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ABSTRACT

Signal demixing is of special importance in several applications
ranging from astronomy to computer vision. The goal in demixing
is to recover a set of signals from their linear superposition. In this
paper, we study the more challenging scenario where only a limited
number of nonlinear measurements of the signal superposition are
available. Our contribution is a simple, fast algorithm that recovers
the component signals from the nonlinear measurements. We sup-
port our algorithm with a rigorous theoretical analysis, and provide
upper bounds on the estimation error as well as the sample complex-
ity of demixing the components (up to a scalar ambiguity). We also
provide a range of simulation results, and observe that the method
outperforms a previous algorithm based on convex relaxation.

1. INTRODUCTION

1.1. Motivation

In several applications in signal and image processing, data analy-
sis, and statistics, the problem of demixing assumes a special impor-
tance. In the simplest case, the goal is to recover a pair of signals
from their linear superposition. Mathematically, consider the obser-
vation model:

x = Φw + Ψz, (1.1)

where x ∈ Rn represents the observations, Φ,Ψ ∈ Rn×n are or-
thonormal bases, and w, z ∈ Rn are the coefficients of the con-
stituent signals. The demixing problem involves reliably recovering
the constituents w and z from the observations x. This problem has
been studied in several applications [1, 2]. In image processing and
computer vision applications, demixing methods impact tasks such
as background-foreground separation [3, 4], while in astronomical
imaging, demixing methods can enable the separation of astronomi-
cal features (stars/galaxies) from background sky phenomena [5, 6].

In general, demixing is an ill-posed problem since the number of
unknowns (2n) is greater than the number of equations (n). Reliable
recovery of the constituent signals is very difficult in general, and
one inevitably has to assume some sort of incoherence between the
constituent signals (or more specifically, between the corresponding
bases Φ and Ψ) However, even if we assume that the signals are in-
coherent enough, demixing poses additional challenges under other,
more stringent observation models. Assume, for instance, a mea-
surement model given by y = A(Φw + Ψz), where A ∈ Rm×n
denotes a linear measurement operator, and w, z ∈ Rn. We focus
on the highly under-determined case where m � n. The under-
determined case has received considerable recent attention in signal
processing and high-dimensional statistics [7, 8, 9].

In this case, it might seem impossible to recover the compo-
nents x and z since A possesses a nontrivial null space. Once again,
this problem is highly ill-posed, and additional information about
the structure of the components is necessary. For example, in the

application of separating foreground and background images, the
foreground image can be modeled as sparse while the background
image can be modeled as low-rank. Such modeling assumptions on
the constituent signals have been shown to enable successful demix-
ing [10, 11, 12, 13, 14].

In this paper, we focus on an even more challenging scenario,
where the measurements y are nonlinear functions of the signal su-
perposition. That is, y = f(Ax) where f is a nonlinear function
(sometimes called a link function), and x is the signal superposition.
Nonlinear link functions have long been studied in the statistics lit-
erature, and have been the recent focus of attention in the context of
signal acquisition and recovery [15, 16, 17, 18]. We are interested in
the problem of signal demixing in such scenarios. Specifically, we
consider the model of y = f(Ax) where A ∈ Rm×n is a random
matrix with m � n and x = Φw + Ψz. As part of our structural
assumptions, we suppose that the signal coefficients w and z are s-
sparse in the bases Φ and Ψ, respectively (i.e., w and z contain no
more than s nonzero entries). Furthermore, f may be non-smooth,
non-invertible, or even unknown. Then, the goal is to recover (mod-
ulo a scale ambiguity1) an estimate of w and z, given measurements,
{yi}mi=1, and knowledge of the matrix A and the bases Φ and Ψ.

1.2. Our Contributions

In this paper, we provide a simple, fast algorithm (that we call
ONESHOT) to demix the constituent signals w and z, given the non-
linear observations y, the measurement operator A, and the bases
Φ and Ψ. Our algorithm is non-iterative, does not require explicit
knowledge of the link function f , and works even in the case where
m� n.

We support our algorithm with a rigorous theoretical analysis.
Our analysis reveals upper bounds on the sample complexity of
demixing with nonlinear observations. (Here, sample complexity
denotes a sufficient number of observations for reliable recovery of
w and z modulo a scaling factor). In particular, we prove that the
sample complexity of ONESHOT to achieve a constant estimation
error is given by m = O(s log n

s
). See Section 3 for details.

Moreover, we provide numerical evidence for the efficiency
of our methods. In particular, we compare the performance of
ONESHOT with a previous method proposed in [19] based on convex
optimization. Simulation results show that ONESHOT outperforms
this convex method significantly in both demixing efficiency as well
as running time, and consequently makes it an attractive choice in
large-scale problems.

Our analysis of ONESHOT is based on the pioneering approach
of [19]. Our contribution is to extend this idea for the (more general)
nonlinear demixing problem, and to characterize the role of incoher-
ence and how it effects the recovery process. Our technique is based

1A scale ambiguity can be unavoidable for certain types of nonlinear
observations; for example, quantization to single-bit measurements [15] re-
moves all amplitude information of a given signal.



on a geometric argument, and leverages the Gaussian mean width for
the set of sparse vectors, which is a statistical measure of complexity
of a set of points in a given space. Due to page-limit constraints, we
merely state our theoretical claims, and refer the reader to [20] for
full proofs.

1.3. Prior Work

While signal demixing is a classical problem, it has been the focus of
a lot of research in recent years. In a class of image processing tech-
niques known as morphological component analysis (MCA), 2D im-
ages are treated as the superposition of structured components, and
the goal is to recover these components using computational tech-
niques [5, 6]. Similar demixing problems arise in applications such
as restoration of clipped audio signals and identification of faulty
computer memory [21].

Research in the linear demixing problem has also considered
a variety of signal models. The robust PCA problem [10, 11, 12]
involves the separation of low-rank and sparse matrices from their
sum. This idea has been used in several applications ranging from
video surveillance to sensor network monitoring. In machine learn-
ing applications, the separation of low-rank and sparse matrices has
been used for latent variable model selection [22] as well as the ro-
bust alignment of multiple occluded images [23]. Another type of
signal model is the low-dimensional manifold model. In [13, 14],
the authors proposed a greedy iterative method for demixing signals,
arising from a mixture of known manifolds by iterative projections
onto the manifolds. We refer to [1] for a comprehensive discussion
on linear demixing with various applications.

Linear demixing falls under the category of linear inverse prob-
lems, an instance of which is the focus of compressive sensing [7,
8, 9]. A generalization of this framework includes the recently pro-
posed 1-bit compressive sensing problem [15]. Here, the linear mea-
surements of a given signal are quantized in the extreme fashion such
that the measurements are binary (±1) and only comprise the sign of
the signal coefficient; therefore, the amplitude of the signal is com-
pletely discarded by the quantization operator. Formally, the chal-
lenge is to recover the signal x, given observations y = sign(Ax)
where A is a measurement matrix. It turns out that if the signal
x is sparse enough, then this recovery problem can be done effi-
ciently using convex optimization [16, 17]. In a related (and some-
what more challenging) problem, the phase information of the signal
coefficients may be lost, and we have only access to the amplitude
information of the signal [18].

None of the above works have (explicitly) considered the prob-
lem of demixing signals from nonlinear observations. In this paper,
we address this problem and provide a fast algorithm with provable
guarantees.

2. PRELIMINARIES

In this section, we establish the formal mathematical model and in-
troduce some definitions. Throughout, the symbol ‖ · ‖ refers to the
`2-norm. Consider a signal x ∈ Rn that is the superposition of a
pair of sparse vectors in different bases, i.e.,:

x = Φw + Ψz , (2.1)

where Φ,Ψ ∈ Rn×n are orthonormal bases, and w, z ∈ Rn such
that ‖w‖0 ≤ s1, and ‖z‖0 ≤ s2. Consider the Gaussian observation
model:

y = f(Ax) , (2.2)

where A ∈ Rm×n is a random matrix with i.i.d. standard normal
entries, and f denotes a (possibly unknown) link function which is
not necessarily smooth, invertible, or continuous. We define the fol-
lowing quantities:

x̄ =
Φw + Ψz

‖Φw + Ψz‖ = α(Φw + Ψz), (2.3)

where α = 1
‖Φw+Ψz‖ . Also, we define the set of sparse vectors in

the bases Φ and Ψ as follows:

K1 = {Φa | ‖a‖0 ≤ s1},
K2 = {Ψa | ‖a‖0 ≤ s2},

and we define K = {a | ‖a‖0 ≤ s}.
A fundamental assumption made by several demixing algo-

rithms is that the sparsifying bases are sufficiently incoherent with
respect to each other. We quantify the incoherence assumption as
follows:

Definition 2.1. (ε-incoherence). The bases Φ and Ψ are said to be
ε-incoherent if:

ε = sup
‖u‖0≤s, ‖v‖0≤s
‖u‖2=1, ‖v‖2=1

|〈Φu,Ψv〉|.

We note that the parameter ε is related to the more well-
known mutual coherence of a matrix. Indeed, if we consider the
matrix Γ = [Φ Ψ], then the mutual coherence of Γ is given by
γ = maxi 6=j |(ΓTΓ)ij |, and one can show that ε ≤ sγ [9].

Finally, we define a statistical measure of complexity of a set of
signals, following the approach of [19].

Definition 2.2. (Local Gaussian mean width). For a given set K ∈
Rn and a scalar t > 0, the local Gaussian mean width (or simply,
the local mean width) at level t is defined as:

Wt(K) = E sup
x,y∈K,
‖x−y‖≤t

〈g, x− y〉.

where g ∼ N (0, In×n).

3. PROPOSED DEMIXING ALGORITHM

Having defined the above quantities, we now present our proposed
demixing algorithm. Recall that we wish to recover components w
and z (modulo a scale ambiguity), given the nonlinear measurements
y and the matrixA. Our proposed algorithm, that we call ONESHOT,
is described in pseudocode form below.

Algorithm 1 ONESHOT

Inputs: Basis matrices Φ and Ψ, measurement matrix A, measure-
ments y, sparsity level s.
Outputs: Estimates x̂ = Φŵ + Ψẑ, ŵ ∈ K1, ẑ ∈ K2

x̂lin ← 1
m
AT y {form linear estimator}

b1 ← Φ∗x̂lin {forming first proxy}
ŵ ← Ps(b1) {Projection on set K1}
b2 ← Ψ∗x̂lin {forming second proxy}
ẑ ← Ps(b2) {Projection on set K2}
x̂← Φŵ + Ψẑ {Estimating x̂}



Here and below, for simplicity we assume that the sparsity levels
s1 and s2, specifying the sets K1 and K2, are equal, i.e., s1 = s2 =
s. The algorithm (and analysis) transparently extends to the case of
unequal sparsity levels. Also, we have used the following projection
operators:

ŵ = Ps(Φ∗x̂lin), ẑ = Ps(Ψ∗x̂lin).

Here, Ps denotes the projection onto the set of (canonical) s-sparse
signals K, and can be implemented by hard thresholding. Observe
that ONESHOT is not an iterative algorithm; this fact enables us to
achieve a fast running time.

The mechanism of ONESHOT is simple. At a high level,
ONESHOT first constructs a linear estimator of the target super-
position signal, denoting by x̂lin = 1

m
AT y, and then projects x̂lin

onto the constraint sets K1 and K2. Finally, it combines these two
projections to obtain the final estimate of the target superposition
signal.

We now provide a performance analysis of ONESHOT. Our
proofs follow the geometric argument provided in [19], specialized
to the demixing problem. In particular, we derive an upper bound
on the estimation error of the component signals w and z, modulo
scaling factors. In our proofs, we use the following result from [19],
restated here for completeness.

Lemma 3.1. (Quality of linear estimator). Given the model in Equa-
tion 2.2, the linear estimator, x̂lin, is an unbiased estimator of x̄ up
to constants. That is, E(x̂lin) = µx̄ and: E‖x̂lin − µx̄‖22 = 1

m
[σ2 +

η2(n− 1)], where µ = E(y1〈a1, x̄〉), σ2 = V ar(y1〈a1, x̄〉), η2 =
E(y2

1).

We now state our main result, with proof provided in [20].

Theorem 3.2. (Main theorem). LetA ∈ Rm×n be a random matrix
with i.i.d. standard normal entries, and let y be given the nonlinear
measurements. Let Φ,Ψ ∈ Rn×n be bases with incoherence pa-
rameter ε. Suppose we use ONESHOT to produce estimates ŵ and
ẑ. Then, the estimation error for the first component w for all t > 0
satisfies the upper bound:

E‖ŵ − µαw‖2 ≤ t+
2√
m

(
4σ + η

Wt(K)

t

)
+ 8µε (3.1)

The coefficients µ, σ, and η are given in Lemma 3.1. A similar bound
satisfies for the second component z.

The authors of [16, 19] provide upper bounds on the local mean
width Wt(K) of the set of s-sparse vectors. In particular, for any
t > 0 they show thatWt(K) ≤ Ct

√
s log(2n/s) for some absolute

constant C. By plugging in this bound and letting t → 0, we can
combine components ŵ and ẑ which gives the following:

Corollary 3.3. With the same assumptions as Theorem 3.2, the error
of nonlinear estimation incurred by the final output x̂ satisfies the
upper bound:

E‖x̂− µx̄‖2 ≤
4√
m

(
4σ + Cη

√
s log(2n/s)

)
+ 16µε. (3.2)

The constants σ, η, µ depend on the nature of the nonlinear func-
tion f , and are often rather mild. For example, if f(x) = sign(x),
then explicit calculations reveal that:

µ =

√
2

π
≈ 0.8, σ2 = 1− 2

π
≈ 0.6, η2 = 1.

Corollary 3.3 has some interesting implications. First, in con-
trast with demixing algorithms for traditional (linear) observation
models, our estimated signal x̂ can differ from the true signal x by
a scale factor. Next, suppose we fix δ > 0 as a small constant, and
suppose that the incoherence parameter ε = cδ for some constant c,
and that the number of measurements scales as:

m = O
( s
δ2

log
n

s

)
.

Then, the (expected) estimation error ‖x̂ − µx̄‖ ≤ O(δ). In
other words, the sample complexity of ONESHOT is given by
m = O( 1

δ2
s log(n/s)), which resembles results for the linear

observation case [14, 19]2.
We also observe that the estimation error in (3.2) is upper-

bounded by O(ε). This is meaningful only when ε � 1, or when
sγ � 1. Per the Welch Bound [9], the mutual coherence γ satisfies
γ ≥ 1/

√
n. Therefore, Corollary 3.3 provides non-trivial results

only when s = o(
√
n). This is consistent with the square-root

bottleneck in sparse approximation [24].
The main theorem obtains a bound on the expected value of the

estimation error. We can derive a similar upper bound that holds
with high probability, provided that the measurements are generated
from a sub-Gaussian distribution. We defer these results to [20].

4. NUMERICAL RESULTS

In this section, we provide some representative numerical experi-
ments for our proposed algorithm. We also compare its performance
with a LASSO-type technique for demixing. This method, first pro-
posed in [19], was not explicitly developed in the demixing context
but is suitable for our problem. We call this method the Nonlinear
convex demixing with LASSO, or the NLCDLASSO for short. Cast-
ing into our notation from Section 2 and 3, NLCDLASSO solves the
following convex problem:

min
z,w

∥∥x̂lin − [Φ Ψ][w; z]
∥∥

2

subject to ‖w‖1 ≤
√
s, ‖z‖1 ≤

√
s.

(4.1)

Here, x̂lin denotes the linear estimate of x, [w; z] is a column vector
with length 2n and s denotes the sparsity level of signals w and z
in bases Φ and Ψ, respectively. The constraints in (4.1) are convex
penalties reflecting the knowledge thatw and z are s-sparse and have
unit `2-norm (since the nonlinearity is unknown, we have a scale
ambiguity, and therefore w.l.o.g. we can assume that the underlying
signals lie in the unit ball). The outputs of this algorithm are the
estimates ŵ, x̂, and x̂ = Φŵ + Ψẑ.

To solve the optimization problem in (4.1), we have used the
SPGL1 solver [25, 26]. This solver can handle large scale problems,
which is the scenario that we have used in our experimental evalua-
tions. We impose the joint constraint ‖t‖1 ≤ 2

√
s (where t = [w; z]

denoting the stacking vector) which is a slight relaxation of the con-
straints in problem 4.1. The upper-bound of

√
s in the constraints

is a worst-case criterion; for comparison, we also include simulation
results with a constraint ‖t‖1 ≤ %, where % has been tuned to the
best of our ability.

Now, we precisely describe the setup of our simulations. First,
we generate w ∈ Rn (likewise, z) with n = 220 by choosing a

2Here, we use the term “sample-complexity” as the number of measure-
ments required by a given algorithm to achieve an estimation error δ. How-
ever, we must mention that algorithms for the linear observation model are
able to achieve stronger sample complexity bounds that are independent of δ.
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Fig. 1: Performance of ONESHOT and NLCDLASSO with ‖t‖1 ≤
2
√
s according to the COSINE SIMILARITY for different choices of

sparsity level s for g(x) = sign(x).
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Fig. 2: Performance of ONESHOT and NLCDLASSO with ‖t‖1 ≤
% according to the COSINE SIMILARITY for different choices of
sparsity level s for g(x) = sign(x).

random support with s nonzero elements and populating the nonzero
entries with random ±1 coefficients. As per the discussion in the
Introduction, for successful recovery we require that the constituent
signals are sufficiently incoherent. To achieve this, we consider the
vector w to be s-sparse in the Haar wavelet basis, and the vector z to
be s-sparse in the noiselet basis [27]. As the measurement operator
A, we choose a partial DFT matrix. Such matrices are known to
have similar recovery performance as random Gaussian matrices, but
enable fast numerical operations [28].

As mentioned before, the scale (amplitude) of the underlying
signal is irrevocably lost. To measure recovery performance in the
absence of scale information, we use the Cosine Similarity criterion
between x and x̂ to compare the performance of different methods.
More precisely, suppose that ONESHOT (or NLCDLASSO) outputs
ŵ and ẑ, such that x̂ = Φŵ + Ψẑ. Then, the Cosine Similarity
criterion between super position signals is defined as follows:

cos(x, x̂) =
xT x̂

‖x‖‖x̂‖ .

Figures 1 and 2 illustrate the performance of ONESHOT and NL-
CDLASSO according to the Cosine Similarity for different choices
of sparsity level s when the nonlinear link functions are set to
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Fig. 3: Comparison of running times of ONESHOT with NLCD-
LASSO. Our proposed algorithm is non-iterative, and in contrast
with LASSO-based techniques, has a running time that is nearly-
linear in the signal dimension n for certain structured sparsifying
bases.

f(x) = sign(x) and we have used both ‖t‖1 ≤ 2
√
s and ‖t‖1 ≤ %

constraints. The horizontal axis denotes an increasing number of
measurements. Each data point in the plot is obtained by conducting
a Monte Carlo experiment over 20 trials and averaging the results;
in each trial, we set the the parameters (m,n, s), generate a new
random measurement matrix A, record the nonlinear observations,
and reconstruct the underlying components using the differerent
algorithms.

As we can see from the plots in Figs. 1 and 2, we obtain similar
results for both choices of link functions. Notably, the performance
of NLCDLASSO is worse than ONESHOT for any fixed choice of
m and s. Even when the number of measurements increases (for
example, at m = 4550), we see that ONESHOT outperforms NL-
CDLASSO by a significant degree. In this case, NLCDLASSO
is at least 70% worse in terms of signal estimation quality, while
ONESHOT recovers the (normalized) signal perfectly. This result in-
dicates the inefficiency of NLCDLASSO in the context of nonlinear
demixing.

Finally, we contrast the running time of both algorithms, illus-
trated in Figure 3. In this experiment, we measure the wall-clock
running time of the two recovery algorithms (ONESHOT and NLCD-
LASSO), by varying signal size x from n = 210 to n = 220. Here,
we set m = 500, s = 5, and the number of Monte Carlo trials to 20.
Also, the nonlinear link function is considered as g(x) = sign(x).
As we can see from the plot, ONESHOT is at least 6 times faster
than NLCDLASSO when the size of signal equals to 220. Overall,
ONESHOT is efficient even for large-scale nonlinear demixing prob-
lems. We mention that in the above setup, the main computational
costs incurred in ONESHOT involve a matrix-vector multiplication
followed by a thresholding step, both of which can be performed in
time that is nearly-linear in terms of the signal length n for certain
choices of A,Φ,Ψ. In particular, we experimentally verified that
varying the sparsity level does not have any effect in the running
time.
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