Effects of Price-Responsive Residential Demand on Retail and Wholesale Power Market Operations

Auswin George Thomas, Chengrui Cai, Dionysios Aliprantis, and Leigh Tesfatsion

IEEE PES GM 2012, San Diego, CA
July 25th, 2012
Presentation Outline

• Overview of the Integrated Retail/Wholesale (IRW) project
• IRW test bed illustration
• Intelligent A/C controller
• Load aggregation
• Initial test case with illustrative findings
• Concluding remarks
IRW Project: Integrated Retail/Wholesale Power System Operation with Smart-Grid Functionality

Project Directors:
- Leigh Tesfatsion (Prof. of Econ, Math, & ECpE, ISU)
- Dionyisios Aliprantis (Assistant Prof. of ECpE, ISU)
- David Chassin (Staff Scientist, PNNL/Department of Energy)

Research Assoc’s:
- Dr. Huan Zhao (Market Analyst, ISO-NE)
- Dr. Di Wu (Power Engineer, PNNL)

Research Assistants:
- Auswin Thomas (ECpE M.S. student, ISU)
- Chengrui Cai (ECpE PhD student, ISU)
- Pedram Jahangiri (ECpE PhD student, ISU)
- Wanning Li (ECpE PhD student, ISU)

Current Government & Industry Funding Support:
- PNNL/DOE, the Electric Power Research Center (an industrial consortium), and the National Science Foundation

Industry Advisors: Personnel from PNNL/DOE, XM, RTE, MEC, & MISO
Meaning of “Smart Grid Functionality”?

For our project purposes:

Smart-grid functionality =

Market design and resource enhancements permitting more responsiveness to the needs, preferences, and decisions of retail energy consumers.

Examples: Introduction of advanced metering and other technologies to support

- flexible dynamic-price contracting between suppliers (“Load-Serving Entities”) and retail energy consumers
- integration of distributed renewable energy resources, e.g., consumer-owned photovoltaic (PV) panels
IRW Test Bed Illustration

5-bus test system

AMES

Aggregate

MySQL

Modeling of Households

Load

Price

GridLAB-D

GridLAB-D

GridLAB-D

IEEE Power & Energy Society

2012 San Diego, CA

New Energy Horizons
Opportunities and Challenges

Slide 5 of 21
Integrated Retail and Wholesale Effects of Price-Responsive Load

- Intelligent A/C Controller
- Aggregation of A/C Load
- Dynamic Feedback Loop
Intelligent A/C Controller

Forecast of environmental conditions

Retail price sequence

Scheduling (on remote or local server)

House Thermal Dynamics (ETP model)

(for A/C motor)

Ctrl

Estimator

for Mass Temp.

Air Temp.

On/Off

Environmental conditions

User-defined preferences

(entered via a user-friendly graphical interface)

Wall Control Unit

Comfort Cost

Price

User Preferences
ETP Model

\[
\frac{dT^a}{dt} = \frac{1}{C^a} \left[(T^o - T^a) U^a + (T^m - T^a) U^m + \dot{Q} + \dot{Q}^a \right]
\]

\[
\frac{dT^m}{dt} = \frac{1}{C^m} \left[(T^a - T^m) U^m + \dot{Q}^m \right]
\]

where

\[
\dot{Q}^a = f(\dot{Q}^s, \dot{Q}^i)
\]

\[
\dot{Q}^m = g(\dot{Q}^s, \dot{Q}^i)
\]

\(T^a, T^m\) and \(T^o\): Air mass, solid mass, and outside temperatures

\(\dot{Q}^s\) and \(\dot{Q}^i\): Solar and internal heat flow rates

\(C^a, C^m\) and \(U^a, U^m\): Heat capacity and thermal conductance
Forcing Terms

Outside Temperature ($^\circ F$)

Solar Heat Flow Rate ($kBTU/h$)

Internal Heat Flow Rate ($kBTU/h$)

Relative Humidity (%)
Home Resident Attributes

- Comfort function (utils) measuring home resident’s comfort level as a function of inside air temperature
- Bliss temperature = Inside air temperature at which the home resident achieves maximum comfort
- α = Parameter (utils/$\$$) measuring resident’s optimal trade-off between thermal comfort and electricity cost (higher α → higher concern for cost and less for comfort)
- Home-occupancy times of the home resident
Results: Resident at Home

Bliss Temperature: 74 °F
Results: Resident Not Home (8 am – 5 pm)

Bliss Temperature: 74 °F
Load Aggregation in a Distribution Feeder

- Non-price-responsive load (from GridLAB-D)
 - Household appliances
 - Lighting loads
- Intelligent A/C load
 - Traditional A/C systems replaced with intelligent A/C systems with differing attributes
Load Aggregation in a Distribution Feeder

Non-Price-Responsive Load

Intelligent A/C Load

Retail Price ($/MW\cdot h$)
Initial Test Case: Five-Bus Grid
Initial Test Case: Five-Bus Grid

- **Initial test-case assumption**: LSE’s DAM demand bid (load forecast) for day D is the LSE’s actual load realized on day D-2.
How Should an LSE Forecast Intelligent Load?

Illustration of how forecast errors can affect prices

Deviation between DAM and RTM Prices

Price Deviation ($/MWh)

Time (h)

Deviation between DAM and RTM Prices

Illustration of how forecast errors can affect prices

Price Deviation ($/MWh)

Time (h)
LSE’s Net Earnings for Hour H of Day D Resulting from LSE’s Cleared DAM Demand Bid on Day D-1

\[
\text{NetEarnings}(H, D) = [m + LMP_{H,D-1}^{DA}] \cdot \text{Load}_{H,D}^{RT}
\]

\[
- LMP_{H,D-1}^{DA} \cdot \text{Load}_{H,D-1}^{DA}
\]

\[
+ LMP_{H,D}^{RT} \cdot [\text{Load}_{H,D-1}^{DA} - \text{Load}_{H,D}^{RT}]
\]

\(LMP^{DA}\) and \(LMP^{RT}\) : DAM and RTM locational marginal prices (LMPs)

\(Load^{DA}\) : LSE’s cleared DAM demand bid

\(Load^{RT}\) : RTM actual load

\(m\) : Markup added by LSE to DAM LMP
DAM/RTM System Gives LSEs Incentive to Make Accurate Load Forecasts

\[
\text{NetEarnings}(H,D) = m \cdot \text{Load}_H^{RT} - \Delta \text{LMP}_H^{DA} \cdot \Delta \text{Load}_H^{DA} + [\text{LMP}^\text{DA}_{H,D-1} - \text{LMP}^\text{RT}_{H,D}] \cdot [\text{Load}^\text{RT}_{H,D} - \text{Load}^\text{DA}_{H,D-1}]
\]

This term will typically be positive, vanishing only if LSE’s DAM bid correctly forecasts actual RTM load, since price & load outcomes are positively correlated (high/high or low/low) all else equal.
Ongoing Research Topics

• Further investigation of the dynamic IRW feedback loop

• Improved ISO and LSE forecasting methods for handling price-responsive retail load

• Development of more realistic load aggregation methods
Thank You!