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ABSTRACT
Assigning a bug to the right developer is a key in reduc-
ing the cost, time, and efforts for developers in a bug fixing
process. This assignment process is often referred to as bug
triaging. In this paper, we propose Bugzie, a novel approach
for automatic bug triaging based on fuzzy set-based model-
ing of bug-fixing expertise of developers. Bugzie considers a
system to have multiple technical aspects, each is associated
with technical terms. Then, it uses a fuzzy set to repre-
sent the developers who are capable/competent of fixing the
bugs relevant to each term. The membership function of a
developer in a fuzzy set is calculated via the terms extracted
from the bug reports that (s)he has fixed, and the function
is updated as new fixed reports are available. For a new bug
report, its terms are extracted and corresponding fuzzy sets
are union’ed. Potential fixers will be recommended based on
their membership scores in the union’ed fuzzy set. Our pre-
liminary results show that Bugzie achieves higher accuracy
and efficiency than other state-of-the-art approaches.
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1. INTRODUCTION
Bug fixing is crucial in producing high-quality software

products. When bug(s) are filed in a bug report, assigning it
to the most capable and competent developer is important
in reducing the cost and time in a bug fixing process [5].
This assignment process is referred to as bug triaging [1].
To help developers in this task, we propose Bugzie, a novel
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ID:000002
FixingDate:2002-04-30 16:30:46 EDT
AssignedTo:James Moody
Summary:Opening repository resources doesn’t honor type.
Description:Opening repository resource always open the de-
fault text editor and doesn’t honor any mapping between re-
source types and editors. As a result it is not possible to view
the contents of an image (*.gif file) in a sensible way....

Figure 1: Bug report 000002 in Eclipse project

ID:006021
FixingDate:2002-05-08 14:50:55 EDT
AssignedTo:James Moody
Summary:New Repository wizard follows implementation
model, not user model.
Description:The new CVS Repository Connection wizard’s lay-
out is confusing. This is because it follows the implementation
model of the order of fields in the full CVS location path, rather
than the user model.

Figure 2: Bug report 006021 in Eclipse project

automatic bug triaging approach that models the bug-fixing
tendency/expertise of developers with respect to technical
aspects in a project based on their past fixing activity via
fuzzy set theory [8], and then leverages such information to
recommend most potential fixers for a new bug report.

Let us start with a motivating example on real-world bug
reports. Figure 1 depicts a bug report from Eclipse project,
with the relevant fields including a unique identification num-
ber of the report (ID), the fixing date (FixingDate), the fixing
developer (AssignedTo), a short summary (Summary), and a
full description (Description) of the bug.

The bug report describes an issue that the system always
used its default editor to open any resource file (e.g. a GIF
file) regardless of its file type. Analyzing the description, we
found this report is related to a technical aspect in Eclipse,
that is, version control and management (VCM) of software
artifacts. The concept of VCM could be recognized in the
report’s content via its descriptive terms such as repository,
resource, or editor. This technical function can be considered
as project-specific since not all systems have it. Checking the
corresponding fixed code in Eclipse, we found that the bug
occurred in the code implementing an operation of VCM:
opening a resource file in the repository. The bug was as-
signed to and fixed by a developer named James Moody.

Searching and analyzing several other Eclipse’s bug re-



ports, we found that James also fixed other VCM-related
bugs, for example, the one in the report #6021 (Figure 2).
That bug is related to VCM in which the function of reposi-
tory connecting was not properly implemented. Thus, James
Moody probably has the expertise, knowledge, or capability
with respect to fixing the VCM-related bugs in the project.

Implications. The example suggests us the following im-
plications for our approach:
1. A software system has several technical aspects. Each

aspect is expressed via technical terms. A bug report is
related to one or multiple technical aspects.
2. If a developer frequently fixes the bugs related to a

technical aspect, we could consider him to have bug-fixing
expertise/capability on that aspect, i.e., he could be a capa-
ble/competent fixer for a future bug related to that aspect.
We could determine the capable developers for the techni-

cal aspects in the system based on their past fixing activities.
When a new bug is filed, we recommend the developers who
are most capable of fixing bugs in the corresponding aspects.

2. APPROACH
There are two key research questions in Bugzie: 1) how

to represent technical aspects of a system from software ar-
tifacts (e.g. bug reports), and 2) given a bug report, how to
determine who have the bug-fixing capability/expertise with
respect to the reported technical aspect(s).
We consider a technical aspect as a collection of technical

terms that are extracted directly from the software artifacts
in a project, and more specifically from bug reports. For the
second research question, we utilize the fuzzy set theory. We
use a fuzzy set Ct to represent the set of developers who have
the bug-fixing expertise relevant to a specific technical term
t, that is, the set of developers who are the most competent
to fix the bugs relevant to the term t. The determination
if a developer belongs to that fuzzy set is made via the oc-
currences of the terms in the bug reports that he has fixed.
For a new bug report B with one or multiple technical as-
pects, the set CB of capable developers toward B is modeled
by a fuzzy set that is the union set of all fuzzy sets (over
developers) corresponding to all terms associated with B.
Our algorithm has three main stages: 1) training: build-

ing fuzzy set Ct for each term t from available artifacts (e.g.
fixed bug reports); 2) recommending: for a given unfixed
bug report B, recommending a ranked list of developers ca-
pable of fixing it; and 3) updating the fuzzy sets when new
information (e.g. new fixed bug reports) is available.

2.1 Training
In Bugzie, a fuzzy set Ct is determined via a membership

function µt with values in the range of [0,1]. For a devel-
oper d, µt(d) determines how likely d belongs to the fuzzy
set Ct, i.e. the degree to which d is capable of fixing the
bug(s) relevant to t. We calculate µt(d) based on the cor-
relation between the set Dd of bug reports d has fixed, and
the set Dt of bug reports containing term t.

µt(d) =
|Dd ∩Dt|
|Dd ∪Dt|

=
nd,t

nt + nd − nd,t

In this formula, nd, nt, and nd,t are the number of bug
reports that d has fixed, the number of reports containing
the term t, and that with both, respectively (counted from
the available training data, i.e. given fixed bug reports). The

formula means that, if the more frequently a term t appears
in the reports that developer d has fixed, the more likely that
developer d has fixing expertise toward the technical aspects
associated with t. The higher µt(d) is, the higher degree that
d is a capable fixer for the bugs relevant to term t.

The value of µt(d) ∈ [0, 1]. If µt(d) = 1, then only d had
fixed the bug reports containing t, thus, d is highly capable of
fixing the bugs relevant to the aspects associated with term
t. If µt(d) = 0, d has never fixed any bug report containing
t, thus, might not be the right fixer with respect to t.

The membership values within the interval [0,1] indicates
the marginal elements of the class of developers defined by a
term. Thus, the membership in a fuzzy set is an intrinsically
gradual notion, instead of concrete as in conventional logic.
That is, the boundary for the set of developers who are
capable of fixing the bug(s) relevant to a term t is fuzzy.

2.2 Recommending
In this step, Bugzie recommends the most capable devel-

opers for each given unfixed bug report B. Since B reports
on one or more technical aspects and those aspects could
be recognized via the technical terms extracted from B, we
consider the set of capable developers for B is a fuzzy union
set CB of all fuzzy sets corresponding to all the terms in B.

CB =
∪
t∈B

Ct

According to fuzzy set theory [8], the membership function
of CB is calculated as the following:

µB(d) = 1−
∏
t∈B

(1− µt(d))

It could be seen that µB(d) is also within [0,1] and, by fuzzy
set theory, it represents the degree in which developer d
belongs to the set of capable fixers for the bug(s) reported
in B. The value µB(d) = 0 when all µt(d) = 0, i.e. d
has never fixed any report containing any term in B. Thus,
Bugzie considers that d might not be as suitable as others in
fixing technical issues reported in B. Otherwise, if there is
a term with µt(d) = 1, then µB(d) = 1 and d is considered
as the capable developer (since only d has fixed bug reports
with term t before). In general cases, the more terms in B
have high µt(d) scores, the higher µB(d) is, i.e. the more
likely d is a capable fixer for bug report B.

After calculating µB(d) for all available developers, Bugzie
ranks them based on those membership values and recom-
mends the top-n developers as the ones who should fix the
bug(s) reported in B.

2.3 Updating
When new information is available (e.g. new bug reports

are fixed by some developers), Bugzie updates its training
data by updating all existing fuzzy sets Ct and creating new
sets for new terms. The update process can be done in-
crementally. As we could see, Ct is defined via the mem-
bership values µt(d)s, and µt(d) is calculated via nd, nt,
and nd,t. Therefore, Bugzie stores only the values nd, nt,
and nd,t, and updates them when there are newly available
fixed bug reports by adding new corresponding counts for
the new data. Specifically, if a new term (or a new devel-
oper) appears in new data, Bugzie just creates new counting
numbers nt (or nd) and nd,ts. If a developer has a new fix-
ing activity, Bugzie just updates the corresponding counting



numbers nd and nd,ts. For example, the number of reports
fixed by d is updated with the number of new fixed reports
from d: nd := nd + n′

d. Other derivative values such as
µt(d) and µB(d) are calculated from those counts on de-
mand. This makes our incremental training algorithm very
efficient in comparison with other modeling/learning tech-
niques. Importantly, it fits well with the evolutionary nature
of a software system and a software development process.

3. EVALUATION

3.1 Experiment Setup
We conducted a preliminary evaluation on Eclipse project,

which has been used in evaluating the existing state-of-the-
art approaches [1, 3, 7]. From Eclipse’s bug tracking reposi-
tory [6], we collected 69,829 bug reports that have been filed
and fixed from January 2008 to November 2010. For each
bug report, we extracted its unique ID, the actual fixing de-
veloper’s ID, short summary, and full description. There are
in total 1,510 fixing developers for those bug reports.
We merged the summary and description of each bug re-

port, extracted their terms and preprocessed them, such as
stemming for term normalization and removing grammatical
and stop words. Finally, we had a total of 103,690 terms.
We used the same longitudinal experiment setup as in [3],

simulating the usage of our tool in reality. That is, all bug
reports are sorted in the chronological order, and then di-
vided into 11 non-overlapped and equally sized frames. Each
frame is indexed corresponding to their creation time.
Initially, frame 0 with its bug reports are used for training

only. Then, Bugzie uses that training data to recommend
for the first 100 bug reports in frame 1. Bugzie gives a top
list of T developers recommended to fix each of those 100
bug reports. If the recommendation list for a bug report B
contains its actual fixer, we count this as a hit (i.e. a correct
recommendation). After that, we update the counts for the
fuzzy sets with the tested 100 bug reports and move to the
next 100 bug reports in the same frame.
After completing frame 1, the updated training data is

then used to test frame 2 in the same manner. For each
frame under test, we use the prior frames for training, and
calculate the prediction accuracy as in [3], i.e. the ratio be-
tween the number of hits over the total prediction cases. We
then calculate the average value on all 10 frames. An aver-
age value is calculated for each selection of the top-ranked
list of T from 1-5. We repeat for the remaining frames.
For the comparison purpose, we also used Weka [12] to

re-implement the existing state-of-the-art approaches [1, 7,
3] with the same experimental setup and with the descrip-
tions of their approaches in their papers. We calculated the
prediction accuracy and measured time efficiency, which is
the total time of training, updating, and recommending.

3.2 Results
Table 1 shows the results from different approaches. An-

vik et al. [1] employed SVM, Naive Bayes, and C4.5’s classi-
fiers. Bhattacharya and Neamtiu [3] used Naive Bayes and
Bayesian network with and without incremental learning.
Cubranic and Murphy [5] used Naive Bayes.
Figure 3 displays the accuracy comparison of Bugzie with

others when the recommended list contains 1 to 5 top-ranked
developers. As seen, Bugzie outperforms other approaches
both in term of prediction accuracy and time efficiency. For

Table 1: Prediction Accuracy Result (%)

Approach Top-1 Top-2 Top-3 Top-4 Top-5
Näıve Bayes 23.68 33.72 39.76 43.88 47.05
Bayesian Network 12.20 18.03 22.17 25.50 27.88
C4.5 (Decision Trees) 18.68 23.97 24.86 25.10 25.14
SVM 27.38 38.53 45.26 49.78 53.02
Inc Näıve Bayes 25.86 36.39 42.49 46.61 49.78
Inc Bayesian Network 14.06 20.91 25.52 29.01 31.86
Fuzzy Set (this paper) 37.81 52.11 59.70 64.52 68.00

Table 2: Time Efficiency Comparison (hh:mm:ss)
Approach Training Recommendation
Näıve Bayes 08:49:17 131:33:04
Bayesian Network 15:21:38 180:26:58
C4.5 (Decision Trees) 129:17:37 00:05:58
SVM 06:01:57 11:46:09
Incremental Näıve Bayes 36:52:43 129:15:49
Incremental Bayesian Network 53:47:42 190:16:47
Fuzzy Set (this paper) 03:52:57 00:00:22

top-1 recommendation (i.e. recommending only one fixer
for each bug report under test), Bugzie has a prediction ac-
curacy of 37.81% on average, i.e. on average in 37.81% of
the cases, it correctly recommends the developer who ac-
tually fixed the bug(s). For top-5 recommendation, it has
accuracy 68%, i.e. in 68% of the cases, the actual fixer was
in its top-5 recommended list. Other machine-learning ap-
proaches reach the maximum accuracy of 53.02% at their
top-5 recommendations.

Importantly, Bugzie is also more time efficient than those
approaches. Table 2 shows total time in hours spent in train-
ing and recommendation for different approaches. As shown,
the training time of Bugzie (4 hours) is smaller than that
of other approaches. The corresponding time of the second
fastest approach is about 6 hours. For the case of C4.5, our
data set is too large for Weka to run on all 11 frames. The
value in Table 2 at C4.5 line is only for 4 frames. The recom-
mendation time is much smaller because Bugzie just needs
to compute µB(d) (Section 2.2) and ranks developers based
on their scores. That is, Bugzie is more efficient in com-
putation, while other approaches that use machine-learning
techniques may not scale well for very large data sets.

Figure 3: Prediction Accuracy Comparison



4. RELATED WORK
There are several approaches that apply machine learning

(ML) and/or information retrieval (IR) to (semi-)automate
the process of bug triaging. The first approach along that
line is from Cubranic and Murphy [5]. From the titles and
descriptions of bug reports, keywords and developers’ IDs
are extracted and used to build a text classifier using Naive
Bayes technique. Their classifier will recommend potential
fixers based on the classification of a new report. Their pre-
diction accuracy is up to 30% on an Eclipse’s bug report
data set from Jan to Sep-2002. Anvik et al. [1] also follow
similar ML approach and improve Cubranic et al.’s work
by filtering out invalid data such as unfixed bug reports,
no-longer-working or inactive developers. With 3 different
classifiers using SVM, Naive Bayes, and C4.5, they achieved
a precision of up to 64%. In contrast to the ML techniques in
those approaches, our fuzzy set approach has higher compu-
tational efficiency in incremental data training. Moreover, it
is able to naturally provide a ranked list of potential fixers,
while the outcome of a classifier in their approaches has the
assignment of a bug report to one specific developer.
Another related approach is from Bhattacharya and Neam-

tiu [3]. Similar to Bugzie, their model is capable of incre-
mental learning. However, in contrast to fuzzy set approach
in Bugzie, they use a ML approach with Naive Bayes and
Bayesian network to build classifiers for keywords extracted
in reports. Therefore, Bugzie has better time efficiency and
a more natural ranking scheme than their ML classifiers.
Moreover, as seen in Section 3, Bugzie outperformed their
(incremental) Naive Bayes and Bayesian classifiers.
The idea of bug tossing graphs was first introduced by

Jeong et al. [7] in which their Markov-based model learns the
patterns of bug tossing from developers to developers after
a bug was assigned in the past, and it uses such knowledge
to improve bug triaging. Their goal is more toward reducing
the lengths of bug tossing paths [7], rather than addressing
the question of who should fix a particular bug as in an initial
assignment. We can combine fuzzy set approach with the
use of bug tossing graphs to further improve our accuracy.
Lin et al. [9] use a ML approach with SVM and C4.5

classifiers on both textual data and non-text fields (e.g. bug
type, priority, submitter, phase and module IDs). Executing
on a proprietary project with 2,576 bug records, their models
achieve the accuracy of up to 77.64%. The accuracy is 63% if
module IDs were not considered. Bugzie has higher accuracy
and could integrate non-text fields for further improvement.
Other researchers use IR for automatic bug triaging. Can-

fora and Cerulo [4] use the terms of fixed change requests to
index source files and developers, and then query them as a
new change request comes in order to automate bug triag-
ing. However, the accuracy was not very good (10-20% on
Mozilla and 30-50% on KDE). Their indexing scheme does
not support incremental learning and probability.
Matter et al. [10] introduce Develect, a model for develop-

ers’ expertise by extracting terms in their contributed code.
Then, a developer’s expertise is represented by a vector of
frequencies of terms appearing in his source files. The vec-
tor for a new bug report is compared with the vectors for
developers for bug triaging. Testing on 130,769 bug reports
in Eclipse, the accuracy is not as high as Bugzie (up to 71%
with top-10 recommendation list, respectively). While Dev-
elect is based on vector-based model (VSM), a deterministic
traditional IR method, Bugzie models developers’ with fuzzy

sets, enabling more flexible computation and modeling of de-
velopers’ bug-fixing expertise, as well as enabling incremen-
tal learning for time efficiency. For example, in Develect, the
length of a vector representing a developer’s expertise must
cover all terms occurring in the data set. With the fuzzy set
nature, in Bugzie, thresholds are chosen to be more selective
in a set of terms for one developer. Moreover, with evolving
software (new developers and terms), VSM must recompute
entire vector set. Baysal et al. [2] proposed to enhance VSM
in modeling developers’ expertise with preference elicitation
and task allocation. Rahman et al. [11] measure the quality
of assignment by the match between requested (from bug
reports) and available (from developers) competence profile.

In brief, existing ML-based classification approaches [1,
3, 9] characterize the classes of bugs that each developer
is capable of, and then classify a new bug report based on
that classification for bug triaging. Other approaches aim
to profile developers’ expertise via terms in past fixing bug
reports, and match a new report with such profiles [2, 10].

5. CONCLUSIONS
In this paper, we propose Bugzie, a new fuzzy set-based

approach for automatic bug triaging. Fuzzy sets are used to
represent the sets of capable developers of fixing the bugs
related to individual technical aspects via technical terms.
Such fuzzy sets are computed for each term in a new bug re-
port and then are union’ed to find capable developers for the
report. Preliminary evaluation shows that Bugzie achieves
higher accuracy and efficiency than existing approaches.
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