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Abstract—Automated static analysis tools are widely used in
identifying software anomalies, such as memory leak, unsafe
thread synchronization and malicious behaviors in smartphone
applications. Such anomaly-prone scenarios can be bifurcated
into: “ordinary” (analysis requires relatively simple automa-
tion) and “complex” (analysis poses extraordinary automation
challenges). While automated static analysis tools can resolve
ordinary scenarios with high accuracy, automating the analysis
of complex scenarios can be very challenging and, at times,
infeasible. Even when feasible the cost for full automation can
be exorbitant: either in implementing the automation or in
sifting through the large number of erroneous results manually.
Instead, we appeal for a “Human-in-the-loop” approach called
“Amplified Reasoning Technique” (ART). While some of the
existing approaches do involve human in the analysis process,
the roles played by man and machine are mainly segregated.
Whereas, ART puts man and machine in a “loop” in an
interactive and visualization-based fashion. This paper makes an
attempt to convince its readers to make their analysis of software
anomalies ART-based by presenting real-world case studies of
complex anomalies and how an ART based approach can be
very effective in resolving them. The case studies highlight the
desired characteristics of an ART based tool and the type of role
it plays in amplifying human intelligence.

I. INTRODUCTION
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human-in-the-loop, assistive technology

Static analysis aims to analyze software without executing
it. Automated static analysis tools are widely used in detect-
ing software anomalies, such as non-compliance with coding
and documentation guidelines, dead code and unused data,
software vulnerabilities like unsafe thread synchronization or
memory leak, and malware in smartphones.

Generally, an automated tool runs in three steps: (1) a
human specifies the software to be analyzed and analysis-
parameters, (2) the tools runs on the input and outputs a report
of potential anomalies in the software, (3) an analyst goes
through the report. A tool is considered sound if it reports
all anomalies in the software with no false positives or false
negatives. However, quite often it not possible to build a sound
tool. Balancing coverage vs. accuracy in an analysis strategy
involves an inherent trade-off: one can list only true-positives
(low coverage, high accuracy) or one can output all potential
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anomalies (high coverage, low accuracy). Achieving high
coverage and high accuracy in a fully automated tool can be
impossible or incur prohibitive cost in terms of implementing
the automation and/or sifting through the large number of
erroneous results manually.

To motivate the case for an alternative to such an automated
approach, we classify the set of anomaly-prone scenarios into
two groups: “ordinary” and “complex”. Ordinary scenarios
correspond to the scenarios that are amenable to automation
and do not pose extraordinary analysis challenges. On the
contrary, complex scenarios are the ones which pose sig-
nificant barriers to automation; they involve hard-to-analyze
programming paradigms and programming constructs. For
example, a fully automated analysis may be intractable be-
cause of consumer-producer paradigm in which related events
happen in different threads (e.g., a memory allocation in a
producer thread and a corresponding memory deallocation in
a consumer thread). Programming constructs such as function
pointers also make analysis difficult by obscuring the control
or data flow.

Even if automation for a complex scenario is possible,
it may well be infeasible due to economics of time and
effort. Malware analysis of applications in smartphones is a
good example of this. What is considered malicious in one
application may be considered benign in another because of
difference in the purpose and the context of those applications.
For example, accessing of contacts by an e-mail client is a
legitimate action, but it is illegitimate, and probably malicious,
for a weather application to do so. Further, malicious applica-
tions frequently blend their overt and malicious purposes. For
example, an application meant for sharing pictures can leak
to a malicious website without the knowledge of the user.
Automating identification of malicious activities in such cases
can mean writing a lot of application-specific code. Clearly,
this will incur significant additional cost and seriously affect
the viability and general applicability of the automated tool.
On the other hand, leaving all the complex scenarios to be
resolved by a human analyst alone after the automation run
can also be prohibitive for reasons similar to why automation
was approached in the first place. However, there can be some
initial help from the automation run in such cases, but because
the roles played by the automated tool and the human analysts
are segregated, this help can be limited; leaving the human
analyst to do most of the work.
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Figure 1: Cost escalates beyond automation wall
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Figure 2: Traditional automation vs. ART-based approach

As summarized in Fig. 1, static analysis tools hit an “au-
tomation wall” and the cost for resolving complex scenarios
escalates beyond the automation wall. We appeal for “Ampli-
fied Reasoning Technique” (ART) as an alternative approach
to resolve such complex scenarios. The ART philosophy is:
Instead of resolving complex anomalies as definitive “Yes/No”
answers through a fully automated tool, bring the human
in a man-machine loop and use the tool to amplify human
reasoning to resolve such anomalies faster and efficiently. For
example, to check the possibility of information leaks in an
Android app, the human analyst would want to examine all the
occurrences of Android APIs that are relevant in the context
of a given app. Any reasoning of the type “examine all” is
powerful but it is quite difficult to apply it to large software
without an appropriate tool.

Figure 2 brings out the difference between the traditional
approach to automation vs. the ART-based technique that has
been discussed in this paper. In the traditional automation,
the role of human is to sift through the false positives and
unresolved cases generated from the automation run, and is
segregated from the role played by the machine. Whereas,
the ART-based approach puts the man and machine in an
interactive loop. Each iteration involves human intelligence
guiding the tool to generate refined evidences that bring closer
to the final conclusion. Thus, an ART-based approach amplifies

the human intelligence in resolving complex scenarios. The
guiding principle is what Fred Brooks points out in his Allen
Newell address “Computer Scientist as a Toolsmith” [1]:

If indeed our objective is to build computer systems
that solve very challenging problems, my thesis is
that IA > AI, that is, that intelligence amplifying
systems can, at any given level of available systems
technology, beat AI systems. That is, a machine and
a mind can beat a mind-imitating machine working
by itself.

We present three case studies of complex scenarios from real-
word software to show how human reasoning amplified by a
tool can be an effective and practical solution. These studies
showcase different barriers to automation and their varying
complexity, and the kind of role an ART-based tool plays. The
purpose of this paper is to draw researchers’ attention involved
in resolving complex scenarios towards making their analysis
ART-based by illustrating how it can be more cost-effective
and productive. The case studies discussed in this paper do not
compare the results of an ART-based vs. the typical automated
techniques “statistically” to prove the clear superiority of one
over the other, but they highlight the advantages an ART based
analysis can offer by comparing the process of analysis. That
is, the focus is on the process of analysis — rather than the
results — and let the researcher decide if making his analysis
ART based would be helpful.

II. CASE STUDIES

In this section, we describe three real-world case studies
for complex anomalies. The case studies are discussed in the
increasing order of complexity of the scenarios. We show how
each complex scenario can be resolved through interactions
between a human analyst and an ART-based tool that plays an
assistive role to the human analyst. Through these examples
we illustrate the advantages an ART approach can offer. In
each of the cases the ART-based tool being used has following
features:

1) It identifies the unresolved cases or complex scenarios.
2) Provides a query-able interface to enable man-machine

interaction to help human analyst to understand the
complexity of the unresolved cases.

3) The human expert proposes and evaluates hypotheses to
resolve complex scenarios. The tool enables the human
expert to gather appropriate evidence to confirm or refute
the hypotheses, and consequently give a verdict on that
anomaly.

A. Case Study: Safe Synchronization in Linux code

The first case study is about verifying the safe-
synchronization through mutex locking and unlocking in
Linux kernel v2.6.31 (C code). For mutex object m let
L(m) and U(m) denote the locking and unlocking event of
m respectively. Then, the safe synchronization property is
verified as follows: For every path in the control flow graph
that has a mutex lock event L(m) for a mutex object m, L(m)
is followed by U(m) on that path. We first describe the case



study (Sect. II-A1), give fully automated (Sect. II-A2) and
ART-based (Sect. II-A3) resolutions of the case study, and,
finally, contrast the fully automated and ART-based approaches
(Sect. II-A4).

1) Description: The case study is about a complex ex-
ample from the Linux kernel that incurs an extra cost to
a fully-automated tool in the form of modeling program-
ming mechanisms such as function pointers. Function A =
stat seq start()1 calls a mutex lock() on the mutex ob-
ject stat session.stat mutex but the lock is never released
by a call to mutex unlock() in the same function. Function
B = stat seq stop()2 calls a mutex unlock() on the
same mutex object, but there is no locking preceding the
unlocking in the same function. Investigating the case, we
found that a static variable trace stat seq ops3 of type
seq operation stores a function pointer to functions A and
B. Then, functions C = traverse()4 and D = seq read()5,
each call the functions A and B, in that order, using the
function pointers stored in the static variable. We found that
every call to A is followed by a call to B on every execution
path in functions C and D. Thus, this flow is legitimate, i.e.,
this complex scenario is not an anomaly.

2) A Fully-Automated Tool Resolution: Automating reso-
lution of such complex scenarios is possible, however, it can
involve use of complex techniques such as transforming pro-
gram constructs into Boolean constraints and then using a SAT
solver to check program properties [2], manual construction of
external environment [3], [4], representing program constructs
as finite state machines [5], [6], and symbolic execution [3].
While the usefulness of such techniques in static analysis have
been proven beyond any doubt, we appeal that their application
for resolving certain complex scenarios—such as the one
being currently discussed—may not be worth the resources
spent in implementing these techniques. Further, programming
constructs such as function pointers, pointer-arithmetic, linked
lists, loops and recursion can adversely affect the accuracy and
coverage of such automations [2], [3]. Whereas, such scenarios
can be resolved very easily by a human mind. Next, we list
the details of how a human analyst can approach the solution
using an ART-based tool for this case study.

3) ART-based Tool Resolution: We use an ART-based tool
T that checks for safe-synchronization through mutex locking
and unlocking in C programs through static analysis. The
analyst has reasonable expertise in C programming. Let x
denote the mutex object: stat session.stat mutex. First,
the human analyst queries all the functions in the Linux kernel
that pass x as a parameter to either mutex lock L(x) or
mutex unlock U(x). T responds with Fig 3.

The analyst observes the following in the response by T
(see Fig. 3):

• Functions reset stat session() and

1http://lxr.linux.no/linux+v2.6.31/kernel/trace/tracestat.c#L199
2http://lxr.linux.no/linux+v2.6.31/kernel/trace/tracestat.c#L232
3http://lxr.linux.no/linux+v2.6.31/kernel/trace/tracestat.c#L249
4http://lxr.linux.no/linux+v2.6.31/fs/seqfile.c#L65
5http://lxr.linux.no/linux+v2.6.31/fs/seqfile.c#L132

stat_seq_stop reset_stat_session stat_seq_init stat_seq_start 

mutex_lock mutex_unlock 

Figure 3: Case study 1: response by the ART-based tool.

stat seq init() are highlighted in green indicating
that these functions have L(x) followed by U(x) on
every execution path. Thus, these case are safe.

• Function A = sta seq start() is highlighted in red
indicating that it has an execution path on which L(x) is
not followed by U(x). The same is also indicated by the
single call edge from A to mutex lock().

• Function B = stat seq stop only calls
mutex unlock(), i.e., it has an execution path on
which U(x) is not preceded by L(x).

At this stage, the human analyst hypothesizes of another func-
tion that can synchronize calls to L(x) and U(x) in functions
A and B in a single flow of execution. So he queries the callers
of A or B. However, the tool returns no callers — refuting
his hypothesis. Based on this, the analyst hypothesizes of an
invisible calling paradigm (i.e., threads, functions pointers,
etc.), so he queries the tool for any artifacts in the Linux
kernel that reads/writes a pointer to functions A and B. The
tool returns the static variable trace stat set op:

1 static const struct seq_operations
trace_stat_seq_ops = {

2 .start = stat_seq_start,/*assignment of
pointer to function A*/

3 .next = stat_seq_next,
4 .stop = stat_seq_stop,/*assignment of

pointer to function B*/
5 .show = stat_seq_show };

Based on the previous result, the human analyst finds
the hypothesis to be correct, i.e., there should be a
function that calls start and stop through function point-
ers. Finally, the analyst queries all the functions that
read/write the variable trace stat seq ops.start and
trace stat seq ops.stop.
The tool returns the functions traverse() and seq read()
— both functions make a call to the function pointer start

followed by a call to function pointer stop on every execu-
tion path. Thus, the analyst concludes that the mutex object
stat session.stat mutex is safe.

In the above ART-based resolution, we can see:
• The conducted queries gave the human analyst a better

view about the complex scenario
• Those pieces of information lead him to hypothesize

about the problem, and verify or refute his assumption
based on further narrowed and detailed queries.

Clearly, if an analyst has reasonable expertise in C program-
ming, it would be very easy for him to see that this complex
scenario is not an anomaly. There are 11 complex scenarios
of this category in Linux kernel (out of total 403 complex
scenarios in 1,255 instances of mutex locking).



4) ART-Based vs. Fully-Automated Approach: Based on the
aforementioned case studies, the difference between the two
approaches lies in implementing the respective techniques.
For example, at a high level a typical fully-automated tool
developed for the analysis of the above case study transforms
program constructs into Boolean constraints and then uses a
SAT solver to check program properties. There are also a
number of other complexities that the authors in [2] address
in modeling various constructs of C programming and in
simulating program execution down to bit-level precision.

Whereas, the ART-based analysis uses the assisting tool to
gather helpful information about the complex scenario that
help the analyst to build hypothesis that will be verified or
refuted based on further queries conducted by the analyst.

The queries supported by the ART-based tool are easy to
implement on an off-the-shelf framework for manipulation
of software program graphs of programs written in C (e.g.,
Atlas from EnSoft [7]). In summary, the ART-based anal-
ysis: resolves cost-effective anomaly-prone scenarios though
automation, and reveals the unresolved complex scenarios to
a human analyst. With such an assistive role, the human
expert will have a hypothesis about the anomalous or safe
behavior of the complex scenario. The tool enables the human
expert to gather appropriate evidence to confirm or refute the
hypothesis, and give a verdict on the analyzed anomaly.

It is easy to see that the amount of effort and time spent in
implementing the ART-based tool for the above case study will
be considerably less than the corresponding time and effort for
a fully-automated tool. In other words, in terms of the theme
of our discussion so far, the ART-based approach of analysis
can be more cost-effective.

B. Case Study: Memory Leak Analysis in XINU Code
The second case study is about analyzing XINU6 source

code for potential memory leaks. The code is written in
C. We use an ART-based tool T that checks for memory
leaks in C programs through static analysis. The analyst has
reasonable expertise in C programming and has a high-level
understanding of the XINU architecture. Tool T is based on
Atlas platform mentioned earlier, however, it is still under
development: the figures in this case study are not the actual
query-results returned by T , but represent what T is expected
to return after its completion.

Memory is allocated through a call to function getbuf()
and freed by a corresponding call to function freebuf().
Running T on XINU source code reveals that in function
dswrite() memory is being allocated to pointer drptr, which
is of type struct dreq ∗, but is not being freed on every
execution path following the allocation. Figure 4 shows the
code for dswrite(). Call to function getbuf() allocates
memory to pointer drptr — highlighted in blue in Fig. 4.
The analyst proceeds as follows:

1) The analyst asks T to show the execution paths where
memory is not being freed. T responds with the call

6XINU [8] is a Unix-like operating system originally developed by Douglas
Comer for instructional purposes. See http://www.xinu.cs.purdue.edu/

dswrite(devptr, buff, block) 
 struct devsw *devptr;char *buff;DBADDR block; { 
 struct dreq *drptr; 
 char ps; 
 disable(ps); 
 drptr = (struct dreq *) getbuf(dskrbp); 
 drptr->drbuff = buff; 
 drptr->drdba = block; 
 drptr->drpid = currpid; 
 drptr->drop = DWRITE; 
 dskenq(drptr, devptr->dvioblk); 
 restore(ps); 
 return (OK); 
} 
 
//3456789012345678901234567890123456789012345678901234567890 Figure 4: Function dswrite() : writes a block onto a disk
device. The highlighted line corresponds to memory allocation.
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Figure 5: Call graph of dswrite() restricted to the memory
leak analysis.

graph of function dswrite() restricted to the current
memory leak scenario (see Fig. 5). The rectangular
block corresponding to function dswrite() (see Fig.
5) shows the line in the source code where memory
allocation happened by a call to function getbuf(). The
green bubble in the right corner indicates the number of
execution paths this memory allocation leads to where
the corresponding memory deallocation could not be
found by T . In this case there are seven such execution
paths. All seven execution paths go through function
dskenq() — the second rectangular block in the call
graph. The rectangular block of function dskenq() has
four execution blocks—each represented by a rectan-
gular block colored in light coral—that correspond to
execution paths where memory is not being freed. The
first execution block calls function dskstrt(). The
second execution block calls function dskqopt() and
has four no-memory-deallocation execution paths going
through it — indicated by the value in the corresponding
green bubble. The remaining two execution blocks in
function dskenq() do not call any function and each
contributes a no-memory-deallocation execution path.

2) The analyst decides to investigate the call to function
dskqopt() first because it contributes four or the seven



dskqopt(p, q, drptr) 
 struct dreq *p, *q, *drptr; { 
 char *to, *from; 
 int i; 
 DBADDR block; 
 if (drptr->drop == DSYNC 
   || (drptr->drop == DREAD && p->drop == DREAD)) 
  return (SYSERR); 
 if (drptr->drop == DSEEK) { 
  freebuf(drptr); 
  return (OK); 
 } 
 if (p->drop == DSEEK) { 
  drptr->drnext = p->drnext; 
  q->drnext = drptr; 
  freebuf(p); 
  return (OK); 
 } 
 if (p->drop == DWRITE && drptr->drop == DWRITE) { 
  drptr->drnext = p->drnext; 
  q->drnext = drptr; 
  freebuf(p->drbuff); 
  freebuf(p); 
  return (OK); 
 } 
 if (drptr->drop == DREAD && p->drop == DWRITE) { 
  to = drptr->drbuff; 
  from = p->drbuff; 
  for (i = 0; i < DBUFSIZ; i++) 
   *to++ = *from++; 
  return (OK); 
 } 
 if (drptr->drop == DWRITE && p->drop == DREAD) { 
  block = drptr->drdba; 
  from = drptr->drbuff; 
  for (; p != DRNULL && p->drdba == block; 
    p = p->drnext) { 
   q->drnext = p->drnext; 
   to = p->drbuff; 
   for (i = 0; i < DBUFSIZ; i++) 
    *to++ = *from++; 
   p->drstat = OK; 
   ready(p->drpid, RESCHNO); 
  } 
  drptr->drnext = p; 
  q->drnext = drptr; 
  resched(); 
  return (OK); 
 } 
 return (SYSERR); 
} 

 Figure 6: Function dskqopt() : optimizes disk requests. The
highlighted execution blocks correspond to potential memory
leaks as found by tool T .

execution paths that do not free the allocated mem-
ory. He asks T to show the corresponding execution
blocks in dskqopt(). T responds with code for function
dskqopt() (see Fig. 6) and highlights the execution
blocks where freebuf() is not being called — indi-
cating potential memory leaks.

3) The analyst observes that the governing condition for
each of the highlighted execution block is based on the
value of drptr− > drop. He asks T to do a reverse
taint analysis on drptr− > drop restricted to the cur-
rent memory leak scenario. T responds with the reverse
taint graph (see Fig.7a) and the code in dswrite()
where drptr− > drop is assigned value DWRITE (see
Fig.7b — the assignment is highlighted in blue).

4) The analyst observes that the assignment of value
DWRITE to drptr− > drop corresponds to the govern-
ing condition of the the last highlighted execution block
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 dswrite 

drptr->drop 

 Parameter: drptr 
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 Parameter: drptr 

struct dreq *drptr 

(a) Reverse taint graph of
drptr− > drop .

dswrite(devptr, buff, block) 
 struct devsw *devptr;char *buff;DBADDR block; { 
 struct dreq *drptr; 
 char ps; 
 disable(ps); 
 drptr = (struct dreq *) getbuf(dskrbp); 
 drptr->drbuff = buff; 
 drptr->drdba = block; 
 drptr->drpid = currpid; 
 drptr->drop = DWRITE; 
 dskenq(drptr, devptr->dvioblk); 
 restore(ps); 
 return (OK); 
} 
 
//3456789012345678901234567890123456789012345678901234567890 

(b) Analysis reveals drptr− > drop is being assigned DWRITE.

Figure 7: Reverse taint analysis of drptr− > drop.

in Fig. 6. Thus, he concludes that this execution blocks
corresponds to the potential memory leak. The execution
block is shown separately in Fig. 8.

5) The analyst, however, finds the potential memory to be
too obvious. Further, going through the execution block
he observes that the pointer drptr is being added to a
linked list. Thus, it makes sense that it is being freed
by another disjoint thread of execution. Assuming that
such a thread exists, the analyst reasons that the two
disjoint threads of execution must communicate through
a shared data structure. Analysis reveals that the linked
list to which the pointer drptr is being added is such a
shared data structure. The analyst further reasons that the
disjoint thread that frees memory must call freebuf()
passing a pointer of type struct dreq ∗ as argument.
Recall that drptr—the pointer that is being allocated
memory in dswrite()—is also of type struct dreq ∗.
The analyst asks T to show all invocations of freebuf()



 if (drptr->drop == DWRITE && p->drop == DREAD) { 
  block = drptr->drdba; 
  from = drptr->drbuff; 
  for (; p != DRNULL && p->drdba == block; 
    p = p->drnext) { 
   q->drnext = p->drnext; 
   to = p->drbuff; 
   for (i = 0; i < DBUFSIZ; i++) 
    *to++ = *from++; 
   p->drstat = OK; 
   ready(p->drpid, RESCHNO); 
  } 
  drptr->drnext = p; 
  q->drnext = drptr; 
  resched(); 
  return (OK); 
 } 
 
//3456789012345678901234567890123456789012345678901234567890 Figure 8: Execution-block in dskqopt() corresponding to
memory allocation in dswrite().

in the XINU code where the parameter that an invocation
receives is a pointer of type struct dreq ∗. T shows
seven such invocations. The analyst observes that four
of these are in dskqopt() and one each in dsread(),
dsksync() and dsinter().
Function dskqopt() already appears in the call graph of
function dswrite() (see Fig. 5), which the analyst has
come across earlier. Thus, he reasons it to be an unlikely
candidate for the disjoint thread that frees memory. Fur-
ther, T shows that the calls to freebuf() in dsread()
and dsksync() are already matched with corresponding
calls to getbuf(). Thus, he rules them out as unlikely
candidates for the disjoint thread as well. T also shows
that dsinter() is a root function, i.e., not called by any
other function, and the call to freebuf() in it is not
matched by a corresponding call to getbuf(). Further,
the analyst observes that it is an interrupt driven routine,
i.e., a separate thread for execution. These facts make
dsinter() the likely candidate for the disjoint thread
that frees memory. He asks T to show the invocation
of freebuf() in dsinter(). The response is shown in
Fig. 9. The invocation is highlighted in blue.

6) The analyst observes that the governing condition for the
execution block in dsinter() containing the invocation
of freebuf() depends on the value of drptr− > drop

(see Fig. 9). He notices that it matches the assignment
made in dswrite() during the allocation of memory
(see Fig.7b). Further, the given descriptions of these
functions are:
dswrite() Write a block (system buffer) onto a disk

device.
dsinter() Process disk interrupt.
Based on the above evidence, he concludes the follow-
ing:
dswrite() allocates memory for drptr. Since this is a
write operation to the disk, dswrite() adds drptr to
a linked list and schedules a write to the disk. When
the disk controller interrupts the CPU, marking the
successful end of write operation, the interrupt handler
dsinter() frees the memory allocated for drptr. Thus,

INTPROC dsinter(dsptr) 
 struct dsblk *dsptr; { 
 struct dtc *dtptr; 
 struct dreq *drptr; 
 
 dtptr = dsptr->dcsr; 
 drptr = dsptr->dreqlst; 
 if (drptr == DRNULL) { 
  panic("Disk interrupt when disk not busy"); 
  return; 
 } 
 if (dtptr->dt_csr & DTERROR) 
  drptr->drstat = SYSERR; 
 else 
  drptr->drstat = OK; 
 if ((dsptr->dreqlst = drptr->drnext) != DRNULL) 
  dskstrt(dsptr); 
 switch (drptr->drop) { 
 
 case DREAD: 
 case DSYNC: 
  ready(drptr->drpid, RESCHYES); 
  return; 
 
 case DWRITE: 
  freebuf(drptr->drbuff); 
  /* fall through */ 
 case DSEEK: 
  freebuf(drptr); 
 } 
} 
 
//3456789012345678901234567890123456789012345678901234567890 Figure 9: The invocation of freebuf() in function dsinter()
with a pointer to type struct dreq ∗ as argument — high-
lighted in blue.

this complex scenario does not correspond to a memory
leak.
The remaining execution paths are analyzed similarly
and none are found to be a memory leak.

Observations: We contrast T with a fully automated tool
F that also checks for memory leaks in C programs through
static analysis. We highlight some of the advantages that T
can have over F .

• In steps 1 and 2 F may only inform that not all paths after
memory allocation in dswrite() have a corresponding
deallocation, and may not keep track of the individual
execution paths. Even if it stores the individual execution
paths, it may not care to show them to the analyst because
it is not meant to interact with the analyst at that level.
Contrast this with the call graph of dswrite() (see Fig.
5) and the highlighting of individual memory-leak-prone
execution blocks in dskopt (see Fig. 6) as displayed by
T .

• In step 3 it was easy for the analyst to analyze the govern-
ing condition for each of the highlighted execution block
and decide to do a reverse taint analysis. Again, in step 4
using the reverse taint analysis it was easy for the analyst
to conclude that the assignment to drptr− > drop in
dswrite() corresponds to the governing condition of the
the last highlighted execution block in Fig. 6. Automating
either of these decision makings in F is a challenging
task. Further, F may not be designed to do and display
a reverse taint analysis like the one done in Fig. 7.

• Step 5 and step 6 demonstrate the advantage of human



insight. Knowing the analyst’s familiarity with C pro-
gramming, it is easy to see that the whole reasoning in
these steps is natural to him. Automating such a reasoning
in a tool like F will require incorporating problem-
specific knowledge (in this case some understanding of
the use-cases in an operating system like XINU) and
modeling complex constructs of programming, such as
linked lists, interrupts and multiples threads of execution.
Thus, it would be a very challenging task. Further, in
step 5, the analyst asks T to show all invocations of
freebuf() in the XINU code where the parameter that
an invocation receives is a pointer of type struct dreq ∗.
Not only F may not support such a query but processing
it can be quite different than the usual things that F does
to identify memory leaks.

C. Case Study: Malware Analysis of an Android Application

Our research group is participating in Automated Program
Analysis for Cybersecurity (APAC) program being conducted
by DARPA7. The goal of APAC program is to develop tools to
identify possible malicious code in Android apps so that such
apps can be securely and confidently integrated in hardened
smartphones. Unlike malware that follow known malicious
paradigms and tend to be amenable to signature-based mal-
ware detection ([9], [10]), the DARPA APAC program is con-
cerned with sophisticated malware including highly complex
malware resulting from insider threats. As the third case study,
we discuss an Android malware application (henceforth called
app X) that we analyzed as part of our APAC research. Due
to confidentiality agreements we are prohibited from releasing
the app in public domain, thus, we discuss it at a conceptual
level.

App X is an Internet Relay Chat (IRC)8 client for Android.
We use an ART-based tool called Security Toolbox (henceforth
called T ) that we have developed on top of Atlas framework
[7]. Atlas converts source code into a graph database and
provides APIs to query the database. The query results can be
used for further analysis as well displayed instantly as graphs
by the visualization interface. Our toolbox provides custom
Atlas scripts that expose malware “hotspots” in an app and
facilitate malware-specific exploration of the app using Atlas.
App X source is in Java. In its initial run, T analyzes various
uses of Java and Android APIs that are commonly abused
for malware-purposes. T populates all such malware-prone
APIs used in the app in a list. For example, the use of API
java.lang.reflect in an app indicates possible use of Java
Reflection to hide calls to malicious methods. Other examples
are class loaders, native code, and application permissions.

1) While going through each API in the list, the analyst
hypothesizes possible malicious behaviors that can arise
due to use of the Android API. One such malware-
prone API that T reveals is the use of Internet. The

7http://www.darpa.mil/OurWork/I2O/Programs/
AutomatedProgramAnalysisforCybersecurity(APAC).aspx

8Internet Relay Chat is a protocol for live interactive Internet text messaging
(chat) or synchronous conferencing [11].

Figure 10: Internet related APIs.

analyst hypothesizes that the app could be leaking IRC
conversations to the Internet. The analyst asks T for
all interactions of the app with Internet related APIs. T
responds with Fig 10.

2) The analysts observes that two methods shutdown() and
run() call java.net.Socket APIs. The analyst notices
that shutdown() only closes a network connection —
not a candidate for malicious behavior. However, run()
is a background thread that writes to an instance of
java.net.Socket from a write-buffer (named writer).
Suspecting sensitive data being leaked through writer,
the analyst asks T to show all methods that write to
writer9.

3) The response by T contains only one method:
sendCommand() in class ConnectionThread. This is
an important point in the analysis because there is a
transition from a well-known API in Android (internet
APIs), to a domain-specific repackaging. Going through
the source code of sendCommand(), the analyst observes
that it is a private-helper function for sending data to the
network connection. Thus, the analyst asks T to show
the call graph of this helper function. T responds with
Fig 11.

4) The analyst observes several implementations of IRC
commands that leverage function sendCommand() to
send data to the network connection. He observes
that the majority of calls to IRC command imple-
mentations are made from public functions in class
ConnectionService (see Fig. 11) and have a single
caller. However, he observes the function sendChat()
in class ConnectionThread has two callers; one of
which is a private method in class ProtocolParser.
Thus, the analyst finds the call by function parseChat()
(in class ProtocolParser) to function sendChat()
(in class ConnectionService) an “outlier” (relative to
calls of other IRC command implementations in class

9The query corresponds to a forward taint analysis on writer restricted to
write-only java.io APIs.



Figure 11: Call graph of sendCommand(). Only the first two
levels from the original graph are shown here.

ConnectionThread — see Fig. 11). Looking at the
outlier call, the analyst finds it suspicious, because:
“What is the need to send a chat (i.e., call function
sendChat()) while parsing a chat (i.e., from function
parseChat())?” The analyst investigates the source
code of function parseChat() and finds that it sends
all incoming chat messages to a hard-coded IRC user
“0xFFFF”. Following is the corresponding line of code:
channel.sendChat("OxFFFF",chat);

This is clearly a malware activity because leaking con-
versations this way is a breach of user-privacy. Thus, the
analyst concludes the app to be a malware.

It is a very challenging task to automate the identification
of the above malicious code because the malware activity
blends very well with the legitimate functionality of the app.
Capturing this subtle difference through automation will be
a heavy task and can give a lot of false-positives. Further,
the same malicious activity can be benign if all IRC con-
versations are supposed to be monitored by some hypothetical
administrator-user “0xFFFF”. Whereas, such subtle differences
and contradictory scenarios come easy to human reasoning.

III. DISCUSSION AND RELATED WORK

The complex anomaly scenarios presented previously are
not sporadic, but frequently occurring real-world cases. For
example, for checking safe-synchronization in Linux kernel
out of 1255 scenarios, 403 are complex (32.1%). Specifically,
out of the 403 complex scenarios: 68 have large execution
paths (>500 nodes), 112 have infeasible paths (paths not
feasible at runtime), 11 call functions via pointers, and 212
have unstructured code (e.g., jump statements like goto).

In general, a fully automated and completely accurate data-
flow analysis is known to be NP-complete [12]. The number of
execution paths grow exponentially with the number of non-
nested branch nodes [13]. Apart from theoretical infeasibility,
full automation may not be pragmatic because of programming
constructs such as flow of data through containers such as
linked lists, interrupt-driven routines, multi-threaded programs,
function pointers, and the fact that a program may not be a
closed system because of its dependence on external library or

operating system calls. Given the infeasibility or impracticality
of full automation, the ART approach makes sense because
it is often relatively easier for a human analyst to reason:
both in terms of the reasoning ability as well as a richer
contextual understanding of the software. The analyst’s dif-
ficulty is extracting relevant information from large software.
That difficulty can be addressed with an apt tool with query
interface. It is important that the analyst be not restricted to
canned queries. Instead, the analyst should be able to compose
new queries necessary to address varying contexts of complex
anomaly scenarios.

Program comprehension is a central activity during soft-
ware maintenance, evolution, and reuse [14]. Some reports
estimate that up 60-70% of the maintenance effort is spent
of understanding code [15]. It also plays an important role in
an ART-based approach. The complex scenarios involve data
and control relationships that require graph representations.
Thus, a powerful ART tool needs the capability to represent
and refine program semantics as graphs and provide a query
language to search and manipulate the graphs.
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