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ABSTRACT
As an alternative to cumbersome nonlinear schemes for dimen-
sionality reduction, the technique of random linear projection has
recently emerged as a viable alternative for storage and rudimen-
tary processing of high-dimensional data. We invoke new theory
to motivate the following claim: the random projection method
may be used in conjunction with standard algorithms for a mul-
titude of machine learning tasks, with virtually no degradation in
performance. Thus, random projections can been shown to result
in both significant computational savings and provably good per-
formance..

1. BACKGROUND AND MOTIVATION
The unimpeded growth in the size of datasets generated by signal
acquisition systems (e.g., sensor networks, 3D imaging systems)
poses a significant challenge to machine learning algorithms. This
effect – frequently referred to as the “curse of dimensionality” –
usually forces an algorithm designer to sacrifice accuracy in order
to make the problem computationally feasible. Luckily, in many
cases we can avoid this difficult decision. Suppose our dataset
X consists of points x ∈ RN . Often, points in X , although
N -dimensional, can be described using some model with only K
pieces of information, where K ¿ N . In these cases, we would
like to be able to obtain, store, and work with a K-dimensional
representation of the dataset, as opposed to handling the original
N -dimensional dataset.

Approach 1. Construct data-adaptive nonlinear mappings
(see [1, 2] among many others) that transform the data into a
low-dimensional representation while preserving certain desirable
properties. Such algorithms attempt to construct an embedding
f : RN → RK that maps elements of X to RK , where K is
the intrinsic dimension of the dataset. The mapping f is invari-
ably data dependent; often, the dependence is global [1] (implying
that the low-dimensional representations can be obtained only af-
ter processing every element of X .)

Approach 2. Compute a non-adaptive linear projection of the
N -dimensional dataset into a random M -dimensional subspace of
RN . In this case, the mapping f can be represented as an M ×N
matrix Φ where the entries of Φ are independently drawn from a
specified probability distribution. The simplicity of this dimen-
sionality reduction procedure is striking; it is clear that the map-
ping is data independent, and the process of obtaining the image of
any given data vector x under the mapping Φ is a stand-alone com-
putation. In addition, the powerful Johnson-Lindenstrauss (JL)
Lemma [3] guarantees that, provided M = O(log |X|), then there
exists an ε ∈ (0, 1) such that

(1− ε)‖x− y‖ ≤ ‖Φx− Φy‖ ≤ (1 + ε)‖x− y‖ (1)

for all x, y ∈ X . In other words, the distance between any pair of
points is approximately preserved by the mapping Φ.

Either approach has its own share of advantages and disadvan-
tages. While nonlinear dimensionality reduction techniques adap-
tively construct the most parsimonious representation of X , they
are expensive to implement when |X| is large or when X is high-
dimensional. At the same time, despite its easy implementation,
the random projection approach described above fails to consider
the geometric inter-relationships between data points, and merely
depends on the total number of input data vectors, which could po-
tentially be large or even infinite. Thus, random projections would
seem to be an inefficient dimensionality reduction technique when
our dataset is very large but has a relatively small intrinsic dimen-
sion. The key to breaking this impasse is to realize that we are not
operating on an arbitrary set of points, and for structured data sets
the bound on M from the JL Lemma can be extremely pessimistic.

2. AN OPTIMISTIC LOOK AT RANDOM PROJECTIONS

The concept of random projections has generated renewed interest
in recent years. Data stream algorithms employ the random projec-
tions approach in the form of sketches [4] for tasks like histogram
maintenance and `p-norm computation. More recently, random
projections have been exploited in the field of compressive sens-
ing [5, 6], which deals with efficient acquisition and recovery of
sparse signals. In fact, efforts have been made to develop inex-
pensive hardware realizations [7, 8] that directly acquire random
projections of analog signals, and thus the computational cost of
applying Φ to the data can be essentially zero. In cases where this
is not possible, fast algorithms for computing random projections
are also being explored [9].

We now observe that both data stream algorithms and com-
pressive sensing employ random projections for acquiring a com-
pressed representation of signals which are governed by low-
complexity models. Thus, Approach 2 is being utilized in a sce-
nario that is seemingly appropriate for the algorithms described
in Approach 1. In particular, random projections are being used
not to embed a set of points into a lower dimension, but rather to
preserve the geometric structure of low-complexity signal classes.
However, there is a close relationship between the two approaches.
For the case of compressive sensing, the precise connection be-
tween the JL Lemma and the preservation of the geometry of the
class of sparse signals was only recently established [10]. In par-
ticular, the same techniques used to establish the JL Lemma can be
exploited to show that provided M = O(K log N), there exists an
ε ∈ (0, 1) such that (1) holds for any x, y that are K-sparse (i.e.,
have at most K non-zero entries). The important difference is that
(1) now describes a stable embedding of infinitely many points,
namely, the set of all K-sparse signals.

It is possible to use the same techniques to consider other low-
complexity signal models. For example, we may consider the ran-
dom projection of a K-dimensional compact manifoldM residing



in RN into RM [11]. In particular, if M = O(K log N), (1) now
holds for every x, y ∈ M; further, the set of all pairwise geodesic
distances between points on the manifold are preserved with small
distortion.

Notice that in both cases the dimension of the embedding sub-
space now depends only on the complexity (or information con-
tent K) of the dataset, not on its cardinality. Also, the depen-
dence of M on N is only logarithmic, and hence we see that
K < M ¿ N . Thus, by a simple random projection operation,
we obtain a compressed representation of a sparse or manifold-
modeled point cloud, while preserving the geometric structure of
the dataset.

3. LEARNING IN THE COMPRESSED DOMAIN

Obtaining a low-dimensional representation of a dataset is an im-
portant component in the machine learning process. However, it
is usually not the ultimate goal. For instance, suppose the objec-
tive is to perform a nonlinear inference task (involving some form
of detection/classification/estimation), with the given data as the
input.

Let L denote some machine-learning algorithm tailored to the
problem we wish to solve. Our claim is as follows: for a wide vari-
ety of machine-learning algorithms L, the performance of L when
given access to only a randomly projected (i.e., M -dimensional)
version of X is essentially the same as its performance on the orig-
inal dataset X . The implications of this are significant; this implies
that the machine is oblivious to whether it works with the original
data, or with only a low-dimensional, easily obtainable representa-
tion. In other words, random projections can be used as a univer-
sal, inexpensive preprocessing step to almost any machine learning
task. Further, in compressive sensing the data is directly acquired
in the form of low-dimensional random projections; in fact, recov-
ering the original high-dimensional data points expends consid-
erable computational resources. Thus, in this setting the random
projections approach to machine learning could lead to tremen-
dous savings in processing and memory costs incurred during the
learning process. In [12], the above claim is rigorously proved for
two special cases: 1) when L is the Grassberger-Procaccia algo-
rithm for estimating intrinsic dimension of a point cloud; 2) when
L is the Isomap algorithm for nonlinear dimensionality reduction
of Euclidean manifolds.

We reinforce the claim by presenting results on the perfor-
mance of binary classification algorithms using compressive pro-
jections. Suppose that a network of compressive imaging cam-
eras [7] with resolution N are observing a scene, with L be-
ing the task of performing automatic target recognition among P
classes (each class being modeled by a K-dimensional manifold).
The classifier is assumed to be provided with a sufficient number
of labeled (training) points from each of the P classes. This is
dubbed as the “smashed filter” [13], and it can be proved that the
number of measurements required per sample point is given by
M = O(K log(NP )). Again, only a very small number of mea-
surements (relative to the original resolution N ) are required for
reliable classification performance.

As a final example, let L be the task of determining the class
of an object present in a smoothly varying video sequence. The
smashed filter implements a nearest-neighbor (NN) solution for
the multi-class labelling problem. In cases where the training data
is derived from an insufficient sampling of the underlying mani-
folds, this might yield incorrect results. To handle such situations,

we develop a manifold learning-based algorithm that exploits the
smooth geometric structure of the unlabeled data points to make
more robust decisions as compared to naive NN based classifi-
cation followed by majority voting. Next, we use Theorem 3.2
of [12] to claim that the algorithm works provably well under ran-
dom projections.

4. FUTURE DIRECTIONS

Performing learning tasks in the compressed domain certainly
seems attractive. Yet, there are several unanswered questions. It
is not precisely clear how the presence of data noise affects the
learning performance in the compressed domain; machine learning
with irregularly sampled point clouds is in general a hard problem;
we would like to possess an overarching framework which unifies
the analysis of different kinds of manifold learning algorithms on
compressive measurements; and finally, the bounds on the min-
imum number of measurements are not tight. Answering these
questions will lead to the development of a coherent theory and
even broader applications.
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