjecture that this spectral algorithm still works for
non-negative sparse case (including the special mixture
of Gaussian model) although, due to non-negativity,
more complicated treatments including concentration
arguments and sign flips of the columns are involved.
We leave this to our future work.

4 Encoding Stage

Our technical results start with the analysis of the
encoding stage in the forward pass. We rigorously
prove that the encoding performed by the autoencoder
is sufficiently good in the sense that it recovers part
of the information in the latent code x∗ (specifically,
the signed support of x∗.) This is achieved based
on appropriate choices of activation function, biases,
and a good W within close neighborhood of the true
parameters A. We call this property code consistency:
Theorem 3 (Code consistency). Let x = σ(WT y+ b).
Suppose W is δ-close to A with δ = O∗(1/ log n) and
the noise satisfies ση = O(1/

√
n). Then the following

results hold:

(i) General k-sparse code with thresholding activa-
tion: Suppose µ ≤

√
n/ log2 n and k ≤ n/ log n.

If x = thresholdλ(WT y + b) with λ = a1/2 and
b = 0, then with high probability

sgn(x) = sgn(x∗).

(ii) Non-negative k-sparse code with ReLU activa-
tion: Suppose µ ≤ δ

√
n/k and k = O(1/δ2). If

x = ReLU(WT y + b), and bi ∈ [−(1 − δ)a1 +
a2δ
√
k, −a2δ

√
k] for all i, then with high proba-

bility,
supp(x) = supp(x∗).

(iii) Non-negative k-sparse code with thresholding ac-
tivation: Suppose µ ≤ δ

√
n/k and k = O(1/δ2).

If x = thresholdλ(WT y + b) with λ = a1/2 and
b = 0, then with high probability,

supp(x) = supp(x∗).

The full proof for Theorem 3 is relegated to Ap-
pendix A. Here, we provide a short proof for the
mixture-of-Gaussians generative model, which is re-
ally a special case of (ii) and (iii) above, where k = 1
and the nonzero component of x∗ is equal to 1 (i.e.,
κ1 = κ2 = a1 = a2 = 1.)

Proof. Denote z = WT y + b and S = supp(x∗) = {j}.
Let i be fixed and consider two cases: if i = j, then

zi = 〈Wi, Ai〉+〈Wi, η〉+bi ≥ (1−δ2/2)−ση log n+bi > 0,

w.h.p. due to the fact that 〈Wi, Ai〉 ≥ 1 − δ2/2
(Claim 1), and the conditions ση = O(1/

√
n) and

bi > −1 + δ.

On the other hand, if i 6= j, then using Claims 1 and 2
in Appendix A, we have w.h.p.

zi = 〈Wi, Aj〉+〈Wi, η〉+bi ≤ µ/
√
n+δ+ση log n+bi < 0,

for bi ≤ −2δ, µ ≤ δ
√
n/k and ση = O(1/

√
n). Due to

Claim 2, these results hold w.h.p. uniformly for all i,
and hence x = ReLU(z) has the same support as x∗
w.h.p..

Moreover, one can also see that when bi = 0, then
w.h.p., zi > 1/2 if i = j and zi < 1/4 otherwise. This
result holds w.h.p. uniformly for all i, and therefore,
x = threshold1/2(z) has the same support as x∗ w.h.p.

�

Note that for the non-negative case, both ReLU and
threshold activation would lead to a correct support
of the code, but this requires k = O(1/δ2), which
is rather restrictive and might be a limitation of the
current analysis. Also, in Theorem 3, b is required to be
negative for ReLU activation for any δ > 0 due to the
error of the current estimateW . However, this result is

On the Dynamics of Gradient Descent for Autoencoders

consistent with the conclusion of [27] that negative bias
is desirable for ReLU activation to produce sparse code.
Note that such choices of b also lead to statistical bias
(error) in nonzero code and make it difficult to construct
a provably correct learning procedure (Section 5) for
ReLU activation.

Part (i) of Theorem 3 mirrors the consistency result
established for sparse coding in [16].

Next, we apply the above result to show that provided
the consistency result a (batch) gradient update of the
weights W (and bias in certain cases) converges to the
true model parameters.

5 Learning Stage

In this section, we show that a gradient descent update
for W of the autoencoder (followed by a normalization
in the Euclidean column norm of the updated weights)
leads to a linear convergence to a small neighborhood
of the ground truth A under the aforementioned gener-
ative models. For this purpose, we analyze the gradient
of the expected loss with respect to W . Our analysis
involves calculating the expected value of the gradient
as if we were given infinitely many samples. (The finite
sample analysis is left as future work.)

Since both ReLU and hard thresholding activation
functions are non-differentiable at some values, we
will formulate an approximate gradient. Whenever
differentiable, the gradient of the loss L with respect to
the column Wi ∈ Rn of the weight matrix W is given
by:

∇Wi
L = −σ′(WT

i y+bi)
[
(WT

i y+bi)I+yWT
i

][
y−Wx

]
,

(4)
where x = σ(WT y + b) and σ′(zi) is the gradient of
σ(zi) at zi where σ is differentiable. For the rectified
linear unit ReLU(zi) = max(zi, 0), its gradient is

σ′(zi) =

{
1 if zi > 0,

0 if zi < 0.

On the other hand, for the hard thresholding activation
thresholdλ(zi) = zi1|zi|≥λ, the gradient is

σ′(zi) =

{
1 if |zi| > λ,

0 if |zi| < λ.

One can see that in both cases, the gradient σ′(·) at
zi = WT

i y+ bi resembles an indicator function 1xi 6=0 =
1σ(zi) 6=0 except where it is not defined. The observation
motivates us to approximate the ∇Wi

L with a simpler
rule by replacing σ′(WT

i y + bi) with 1xi 6=0:

∇̃iL = −1xi 6=0(WT
i yI + biI + yWT

i)(y −Wx).

In fact, [11] (Lemma 5.1) shows that this approximate
gradient ∇̃iL is a good approximation of the true gra-
dient (4) in expectation. Since A is assumed to have
normalized columns (with ‖Ai‖ = 1), we can enforce
this property to the update by a simple column normal-
ization after every update; to denote this, we use the op-
erator normalize(·) that returns a matrix normalize(B)
with unit columns, i.e.:

normalize(B)i = Bi/‖Bi‖,

for any matrix B that has no all-zero columns.

Our convergence result leverages the code consistency
property in Theorem 3, but in turn succeeds under
constraints on the biases of the hidden neurons b. For
thresholding activation, we can show that the simple
choice of setting all biases to zero leads to both code
consistency and linear convergence. However, for ReLU
activation, the range of bias specified in Theorem 3
(ii) has a profound effect on the descent procedure.
Roughly speaking, we need non-zero bias in order to
ensure code consistency, but high values of bias can
adversely impact gradient descent. Indeed, our current
analysis does not succeed for any constant choice of bias
(i.e., we do not find a constant bias that leads to both
support consistency and linear convergence.) To resolve
this issue, we propose to use a simple diminishing
(in magnitude) sequence of biases b along different
iterations of the algorithm. Overall, this combination
of approximate gradient and normalization lead to
an update rule that certifies the existence of a linear
convergent algorithm (up to a neighborhood of A.) The
results are formally stated as follows:

Theorem 4 (Descent property). Suppose that at step
s the weight W s is (δs, 2)-near to A. There exists an
iterative update rule using an approximate gradient gs:
W s+1 = normalize(W s − ζgs) that linearly converges
to A when given infinitely many fresh samples. More
precisely, there exists some τ ∈ (1/2, 1) such that:

(i) Mixture of Gaussians: Suppose the conditions in
either (ii) or (iii) of Theorem 3 hold. Suppose
that the learning rate ζ = Θ(m), and that the
bias vector b satisfies:

(i.1) b = 0 if x = threshold1/2(WT y + b); or
(i.2) bs+1 = bs/C if x = ReLU(WT y + b) for

some constant C > 1.

Then, ‖W s+1 − A‖2F ≤ (1 − τ)‖W s − A‖2F +
O(mn−O(1)).

(ii) General k-sparse code: Provided the conditions
in Theorem 3 (i) hold and the learning rate ζ =
Θ(m/k).

Then, ‖W s+1 − A‖2F ≤ (1 − τ)‖W s − A‖2F +
O(mk2/n2).

Thanh V. Nguyen∗, Raymond K. W. Wong†, Chinmay Hegde∗

(iii) Non-negative k-sparse code: Suppose the condi-
tions in either (ii) or (iii) of Theorem 3 hold.
Suppose that the learning rate ζ = Θ(m/k) and
the bias b satisfies:

(iii.1) b = 0 if x = thresholda1/2(WT y + b); or
(iii.2) bs+1 = bs/C if x = ReLU(WT y + b) for

some constant C > 1.

Then, ‖W s+1 − A‖2F ≤ (1 − τ)‖W s − A‖2F +
O(k3/m).

Recall the approximate gradient of the squared loss:

∇̃iL = −1xi 6=0(WT
i yI + biI + yWT

i)(y −Wx).

We will use this form to construct a desired update
rule with linear convergence. Let us consider an update
step gs in expectation over the code x∗ and and the
noise η:

gi = −E[1xi 6=0(WT
i yI + biI + yWT

i)(y −Wx)]. (5)

To prove Theorem 4, we compute gi according to the
generative models described in (3) and then argue the
descent. Here, we provide a proof sketch for (again) the
simplest case of mixture-of-Gaussians; the full proof is
deferred to Appendix B.

Proof of Theorem 4 (i). Based on Theorem 3, one can
explicitly compute the expectation expressed in (5).
Specifically, the expected gradient gi is of the form:

gi = −piλiA+ pi(λ
2
i + 2biλi + b2i)Wi + γ

where λi = 〈W s
i , Ai〉 and ‖γ‖ = O(n−w(1)). If we

can find bi such that λ2i + 2biλi + b2i ≈ λi for all i, gi
roughly points in the same desired direction to Ai, and
therefore, a descent property can be established via the
following result:

Lemma 1. Suppose W is δ-close to A and the bias
satisfies |(bi + λi)

2 − λi| ≤ 2(1− λi). Then:

2〈gi,Wi −Ai〉 ≥ pi(λi − 2δ2)‖Wi −Ai‖2

+
1

piλi
‖gi‖2 −

2

piλi
‖γ‖2

From Lemma 1, one can easily prove the descent prop-
erty using [16] (Theorem 6). We apply this lemma with
learning rate ζ = maxi(1/piλi) and τ = ζpi(λi−2δ2) ∈
(0, 1) to achieve the descent as follows:

‖W̃ s+1
i −Ai‖2 ≤ (1− τ)‖W s

i −Ai‖
2

+O(n−K),

where W̃ s+1 = W s − ζgs and K is some constant
greater than 1. Finally, we use Lemma 5 to obtain the
descent property for the normalized W s+1

i .

Now, we determine when the bias conditions in The-
orem 3 and Lemma 1 simultaneously hold for dif-
ferent choices of activation function. For the hard-
thresholding function, since we do not need bias (i.e.
bi = 0 for every i), then λi(1− λi) ≤ 2(1−λi) and this
lemma clearly follows.

On the other hand, if we encode x = ReLU(WT y +
b), then we need every bias bi to satisfy bi ∈ [−1 +
2δs
√
k, −δs] and |(bi + λi)

2 − λi| ≤ 2(1 − λi). Since
λi = 〈W s

i , Ai〉 → 1 and δs → 0, for the conditions of
bi to hold, we require bi → 0 as s increases. Hence, a
fixed bias for the rectified linear unit would not work.
Instead, we design a simple update for the bias (and
this is enough to prove convergence in the ReLU case).

Here is our intuition. The gradient of L with respect
to bi is given by:

∇biL = −σ′(WT
i y + bi)W

T
i (y −Wx)

Similarly to the update for the weight matrix, we ap-
proximate this gradient with by replacing σ′(WT

i y+ bi)
with 1xi 6=0, calculate the expected gradient and obtain:

(gb)i = −E[WT
i (y −Wx)1x∗

i 6=0] + γ

= −E[WT
i (y −Wi(W

T
i y + bi)1x∗

i 6=0] + γ

= −E[(WT
i − ‖Wi‖2WT

i)y + ‖Wi‖2bi1x∗
i 6=0] + γ

= −pibi + γ

From the expected gradient formula, we design a very
simple update for the bias: bs+1 =

√
1− τbs where

b0 = −1/ log n, and show by induction that this choice
of bias is sufficiently negative to make the consistency
result 3 (ii) and (iii) hold at each step. At the first
step, we have δ0 ≤ O∗(1/ log n), then

b0i = −1/ log n ≤ −‖W 0
i −Ai‖.

Now, assuming bsi ≤ −‖W s
i − Ai‖, we need to prove

that bs+1 ≤ −‖W s+1
i −Ai‖.

From the descent property at the step s, we have

‖W s+1
i −Ai‖ ≤

√
1− τ‖W s

i −Ai‖+ o(δs).

Therefore, bs+1
i =

√
1− τbsi ≤ −

√
1− τ‖W s

i − Ai‖ ≤
−‖W s+1

i −Ai‖− o(δs). As a result, |(bi + λi)
2 − λi| ≈

λi(1 − λi) ≤ 2(1 − λi). In addition, the condition of
bias in the support consistency holds. By induction, we
can guarantee the consistency at all the update steps.
Lemma 1 and hence the descent results stated in (i.2)
and (iii.2) hold for the special case of the Gaussian
mixture model. �

6 Experiments

We support our theoretical results with some experi-
ments on synthetic data sets under on the mixture-of-
Gaussians model. We stress that these experimental

On the Dynamics of Gradient Descent for Autoencoders

0 20 40
0

0.5

1

Iteration

R
ec
on

st
ru
ct
io
n
lo
ss

ση = 0.01
ση = 0.02
ση = 0.03

0 20 40
0

0.5

1

Iteration

R
ec
on

st
ru
ct
io
n
lo
ss

ση = 0.01
ση = 0.02
ση = 0.03

0 20 40
0

0.5

1

Iteration

R
ec
on

st
ru
ct
io
n
lo
ss

ση = 0.01
ση = 0.02
ση = 0.03

Figure 2: The learning curve in training step using different initial estimate W 0. From left to right, the autoencoder is
initialized by (i) some perturbation of the ground truth, (ii) PCA and (iii) random guess.

0 10 20 30 40 50
0

5

10

15

20

Iteration

‖W
−
A
‖2 F

Init w/ perturbation
Init w/ PCA
Random init

Figure 3: Frobenius norm difference between the learned
W and the ground truth A by three initialization schemes.

results are not intended to be exhaustive or of practical
relevance, but rather only to confirm some aspects of
our theoretical results, and shed light on where the
theory falls short.

We generate samples from a mixture of m = 10
Gaussians with dimension n = 784 using the model
y = Ax∗ + η. The means are the columns of A, ran-
domly generated according to Ai ∼ N (0, 1√

n
In). To

synthesize each sample y, we choose x∗ uniformly from
the canonical bases {ei}mi=1 and generate a Gaussian
noise vector η with independent entries and entry-wise
standard deviation ση. We create a data set of 10, 000
samples in total for each Monte Carlo trial.

We consider a two-layer autoencoder with shared
weights as described in Section 2.1, such that the hid-
den layer has 10 units with ReLU activation. Then, we
observe its gradient dynamics on the above data using
three different initializations: (i) we initialize W by
adding small random perturbation to the groundtruth
A such that W 0 = A + δE for δ = 0.5 with the
perturbation E ∈ R784×10 generated according to
Eij ∼ N (0, 1/

√
n); (ii) we perform principal compo-

nent analysis of the data samples and choose the top
10 singular vectors as W 0; (iii) we randomly generate
W with Wi ∼ N (0, 1√

n
In).

For all three initializations, the bias b of the encoder

are initially set to b = −2.5δ. We train the weights W
with the batch gradient descent and update the bias
using a fixed update rule bs+1 = bs/2.

The learning rate for gradient descent is set fixed to
ζ = m. The number of descent steps is T = 50. We run
the batch descent algorithm at each initialization with
different levels of noise (ση = 0.01, 0.02, 0.03), then we
observe the reconstruction loss over the data samples.

Figure 2 shows the learning curve in the number of
iterations. From the left, the first plot is the loss with
the initial point 0.5-close to A. The next two plots
represent the learning using the PCA and random ini-
tializations. The gradient descent also converges when
using the same step size and bias as described above.
The convergence behavior is somewhat unexpected;
even with random initialization the reconstruction loss
decreases to low levels when the noise parameter ση is
small. This suggests that the loss surface is perhaps
amenable to optimization even for radius bigger than
O(δ)-away from the ground truth parameters, although
our theory does not account for this.

In Figure 3 we show the Frobenius norm difference
between the ground truth A and final solution W us-
ing three initialization schemes on a data set with
noise ση = 0.01. Interestingly, despite the convergence,
neither PCA nor random initialization leads to the
recovery of the ground truth A. Note that since we
can only estimate W up to some column permutation,
we use the Hungarian algorithm to compute matching
between W and A and then calculate the norm.

Conclusions To our knowledge, the above analysis
is the first to prove rigorous convergence of gradient
dynamics for autoencoder architectures for a wide vari-
ety of (bilinear) generative models. Numerous avenues
for future work remain — finite sample complexity
analysis; extension to more general architectures; and
extension to richer classes of generative models.

Thanh V. Nguyen∗, Raymond K. W. Wong†, Chinmay Hegde∗

7 Acknowledgements

This work was supported in part by the National Sci-
ence Foundation under grants CCF-1566281, CAREER
CCF-1750920 and DMS-1612985, and in part by a Fac-
ulty Fellowship from the Black and Veatch Foundation.

References

[1] Yuandong Tian. Symmetry-breaking convergence
analysis of certain two-layered neural networks
with relu nonlinearity. 2017.

[2] Rong Ge, Jason D Lee, and Tengyu Ma. Learning
one-hidden-layer neural networks with landscape
design. arXiv preprint arXiv:1711.00501, 2017.

[3] Alon Brutzkus and Amir Globerson. Globally op-
timal gradient descent for a convnet with gaussian
inputs. In International Conference on Machine
Learning, pages 605–614, 2017.

[4] Kai Zhong, Zhao Song, Prateek Jain, Peter L
Bartlett, and Inderjit S Dhillon. Recovery guar-
antees for one-hidden-layer neural networks. In
International Conference on Machine Learning,
pages 4140–4149, 2017.

[5] Kenji Kawaguchi. Deep learning without poor
local minima. In Advances in Neural Information
Processing Systems, pages 586–594, 2016.

[6] Yuanzhi Li and Yang Yuan. Convergence analysis
of two-layer neural networks with relu activation.
In Advances in Neural Information Processing Sys-
tems, pages 597–607, 2017.

[7] Moritz Hardt and Tengyu Ma. Identity matters
in deep learning. 2017.

[8] Avrim Blum and Ronald L Rivest. Training a 3-
node neural network is np-complete. In Advances
in Neural Information Processing Systems, pages
494–501, 1989.

[9] Sanjeev Arora, Aditya Bhaskara, Rong Ge, and
Tengyu Ma. Provable bounds for learning some
deep representations. In International Conference
on Machine Learning, pages 584–592, 2014.

[10] Sanjeev Arora, Yingyu Liang, and Tengyu Ma.
Why are deep nets reversible: A simple theory,
with implications for training. arXiv preprint
arXiv:1511.05653, 2015.

[11] Akshay Rangamani, Anirbit Mukherjee, Ashish
Arora, Tejaswini Ganapathy, Amitabh Basu, Sang
Chin, and Trac D Tran. Sparse coding and autoen-
coders. arXiv preprint arXiv:1708.03735, 2017.

[12] Sanjeev Arora and Ravi Kannan. Learning mix-
tures of separated nonspherical gaussians. The
Annals of Applied Probability, 15(1A):69–92, 2005.

[13] Daniel A Spielman, Huan Wang, and John Wright.
Exact recovery of sparsely-used dictionaries. In
Conference on Learning Theory, pages 37–1, 2012.

[14] Alekh Agarwal, Animashree Anandkumar, Pra-
teek Jain, Praneeth Netrapalli, and Rashish Tan-
don. Learning sparsely used overcomplete dictio-
naries. In Conference on Learning Theory, pages
123–137, 2014.

[15] Rémi Gribonval, Rodolphe Jenatton, Francis Bach,
Martin Kleinsteuber, and Matthias Seibert. Sam-
ple complexity of dictionary learning and other
matrix factorizations. IEEE Transactions on In-
formation Theory, 61(6):3469–3486, 2015.

[16] Sanjeev Arora, Rong Ge, Tengyu Ma, and Ankur
Moitra. Simple, efficient, and neural algorithms for
sparse coding. In Conference on Learning Theory,
pages 113–149, 2015.

[17] Ankur Moitra and Gregory Valiant. Settling the
polynomial learnability of mixtures of gaussians. In
Foundations of Computer Science (FOCS), 2010
51st Annual IEEE Symposium on, pages 93–102.
IEEE, 2010.

[18] Sanjeev Arora, Rong Ge, Ankur Moitra, and
Sushant Sachdeva. Provable ica with unknown
gaussian noise, with implications for gaussian mix-
tures and autoencoders. In Advances in Neural
Information Processing Systems, pages 2375–2383,
2012.

[19] Navin Goyal, Santosh Vempala, and Ying Xiao.
Fourier pca and robust tensor decomposition. In
Proceedings of the forty-sixth annual ACM sym-
posium on Theory of computing, pages 584–593.
ACM, 2014.

[20] Pascal Vincent, Hugo Larochelle, Isabelle La-
joie, Yoshua Bengio, and Pierre-Antoine Manzagol.
Stacked denoising autoencoders: Learning useful
representations in a deep network with a local
denoising criterion. Journal of Machine Learning
Research, 11(Dec):3371–3408, 2010.

[21] Devansh Arpit, Yingbo Zhou, Hung Ngo, and
Venu Govindaraju. Why regularized auto-encoders
learn sparse representation? arXiv preprint
arXiv:1505.05561, 2015.

[22] Alekh Agarwal, Animashree Anandkumar, and
Praneeth Netrapalli. Exact recovery of sparsely
used overcomplete dictionaries. stat, 1050:8, 2013.

[23] Bruno A Olshausen and David J Field. Sparse
coding with an overcomplete basis set: A strategy
employed by v1? Vision research, 37(23):3311–
3325, 1997.

[24] Sanjeev Arora, Rong Ge, and Ankur Moitra. New
algorithms for learning incoherent and overcom-

On the Dynamics of Gradient Descent for Autoencoders

plete dictionaries. In Conference on Learning The-
ory, pages 779–806, 2014.

[25] Adam Coates and Andrew Y Ng. The importance
of encoding versus training with sparse coding and
vector quantization. In International Conference
on Machine Learning, pages 921–928, 2011.

[26] Andrew M Saxe, Pang Wei Koh, Zhenghao Chen,
Maneesh Bhand, Bipin Suresh, and Andrew Y
Ng. On random weights and unsupervised feature
learning. In International Conference on Machine
Learning, pages 1089–1096, 2011.

[27] Kishore Konda, Roland Memisevic, and David
Krueger. Zero-bias autoencoders and the ben-
efits of co-adapting features. arXiv preprint
arXiv:1402.3337, published in ICLR 2015, 2015.

[28] Thanh V Nguyen, Raymond K W Wong, and
Chinmay Hegde. A provable approach for double-
sparse coding. In Proc. Conf. American Assoc.
Artificial Intelligence, Feb. 2018.

Thanh V. Nguyen∗, Raymond K. W. Wong†, Chinmay Hegde∗

A Proof of Theorem 3

We start our proof with the following auxiliary claims.

Claim 1. Suppose that maxi‖Wi −Ai‖ ≤ δ and ‖Wi‖ = 1. We have:

1. 〈Wi, Ai〉 ≥ 1− δ2/2 for any i ∈ [m];

2. |〈Wi, Aj〉| ≤ µ/
√
n+ δ, for any j 6= i ∈ [m];

3.
∑
j∈S\{i}〈Wi, Aj〉2 ≤ O(µ2k/n+ δ2) for any S ⊂ [m] of size at most k.

Proof. The claims (i) and (ii) clearly follow from the δ-closeness and µ-incoherence properties as shown below.

〈Wi, Ai〉 = 1− (1/2)‖Wi −Ai‖2 ≥ 1− δ2/2,

and
|〈Wi, Aj〉| = |〈Ai, Aj〉+ 〈Wi −Ai, Aj〉| ≤ µ/

√
n+ δ.

For (iii), we apply Cauchy-Schwarz to bound each term inside the summation. Precisely, for any j 6= i,

〈Wi, Aj〉2 ≤ 2
(
〈Ai, Aj〉2 + 〈Wi −Ai, Aj〉2

)
≤ 2µ2/n+ 2〈Wi −Ai, Aj〉2.

Together with ‖A‖ = O(
√
m/n) = O(1), we finish proving (iii) by noting that∑

j∈S\{i}

〈Wi, Aj〉2 ≤ 2µ2k/n+ 2‖ATS (Wi −Ai)‖2F ≤ 2µ2k/n+ 2‖AS‖2‖Wi −Ai‖2 ≤ O(µ2k/n+ δ2).

�

Claim 2. Suppose ‖Wi‖ = 1, then maxi|〈Wi, η〉| ≤ ση log n holds with high probability.

Proof. Since η is a spherical Gaussian random vector and ‖Wi‖ = 1, 〈Wi, η〉 is Gaussian with mean 0 and variance
σ2
η. Using the Gaussian tail bound for 〈Wi, η〉 and taking the union bound over i = 1, 2, . . . ,m, we have that

maxi|〈Wi, η〉| ≤ ση log n holds with high probability. �

Proof of Theorem 3. Denote z = WT y + b and let i ∈ [m] be fixed for a moment. (Later we use a union bound
argument for account for all i). Denote S = supp(x∗) and R = S\{i}. Notice that xi = 0 if i 6∈ S by definition.
One can write the ith entry zi of the weighted sum z as

zi = WT
i (ASx

∗
S + η) + bi

= 〈Wi, Ai〉x∗i +
∑
j∈R
〈Wi, Aj〉x∗j + 〈Wi, η〉+ bi

= 〈Wi, Ai〉x∗i + Zi + 〈Wi, η〉+ bi,

where we write Zi =
∑
j∈R〈Wi, Aj〉x∗j . Roughly speaking, since 〈Wi, Ai〉 is close to 1, zi approximately equals x∗i

if we can control the remaining terms. This will be made precise below separately for different generative models.

A.1 Case (i): Sparse coding model

For this setting, the hidden code x∗ is k-sparse and is not restricted to non-negative values. The nonzero entries
are mutually independent sub-Gaussian with mean κ1 = 0 and variance κ2 = 1. Note further that a1 ∈ (0, 1] and
a2 =∞ and the dictionary is incoherent and over-complete.

Since the true code takes both positive and negative values as well as sparse, it is natural to consider the hard
thresholding activation. The consistency is studied in [16] for the case of sparse coding (see Appendix C and also
work [28], Lemma 8 for a treatment of the noise.)

On the Dynamics of Gradient Descent for Autoencoders

A.2 Case (ii) and (iii): Non-negative k-sparse model

Recall that S = supp(x∗) and that x∗j ∈ [a1, a2] for j ∈ S. Cauchy-Schwarz inequality implies

|Zi| =
∣∣∣∑
j∈R
〈Wi, Aj〉x∗j

∣∣∣ ≤√∑
j∈R
〈Wi, Aj〉2‖x∗‖ ≤ a2

√
µ2k2

n
+ kδ2,

where we use bound (ii) in Claim 1 and ‖x∗‖ ≤ a2
√
k.

If i ∈ S, then w.h.p.

zi = 〈Wi, Ai〉x∗i + Zi + 〈Wi, η〉

≥ (1− δ2/2)a1 − a2

√
µ2k2

n
+ kδ2 − ση log n+ bi > 0

for bi ≥ −(1− δ)a1 + a2δ
√
k and a2δ

√
k � (1− δ)a1, k = O(1/δ2) = O(log2 n), µ ≤ δ

√
n/k, and ση = O(1/

√
n).

On the other hand, when i /∈ S then w.h.p.

zi = Zi + 〈Wi, η〉+ bi

≤ a2

√
µ2k2

n
+ kδ2 + ση log n+ bi

≤ 0

for bi ≤ −a2
√

µ2k2

n + kδ2 − ση log n ≈ −a2δ
√
k.

Due to the use of Claim 2, these results hold w.h.p. uniformly for all i and so supp(x) = S for x = ReLU(WT y+b)
w.h.p. by We re-use the tail bound P[Zi ≥ ε] given in [11], Theorem 3.1.

Moreover, one can also see that with high probability zi > a1/2 if i ∈ S and zi < a2δ
√
k < a1/4 otherwise. This

results hold w.h.p. uniformly for all i and so x = threshold1/2(z) has the same support as x∗ w.h.p. �

B Proof of Theorem 4

B.1 Case (i): Mixture of Gaussians

We start with simplifying the form of gi using the generative model 3 and Theorem 3. First, from the model we
can have pi = P[x∗i 6= 0] = Θ(1/m) and E[η] = 0 and E[ηηT] = σ2

ηI. Second, by Theorem 3 in (i), 1xi 6=0 = x∗i = 1

with high probability. As such, under the event we have xi = σ(WT
i y + bi) = (WT

i y + bi)1x∗
i 6=0 for both choices

of σ (Theorem 3).

To analyze gi, we observe that

γ = E[(WT
i yI + biI + yWT

i)(y −Wx)(1x∗
i 6=0 − 1xi 6=0)]

has norm of order O(n−w(1)) since the failure probability of the support consistency event is sufficiently small for
large n, and the remaining term has bounded moments. One can write:

gi = −E[1x∗
i 6=0(WT

i yI + biI + yWT
i)(y −Wx)] + γ

= −E[1x∗
i 6=0(WT

i yI + yWT
i + biI)(y −WiW

T
i y − biWi)] + γ

= −E[1x∗
i 6=0(WT

i yI + yWT
i)(I −WiW

T
i)y] + biE[1x∗

i 6=0(WT
i yI + yWT

i)]Wi

− biE[1x∗
i 6=0(I −WiW

T
i)y] + b2iWiE[1x∗

i 6=0] + γ

= g
(1)
i + g

(2)
i + g

(3)
i + pib

2
iWi + γ,

Thanh V. Nguyen∗, Raymond K. W. Wong†, Chinmay Hegde∗

Next, we study each of g(t)i , t = 1, 2, 3, by using the fact that y = Ai + η as x∗i = 1. To simplify the notation,
denote λi = 〈Wi, Ai〉. Then

g
(1)
i = −E[(WT

i (Ai + η)I + (Ai + η)WT
i)(I −WiW

T
i)(Ai + η)1x∗

i 6=0]

= −E[(λiI +AiW
T
i + 〈Wi, η〉I + ηWT

i)(I −WiW
T
i)(Ai + η)1x∗

i 6=0]

= −(λiI +AiW
T
i)(Ai − λiWi)P[x∗i 6= 0]− E[(〈Wi, η〉I + ηWT

i)(I −WiW
T
i)η1x∗

i 6=0]

= −piλiAi + piλ
2
iWi − E[(〈Wi, η〉I + ηWT

i)(I −WiW
T
i)η1x∗

i 6=0],

where we use pi = P[x∗i 6= 0] and denote ‖Wi‖ = 1. Also, since η is spherical Gaussian-distributed, we have:

E[(〈Wi, η〉I + ηWT
i)(I −WiW

T
i)η1x∗

i 6=0] = piE[〈Wi, η〉η − 〈Wi, η〉2Wi]

= piσ
2
η(1− ‖Wi‖2)Wi = 0,

To sum up, we have

g
(1)
i = −piλiAi + piλ

2
iWi (6)

For the second term,

g
(2)
i = biE[1x∗

i 6=0(WT
i yI + yWT

i)]Wi = biE[1x∗
i 6=0(WT

i (Ai + η)I + (Ai + η)WT
i)]Wi

= biE[(λiWi + ‖Wi‖2Ai)1x∗
i 6=0]

= pibiλiWi + pibiAi. (7)

In the second step, we use the independence of spherical η and x. Similarly, we can compute the third term:

g
(3)
i = −bi(I −WiW

T
i)E[y1x∗

i 6=0] = −bi(I −WiW
T
i)E[(Ai + η)1x∗

i 6=0]

= −pibi(I −WiW
T
i)Ai

= −pibiAi + pibiλiWi (8)

Putting (6), (7) and (8) together, we have

gi = −piλiAi + pi(λ
2
i + 2biλi + b2i)Wi + γ

Having established the closed-form for gi, one can observe that when bi such that λ2i + 2biλi + b2i ≈ λi, gi roughly
points in the same desired direction to A∗ and suggests the correlation of gi with Wi −Ai. Now, we prove this
result.

Proof of Lemma 1. Denote v = pi(λ
2
i + 2biλi + b2i − λi)Wi + γ. Then

gi = −piλiAi + pi(λ
2
i + 2biλi + b2i)Wi + γ (9)

= piλi(Wi −Ai) + v,

By expanding (9), we have

2〈v,Wi −Ai〉 =
1

piλi
‖gi‖2 − piλi‖Wi −Ai‖2 −

1

piλi
‖v‖2.

Using this equality and taking inner product with Wi −Ai to both sides of (9), we get

2〈gi,Wi −Ai〉 = piλi‖Wi −Ai‖2 +
1

piλi
‖gi‖2 −

1

piλi
‖v‖2.

We need an upper bound for ‖v‖2. Since

|(bi + λi)
2 − λi| ≤ 2(1− λi)

On the Dynamics of Gradient Descent for Autoencoders

and
2(1− λi) = ‖Wi −Ai‖2,

we have:
|(bi + λi)

2 − λi| ≤ ‖Wi −Ai‖2 ≤ δ‖Wi −Ai‖

Notice that

‖v‖2 = ‖pi(λ2i + 2biλi + b2i − λi)Wi + γ‖2

≤ 2p2i δ
2‖Wi −Ai‖2 + 2‖γ‖2.

Now one can easily show that

2〈gi,Wi −Ai〉 ≥ pi(λi − 2δ2)‖Wi −Ai‖2 +
1

piλi
‖gi‖2 −

2

piλi
‖γ‖2.

�

B.2 Case (ii): General k-Sparse Coding

For this case, we adopt the same analysis as used in Case 1. The difference lies in the distributional assumption of
x∗, where nonzero entries are independent sub-Gaussian. Specifically, given the support S of size at most k with
pi = P[i ∈ S] = Θ(k/m) and pij = P[i, j ∈ S] = Θ(k2/m2), we suppose E[x∗i |S] = 0 and E[x∗Sx

∗T
S |S] = I. For

simplicity, we choose to skip the noise, i.e., y = Ax∗ for this case. Our analysis is robust to iid additive Gaussian
noise in the data; see [28] for a similar treatment. Also, according to Theorem 3, we set bi = 0 to obtain support
consistency. With zero bias, the expected update rule gi becomes

gi = −E[(WT
i yI + yWT

i)(y −Wx)1xi 6=0].

For S = supp(x∗), then y = ASx
∗
S . Theorem 3 in (ii) shows that supp(x) = S w.h.p., so under that event we can

write Wx = WSxS = WS(WT
S y). Similar to the previous cases, γ denotes a general quantity whose norm is of

order n−w(1) due to the converging probability of the support consistency. Now, we substitute the forms of y and
x into gi:

gi = −E[(WT
i yI + yWT

i)(y −Wx)1xi 6=0]

= −E[(WT
i yI + yWT

i)(y −WSW
T
S y)1x∗

i 6=0] + γ

= −E[(I −WSW
T
S)(WT

i ASx
∗
S)ASx

∗
S1x∗

i 6=0]− E[(ASx
∗
S)WT

i (I −WSW
T
S)ASx

∗
S1x∗

i 6=0] + γ

= g
(1)
i + g

(2)
i + γ.

Write
g
(1)
i,S = −E[(I −WSW

T
S)(WT

i ASx
∗
S)ASx

∗
S1x∗

i 6=0|S],

and
g
(2)
i,S = −E[(ASx

∗
S)WT

i (I −WSW
T
S)ASx

∗
S1x∗

i 6=0|S],

so that g(1)i = E(g
(1)
i,S) and g

(2)
i = E(g

(2)
i,S). It is easy to see that E[x∗jx

∗
l 1x∗

i 6=0|S] = 1 if i = j = l ∈ S and

E[x∗i x
∗
l 1x∗

i 6=0|S] = 0 otherwise. Therefore, g(1)i,S becomes

g
(1)
i,S = −E[(I −WSW

T
S)(WT

i ASx
∗
S)ASx

∗
S1x∗

i 6=0|S] (10)

= −
∑
j,l∈S

E[(I −WT
SWS)(WT

i Aj)Alx
∗
jx
∗
l 1x∗

i 6=0|S]

= −λi(I −WSW
T
S)Ai, (11)

Thanh V. Nguyen∗, Raymond K. W. Wong†, Chinmay Hegde∗

where we use the earlier notation λi = WT
i Ai. Similar calculation of the second term results in

g
(2)
i,S = −E[(ASx

∗
S)WT

i (I −WSW
T
S)ASx

∗
S1x∗

i 6=0|S] (12)

= −E[
∑
j∈S

x∗jAjW
T
i (I −WSW

T
S)
∑
l∈S

x∗lAl1x∗
i 6=0|S]

= −
∑
j,l∈S

E[AjW
T
i (I −WSW

T
S)Alx

∗
jx
∗
l sgn(x∗i)|S]

= −AiWT
i (I −WSW

T
S)Ai (13)

Now we combine the results in (10) and (12) to compute the expectation over S.

gi = E[g
(1)
i,S + g

(2)
i,S] + γ (14)

= −E[λi(I −WSW
T
S)Ai +AiW

T
i (I −WSW

T
S)Ai] + γ

= −E[2λiAi − λi
∑
j∈S

WjW
T
j Ai −AiWT

i

∑
j∈S

WjW
T
j Ai] + γ

= −2piλiAi + E[λi
∑
j∈S

WjW
T
j Ai +

∑
j∈S
〈Wi,Wj〉〈Ai,Wj〉Ai] + γ

= −2piλiAi + E[λ2iWi +
∑
j∈R
〈Ai,Wj〉Wj + λi‖Wi‖2Ai +

∑
j∈R
〈Wi,Wj〉〈Ai,Wj〉Ai] + γ,

where pi = P[i ∈ S] and R = S\{i}. Moreover, ‖Wi‖ = 1, hence

gi = −piλiAi + piλ
2
iWi +

∑
j∈[m]\{i}

pijλi〈Ai,Wj〉Wj + pij〈Wi,Wj〉〈Ai,Wj〉Ai) + γ

= −piλiAi + piλ
2
iWi + λiW−idiag(pij)W

T
−iAi + (WT

i W−idiag(pij)W
T
−iAi)Ai + γ, (15)

for W−i = (W1, . . . ,Wi−1,Wi+1, . . . ,Wm) with the ith column being removed, and diag(pij) denotes the diagonal
matrix formed by pij with j ∈ [m]\{i}.

Observe that ignoring lower order terms, gi can be written as piλi(Wi − Ai) + piλi(λi − 1)Wi, which roughly
points in the same desired direction to A. Rigorously, we argue the following:

Lemma 2. Suppose W is (δ, 2)-near to A. Then

2〈gi,Wi −Ai〉 ≥ piλi‖Wi −Ai‖2 +
1

piλi
‖gi‖2 −O(pik

2/n2λi)

Proof. We proceed with similar steps as in the proof of Lemma 1. By nearness,

‖W‖ ≤ ‖W −A‖+ ‖A‖ ≤ 3‖A‖ ≤ O(
√
m/n).

Also, pi = Θ(k/m) and pij = Θ(k2/m2). Then

‖W−idiag(pij)W
T
−iAi‖ ≤ pi‖W−idiag(pij/pi)W

T
−i‖

≤ pi‖W−i‖2 max
j 6=i

(pij/pi) = O(pik/n).

Similarly,
‖WT

i W−idiag(pij)W
T
−iAi)Ai‖ ≤ O(pik/n).

Now we denote

v = piλi(λi − 1)Wi + λiW−idiag(pij)W
T
−iAi + (WT

i W−idiag(pij)W
T
−iAi)Ai + γ.

Then
gi = piλi(Wi −Ai) + v

On the Dynamics of Gradient Descent for Autoencoders

where ‖v‖ ≤ piλi(δ/2)‖Wi −Ai‖+O(pik/n) + ‖γ‖. Therefore, we obtain

2〈gi,Wi −Ai〉 ≥ piλi(1−
δ2

2
)‖Wi −Ai‖2 +

1

piλi
‖gi‖2 −O(pik

2/n2λi).

where we assume that ‖γ‖ is negligible when compared with O(pik/n). �

Adopting the same arguments in the proof of Case (i), we are able to get the descent property column-wise for
the normalized gradient update with the step size ζ = maxi(1/piλi) such that there is some τ ∈ (0, 1):

‖W s+1
i −Ai‖2 ≤ (1− τ)‖W s

i −Ai‖
2

+O(pik
2/n2λi).

Since pi = Θ(k/m), Consequently, we will obtain the descent in Frobenius norm stated in Theorem 4, item (ii).

Lemma 3 (Maintaining the nearness). ‖W −A‖ ≤ 2‖A‖.

Proof. The proof follows from [16] (Lemma 24 and Lemma 32).

B.3 Case (iii): Non-negative k-Sparse Coding

We proceed with the proof similarly to the above case of general k-sparse code. Additional effort is required
due to the positive mean of nonzero coefficients in x∗. For x = σ(WT y + b), we have the support recovery for
both choices of σ a shown in (ii) and (iii) of Theorem 3. Hence we re-use the expansion in [11] to compute the
expected approximate gradient. Note that we standardize Wi such that ‖Wi‖ = 1 and ignore the noise η.

Let i be fixed and consider the approximate gradient for the ith column of W . The expected approximate gradient
has the following form:

gi = −E[1xi 6=0(WT
i yI + biI + yWT

i)(y −Wx)] = αiWi − βiAi + ei,

where

αi = κ2piλ
2
i + κ2

∑
j 6=i

pij〈Wi, Aj〉2 + 2κ21
∑
j 6=i

pijλi〈Wi, Aj〉+ κ21
∑
j 6=l 6=i

pijl〈Wi, Aj〉〈Wi, Al〉

+ 2κ1pibiλi + 2κ1
∑
j 6=i

pijbi〈Wi, Aj〉+ pib
2
i ;

βi = κ2piλi − κ2
∑
j 6=i

pij〈Wi,Wj〉〈Ai,Wj〉+ κ21
∑
j 6=i

pij〈Wi, Aj〉 − κ21
∑
j 6=i

pij〈Wi,Wj〉〈Wj , Aj〉

− κ21
∑
j 6=l 6=i

pijl〈Wi,Wj〉〈Wj , Al〉 − κ1
∑
j 6=i

pijbi〈Wi,Wj〉;

and ei is a term with norm ‖ei‖ ≤ O(max (κ21, κ
2
2)pik/m) – a rough bound obtained in [11] (see the proof of

Lemma 5.2 in pages 26 and 35 of [11].) As a sanity check, by plugging in the parameters of the mixture of
Gaussians to αi, βi and ei, we get the same expression for gi in Case 1. We will show that only the first term in
αi is dominant except ones involving the bias bi. The argument for βi follows similarly.

Claim 3.

αi = κ2piλ
2
i + κ2O(pik/m) + 2κ21piλiO(k/

√
m) + κ21O(pik

2/m)

+ 2κ1pibiλi + 2κ1pibiO(k/
√
m) + pib

2
i .

Proof. We bound the corresponding terms in αi one by one. We start with the second term:
m∑
j 6=i

pij〈Wi, Aj〉2 ≤ max
j 6=i

pij

m∑
j 6=i

〈Wi, Aj〉2

≤ max
j 6=i

pij‖AT−iWi‖2F

≤ O(pik/m),

Thanh V. Nguyen∗, Raymond K. W. Wong†, Chinmay Hegde∗

since pij = Θ(k2/m2) = Θ(pik/m). Similarly, we have

|
m∑
j 6=i

pij〈Wi, Aj〉| = |WT
i

m∑
j 6=i

pijAj |

≤ ‖Wi‖‖A‖
√∑

j 6=i

p2ij

≤ O(pik/
√
m),

which leads to a bound on the third and the sixth terms. Note that this bound will be re-used to bound the
corresponding term in βi.

The next term is bounded as follows:∑
j 6=l
j,l 6=i

pijl〈Wi, Aj〉〈Wi, Al〉 = WT
i

∑
j 6=l
j,l 6=i

pijlAjA
T
l Wi

≤
∥∥∥∑
j 6=l
j,l 6=i

pijlAjA
T
l

∥∥∥‖Wi‖2

≤ O(pik
2/m),

where M =
∑

j 6=l
j,l 6=i

pijlAjA
T
l = A−iQA

T
−i for Qjl = pijl for j 6= l and Qjl = 0 otherwise. Again, A−i

denotes the matrix W with its ith column removed. We have pijl = Θ(k3/m3) ≤ O(qik
2/m); therefore,

‖M‖ ≤ ‖Q‖F ‖A‖
2 ≤ O(qik

2/m). �

Claim 4.

βi = κ2piλi − κ2O(pik/m) + κ21O(pik/
√
m)− κ21O(pik/

√
m)

+ κ21O(pik
2/m)− κ1biO(pik/

√
m).

Proof. We proceed similarly to the proof of Claim 3. Due to nearness and the fact that ‖A∗‖ = O(
√
m/n) = O(1),

we can conclude that ‖W‖ ≤ O(1). For the second term, we have

‖
∑
j 6=i

pij〈Wi,Wj〉〈Ai,Wj〉‖ = ‖WT
i

∑
j 6=i

pijWjW
T
j Ai‖

≤ max
j 6=i

pij‖W−iWT
−i‖‖Wi‖‖Ai‖

≤ O(pik/m),

where WjW
T
j are p.s.d and so 0 �

∑
j 6=i pijWjW

T
j � (maxj 6=i pij)(

∑
j 6=iWjW

T
j) � maxj 6=i pijW−iW

T
−i. To

bound the third one, we use the fact that |λj | = |〈Wj , Aj〉| ≤ 1. Hence from the proof of Claim 3,

‖
∑
j 6=i

pij〈Wi,Wj〉〈Wj , Aj〉‖ = ‖
∑
j 6=i

pijλj〈Wi,Wj〉‖

≤ ‖Wi‖‖W‖
√∑

j 6=i

(pijλj)2

≤ O(pik/
√
m),

On the Dynamics of Gradient Descent for Autoencoders

which is also the bound for the last term. The remaining term can be bounded as follows:

‖
∑
j 6=l 6=i

pijl〈Wi,Wj〉〈Wj , Al〉‖ ≤ ‖
∑
j 6=l 6=i

pijlWjW
T
j Al‖

≤
∑
l 6=i

‖pijlW−iWT
−i‖

≤
∑
l 6=i

max
j 6=l 6=i

pijl‖W−i‖2

≤ O(pik
2/m).

�

When bi = 0, from (3) and (4) and bi ∈ (−1, 0), we have:

αi = pi(κ2λ
2
i + 2κ1pibiλi + b2i) +O(max(κ21, κ2)k/

√
m)

and
βi = κ2piλi +O(max(κ21, κ2)k/

√
m),

where we implicitly require that k ≤ O(
√
n), which is even weaker than the condition k = O(1/δ2) stated in

Theorem 3. Now we recall the form of gi:

gi = −κ2piλiAi + pi(κ2λ
2
i + 2κ1pibiλi + b2i)Wi + v (16)

where v = O(max(κ21, κ2)k/
√
m)Ai +O(max(κ21, κ2)k/

√
m)Wi + ei. Therefore ‖v‖ ≤ O(max(κ21, κ2)k/

√
m).

Lemma 4. Suppose A is δ-close to A∗ and the bias satisfies |κ2λ2i + 2κ1pibiλi + b2i − κ2λi| ≤ 2κ2(1− λi), then

2〈gi,Wi −Ai〉 ≥ κ2pi(λi − 2δ2)‖Wi −Ai‖2 +
1

κ2piλi
‖gi‖2 −O(max(1, κ2/κ

2
1)

k2

pim
)

The proof of this lemma and the descent is the same as that of Lemma 1 for the case of Gaussian mixture. Again,
the condition for bias holds when bi = 0 and the thresholding activation is used; but breaks down when the
nonzero bias is set fixed across iterations.

Now, we give an analysis for a bias update. Similarly to the mixture of Gaussian case, the bias is updated as

bs+1 = bs/C,

for some C > 1. The proof remains the same to guarantee the consistency and also the descent.

The last step is to maintain the nearness for the new update. Since it is tedious to argue that for the complicated
form of gi, we can instead perform a projection on convex set B = {W |W is δ-close to A∗ and ‖W‖ ≤ 2‖A‖} to
guarantee the nearness. The details can be found in [16].

B.4 Auxiliary Lemma

In our descent analysis, we assume a normalization for W ’s columns after each descent update. The descent
property is achieved for the unnormalized version and does not directly imply the δ-closeness for that current
estimate. In fact, this is shown by the following lemma:

Lemma 5. Suppose that ‖W s
i ‖ = ‖Ai‖ = 1 and ‖W s

i − Ai‖ ≤ δs. The gradient update W̃ s+1
i satisfies

‖W̃ s+1
i −Ai‖ ≤ (1− τ)‖W s

i −Ai‖+ o(δs). Then, for 1−δs
2−δs ≤ τ < 1, we have

‖W s+1
i −Ai‖ ≤ (1 + o(1))δs,

where W s+1
i =

W̃ s+1
i

‖W̃ s+1
i ‖

.

Thanh V. Nguyen∗, Raymond K. W. Wong†, Chinmay Hegde∗

Proof. Denote w = ‖W̃ s+1
i ‖. Using a triangle inequality and the descent property, we have

‖W̃ s+1
i − wAi‖ = ‖W̃ s+1

i −Ai + (1− w)Ai‖

≤ ‖W̃ s+1
i −Ai‖+ ‖(1− w)Ai‖ (‖Ai‖ = 1)

≤ (1− τ)‖W s
i −Ai‖+ (1− τ)‖W s

i −Ai‖+ o(δs)

≤ 2(1− τ)‖W s
i −Ai‖+ o(δs).

At the third step, we use |1−w| ≤ ‖W̃ s+1
i −Ai‖ ≤ (1−τ)‖W s

i −Ai‖+o(δs). This also implies w ≥ 1−(1−τ−o(1))δs.
Therefore,

‖W s+1
i −Ai‖ ≤

2(1− τ)

w
‖W s

i −Ai‖+ o(δs)

≤ 2(1− τ)

(1 + (1− τ − o(1))δs)
‖W s

i −Ai‖+ o(δs).

This implies that when the condition 1+δs
2+δs

≤ τ < 1 holds, we get:

‖W s+1
i −Ai‖ ≤ (1 + o(1))δs.

�

	Introduction
	Motivation
	Our contributions
	Techniques
	Comparison with prior work

	Preliminaries
	Two-Layer Autoencoders
	Generative Bilinear Model

	Initialization
	Encoding Stage
	Learning Stage
	Experiments
	Acknowledgements
	Proof of Theorem 3
	Case (i): Sparse coding model
	Case (ii) and (iii): Non-negative k-sparse model

	Proof of Theorem 4
	Case (i): Mixture of Gaussians
	Case (ii): General k-Sparse Coding
	Case (iii): Non-negative k-Sparse Coding
	Auxiliary Lemma

