
39

L-SAP: Scalable and Accurate Lock/Unlock Pairing for the Linux
Kernel

Ahmed Tamrawi, Iowa State University
Suraj Kothari, Iowa State University

This paper describes L-SAP, a tool that uses a novel scalable and accurate static lock/unlock pairing analy-
sis. It incorporates algorithmic innovations to address the major challenges to advance the state-of-the-art
for accurate and scalable pairing analysis. We evaluate L-SAP on three recent versions of the Linux kernel
totaling 37 MLOC. L-SAP is able to accurately pair 66, 151 (99.3% of the total) locks in 3 hours with no
false negatives. This analysis has led to the discovery of seven synchronization bugs, which were accepted
by the Linux community. Our evaluation results show that L-SAP performs strictly and significantly better
compared to the currently top-rated Linux kernel device driver verification tool (LDV) [LDV 2015]. L-SAP
shows major performance improvements over LDV in: accuracy by reducing the number of unpaired locks
49× fold, and scalability by reducing the analysis time 59× fold.

Categories and Subject Descriptors: F.3.2 [Logics and Meanings of Programs]: Semantics of Program-
ming Languages - Program Analysis

Additional Key Words and Phrases: Lock/unlock pairing, Static analysis, Linux kernel

ACM Reference Format:
Ahmed Tamrawi, Suraj Kothari, 2015. L-SAP: Scalable and Accurate Lock/Unlock Pairing for the Linux
Kernel. ACM Trans. Softw. Eng. Methodol. 9, 4, Article 39 (March 2010), 21 pages.
DOI: 0000001.0000001

1. INTRODUCTION
Synchronization problems can be catastrophic - a business-transaction server can
crash resulting in a big financial loss, or a safety-critical control system can halt caus-
ing loss of lives. With multi-threading and event-driven processing, it is challenging
to ensure resilience of software systems to synchronization problems. These problems
can elude dynamic analyses and regression testing because their occurrence often de-
pends on intricate sequences of low-probability events [Engler and Ashcraft 2003].
Running a program to examine all possible behaviors is prohibitively expensive and
time-consuming. Thus, automated static analyses are crucial to complement testing
and dynamic analyses.

An accurate, scalable, and completely automated static analysis has been the holy
grail of research. Over the years, many static analysis approaches have been proposed
to discover synchronization problems in C programs [Engler and Ashcraft 2003; Ster-
ling 1993; Dillig et al. 2008; Voung et al. 2007; Pratikakis et al. 2006; Cho et al. 2013;
Nori et al. 2009]. These state-of-the-art approaches are based on older versions of the
Linux kernel (< 4 MLOC) or on medium-sized programs that are orders of magni-
tude smaller. These approaches have led to new advances in data and control flow

This work is supported by Defense Advanced Research Projects Agency (DARPA), under grant FA8750-12-
2-0126.
Author’s addresses: A. Tamrawi and S. Kothari, Electrical and Computer Engineering Department, Iowa
State University, Ames, Iowa 50010.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2010 ACM. 1049-331X/2010/03-ART39 $15.00
DOI: 0000001.0000001

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

39:2 A. Tamrawi et al.

analyses, and new heuristics to apply techniques such as Binary Decision Diagrams
(BDDs) to analyze large software [Lhoták 2006]. These advances have pushed further
the boundaries of scalability and accuracy. However, there is a fundamental limitation:
a general-purpose accurate lock/unlock pairing analysis is not intrinsically scalable as
it involves NP hard problems [Church 1936; Turing 1936; Rice 1953]. Our approach is
to specifically address commonly occurring roadblocks for scalability and accuracy to
arrive at a solution that works well in practice. The Linux kernel code base has unique
combinations of specific characteristics that attract researchers and practitioners to
challenge their tools [Beyer and Petrenko 2012]. This motivated us to use the Linux
kernel code base as a good target system to test our approach. Algorithmic innovations
presented in this paper are inspired by the following guiding research question: what
scalability and accuracy roadblocks are typical in practical applications, which can
be addressed by customized program analysis that achieves accuracy and scalability
without being too restrictive?

Consider the lock/unlock pairing analysis: a lock L is paired with an unlock U iff U
can release the lock acquired by L. We use the term lock/unlock to refer to a lock/unlock
operation (i.e., function call). The existence of unpaired locks on feasible execution
paths results in synchronization problems. This pairing of a lock with its corresponding
unlocks on all possible feasible execution paths requires the following: (a) a data flow
analysis to map each lock to corresponding unlocks that reference the same lock object,
(b) a control flow analysis to pair each lock with mapped unlocks. This is achieved by
identifying all possible intra- and inter-procedural execution paths that have a lock
ensued by a mapped unlock, and (c) a feasibility analysis to check the feasibility of
an execution path on which a lock is not ensued by an unlock. A general-purpose,
completely automated, and accurate analysis is intractable for each of the above three
requirements.

We present a novel scalable and accurate static lock/unlock pairing analysis that is
explicitly designed to handle the analysis roadblocks we observed in the Linux ker-
nel. We design a type-based analysis and leverage our previous work [Gui and Kothari
2010] to satisfy the analysis requirement (a) to map each lock with a set of corre-
sponding unlocks to perform object-sensitive analysis. To efficiently meet the analysis
requirement (b), we design a novel control flow graph (CFG) compaction/pruning algo-
rithm to minimize the set of paths that must be examined for path-sensitive accurate
analysis. We also design compact function summaries for context-sensitive scalable
inter-procedural analysis. For requirement (c), among this minimized set of paths, we
separate the paths on which a lock is not ensued by an unlock. By construction, this is
a necessary and sufficient set of paths that should be checked for feasibility. Thus, the
need for feasibility analysis is also minimized by applying it only in the cases where it
is needed.

We developed L-SAP, a tool that uses our novel lock/unlock pairing analysis. It an-
alyzes each lock and it reports whether the lock is paired with an unlock or unpaired
(i.e., a potential bug). In either case, L-SAP produces evidence so that an analyst can
easily cross-check the analysis result. We have applied L-SAP to recent three versions
(3.17-rc1, 3.18-rc1, and 3.19-rc1) of the Linux kernel totalling > 37 MLOC. L-SAP is
fast and scalable, and it is able to accurately pair 66, 151 (99.3% of the total) locks
in 3 hours with no false negatives. Our analysis discovered 7 synchronization bugs
that were reported to the Linux community and accepted by them. Compared with the
Linux Driver Verification (LDV) tool [LDV 2015], a top-rated verification framework in
the competition on software verification (SV-COMP) [Beyer 2012; Beyer 2013; Beyer
2014] in the category of Linux device drivers verification, L-SAP reduces by 49× the
number of statically unpaired locks and by 59× the analysis time.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

L-SAP: Scalable and Accurate Lock/Unlock Pairing for the Linux Kernel 39:3

To the best of our knowledge, we are the first to perform lock/unlock pairing analy-
sis of the recent versions of the Linux kernel. Our evaluation results show that L-SAP
provides a scalable, practical, and accurate lock/unlock pairing analysis for the Linux
kernel. L-SAP is publicly available [Tamrawi 2015] so that other researchers can re-
produce our results. L-SAP is developed using Atlas [Deering et al. 2014], which is a
platform to develop program comprehension, analysis, and validation tools. Atlas is
available for free academic use from EnSoft [Ensoft 2002] corporation.

To summarize, this paper reports the following research contributions:

(1) A novel scalable and accurate lock/unlock pairing analysis algorithm and its imple-
mentation in the tool L-SAP (Section 3.4).

(2) Efficient object- and context-sensitive inter-procedural analysis by incorporating:
type-based analysis to map a lock to appropriate unlocks (Section 3.1), and compact
function summaries (Section 3.4.1).

(3) Efficient path-sensitive analysis with a novel linear-time control flow graph prun-
ing algorithm to compute a compact derivative of CFG called the event flow graph
(Section 3.3).

(4) A comprehensive evaluation of L-SAP on three recent versions of the Linux kernel
done automatically in 3 hours. The experimental results show that L-SAP correctly
pairs 99.3% of the locks and identifies 7 synchronization bugs (Section 4).

The remainder of the paper is organized as follows. We first present the motivation
and major challenges in Section 2. Next, Section 3 describes our static lock/unlock
pairing analysis algorithm. Section 4 presents the experimental results and Section 5
outlines related work. Section 6 describes the extensibility of our approach and future
work. Finally, we conclude in Section 7.

2. MAJOR CHALLENGES AND MOTIVATION
In this section, we discuss the major challenges for lock/unlock pairing in the Linux
kernel that motivated the design of our analysis algorithm.

2.1. Path-Explosion
To perform path-sensitive analysis, the challenge lies in the exponential number of
control flow paths - 2n paths with n non-nested two-way branch nodes. Our exper-
imental evaluation on the Linux kernel shows that kernel exhibits many functions
with very large number of execution paths. For example, function register cdrom1

has 20 non-nested branch nodes. This path explosion gets worse with inter-procedural
analysis as a path gets split in multiple paths in a called function. To address the
path-explosion challenge, L-SAP uses a novel CFG pruning technique that produces a
compact derivative of CFG called event flow graph (EFG). This is achieved by introduc-
ing an equivalence relation on the CFG paths to partition/group them into equivalence
classes. It is then sufficient to perform the lock/unlock pairing analysis on these equiv-
alence classes (i.e., paths in EFG) rather than on the individual paths in a CFG. We
have adopted the graph algorithm by Tarjan et al. [Tarjan 1972] to come up with a
graph compaction algorithm to form the equivalence classes efficiently. Although the
number of paths in a CFG is very large, the number of path equivalence classes is
quite small, as seen from our results of the Linux kernel, and that enables a scalable
path-sensitive analysis.

1http://lxr.free-electrons.com/source/drivers/cdrom/cdrom.c?v=3.19#L316

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

39:4 A. Tamrawi et al.

2.2. Inter-procedural Analysis
In several instances of lock in the Linux kernel, the corresponding unlocks occur sev-
eral levels down the call chains, thus requiring inter-procedural analysis. The pairing
algorithm must handle the following cases: (1) function A contains a lock and calls
-through a call sequence- function D which contains an unlock, (2) function A is called
by function D through a call sequence (the reference to the locked object is returned
upward the reverse call sequence from A to D), (3) A and D are called by a common
parent, or (4) A and D are called asynchronously sharing the locked object as a heap
object. A mixed combination of these cases can happen because one lock in A can be
paired with multiple unlocks in several different functions D on different paths. To
address this inter-procedural analysis challenge, L-SAP generates compact function
summaries to enable an efficient inter-procedural and context-sensitive analysis.

2.3. Pointers
While pointer analysis algorithms have advanced significantly, they cannot be com-
pletely accurate because of the fundamental limitation as discussed in the introduc-
tion. Typical accuracy hurdles for pointer analysis are pointer arithmetic, heap objects,
function pointers, aggregate structures, offset-references, complex pointer references.
For example, a highly accurate bit representation to track a pointer loses accuracy
when a pointer is passed to a linked list. Further complications are library and system
calls. In their review [Godefroid and Lahiri 2012], Godefroid and Lahiri from Microsoft
Research note “Indeed, in practice, symbolic execution of large complex programs is
rarely fully precise due to external library or system calls, un-handled program in-
structions, pointer arithmetic, floating-point computations, etc”.

To provide scalable and sound analyses and conservatively mitigate inaccuracies of
pointer analyses, L-SAP uses type-based analysis. Our evaluation on multiple versions
of the Linux kernel shows that only a tiny percentage (0.2%) of the locks cannot be
paired using our type-based analysis. To achieve accuracy and scalability of the type-
based analysis, L-SAP leverages an innovative algorithm [Gui and Kothari 2010] to
compute the minimum set of functions for the above four variants of inter-procedural
analysis.

2.4. Feasibility Analysis
A path on which a lock is not paired with an unlock may or may not be an error de-
pending on whether the path is feasible or not. Thus, analyzing feasibility of paths
is important to avoid false positives. Analyzing path feasibility can incur exponential
computation [Ngo and Tan 2007; Navabi et al. 2010; Vojdani and Vene 2009; Dillig
et al. 2008; Bodik et al. 1997] because it involves checking satisfiability of branch
conditions governing a path. Typical complications for path feasibility analysis are
correlations between branch conditions, loops, and inter-procedural paths.

First, our pairing algorithm minimizes the need for performing feasibility analysis
by sequencing the analysis steps to produce at the end, exactly those path equiva-
lence classes on which a lock is not paired with an unlock. The feasibility analysis is
required only for these cases to avoid false positives. Second, the analysis calculates
Boolean expressions that express the conditions under which each lock is not paired
with unlock. Finally, L-SAP uses BDDs [Whaley 2010] to check the satisfiability of
these expressions to determine whether the paths that contain the unpaired locks are
infeasible. To compute correlation between conditions on a given Boolean expression,
L-SAP applies an intra-procedural textual equality based analysis. Our evaluation on
multiple versions of the Linux kernel shows that only a tiny percentage (< 0.2%) of the
unpaired lock cases cannot be handled by our approach to the path feasibility analysis.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

L-SAP: Scalable and Accurate Lock/Unlock Pairing for the Linux Kernel 39:5

3. L-SAP APPROACH
This section describes the approach for static lock/unlock pairing analysis used in L-
SAP. This analysis is explicitly designed to pair locks/unlocks for mutex and spin syn-
chronization mechanisms, both widely used in the Linux kernel. Table I shows the
specific locks/unlocks for mutex and spin synchronization mechanisms in the Linux
kernel.

Table I. Locks/Unlocks for mutex/spin synchronization mechanisms in Linux
kernel

Calls mutex synchronization spin synchronization

Lock Calls

mutex lock spin lock
mutex trylock spin trylock

mutex lock interruptible spin lock irqsave
mutex lock killable spin lock irq

atomic dec and mutex lock spin lock bh

Unlock Calls mutex unlock

spin unlock
spin unlock irqsave

spin unlock irq
spin unlock bh

Figure 1 shows an overview of our lock/unlock pairing analysis. The pairing analysis
has five steps. In the first step, L-SAP maps each lock to the set of corresponding un-
locks. The mapping is performed via type-based analysis, which introduces the notion
of signature. A lock L(o) is mapped to unlock U(m) iff the objects o and m have the
same signature. In the second step, for each signature o, L-SAP creates the matching
pair graph (MPGo) as defined in [Gui and Kothari 2010]. The nodes in this graph pro-
vide the minimum set of functions for inter-procedural pairing analysis of locks and
unlocks with signature o. The directed edges in MPGo represent call relationships. In
the third step, for each function in MPGo, L-SAP prunes the CFG to produce a com-
pact CFG named the event flow graph (EFG). The EFG enables efficient path-sensitive
lock/unlock pairing by defining an equivalence relation on the CFG paths such that it
is sufficient to examine only one path from each equivalence class. These first three
steps set the stage for an efficient pairing algorithm. In the fourth step, L-SAP iter-
ates over the set of signatures to apply the pairing algorithm to each MPGo and pair
the locks and unlocks with signature o. For efficiency, the pairing algorithm computes
context-sensitive function summaries using the EFGs computed in the previous step.
In the fifth step, L-SAP calculates Boolean expressions for the conditions governing
each potential-error path on which a lock with signature o is either: (i) not paired with
an unlock with signature o, or (ii) paired with a lock of signature o (a potential dead-
lock). Then, using BDDs [Whaley 2010], L-SAP examines whether the potential-error
paths are feasible.

These five steps are described below in detail.

3.1. Step 1: Lock/Unlock Mapping
The lock/unlock mapping is performed through type-based analysis via the notion of a
signature such that: a lock L(o) is mapped to unlock U(m) iff the object o and m have
the same signature. The signature-based analysis works as follows:

Consider the pointer P given by the expression: (an · · · a3(.||->)a2(.||->)a1). In this
expression, P is being accessed through a chain of member-selection C operators
(. and/or ->). We define the hierarchal type for P as the tuple (Tan

, · · · , Ta3
, Ta2

, Ta1
),

where Tai
denotes the type associated with the member ai. For example, the hierarchal

type for pointer (x->y->z) is given by the tuple (X,Y, Z) where Tx = X,Ty = Y, and

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

39:6 A. Tamrawi et al.

Fig. 1. An Overview of L-SAP Pairing Analysis

Tz = Z. For a directly referenced pointer, the hierarchal type is the same as its type.
For example, the hierarchal type for pointer (k) is Tk.

We use the term object signature (So) to denote: (1) the object (variable) name in
case o is a global variable that is directly referenced, and (2) the hierarchal type for the
object (pointer) o otherwise. Based on these definitions, L-SAP maps each lock to a set
of corresponding unlocks as follows:

(1) Mine all call-sites to lock and unlock based on Table I.
(2) A lock L(o) is mapped to unlock U(m) iff So = Sm.

Let us illustrate this through an example: let us say that function A has the lock
L(x->y->z) and function B calls unlock U(l->m->n). Then, L-SAP will map the lock
L(x->y->z) to the unlock U(l->m->n) iff both signatures (Sx->y->z and Sl->m->n) are
the same. In other words, their hierarchal types are the same where (Tx, Ty, Tz) =
(Tl, Tm, Tn). In case of a global lock object, the signature is the global variable’s name.

3.2. Step 2: Matching Pair Graph
For each signature o, L-SAP creates a matching pair graph (MPGo) as defined in [Gui
and Kothari 2010]. The nodes in the graph provide the minimum set of functions for
inter-procedural pairing analysis of locks and unlocks with signature o. The directed
edges in MPGo represent call relationships. MPGo captures the four inter-procedural
cases identified in Section 2.2. For the fourth case resulting from asynchronous pro-
cessing, the MPGo would have two disconnected nodes, i.e., the corresponding func-
tions are not connected by a call sequence because they are invoked asynchronously.

We take a signature o and the associated locks/unlocks as inputs, then compute the
matching pair graph MPGo by running a set of Atlas queries against the system’s call
graph. This query-based approach is faster compared to recursive traversing of the
system’s call graph.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

L-SAP: Scalable and Accurate Lock/Unlock Pairing for the Linux Kernel 39:7

Currently, we do not resolve function pointers. This is a source of inaccuracy. Con-
sider the example of lock LA in function A and unlock UB in function B where LA

is mapped to UB as both have the same signature o. Now, assume function C calls
A and B via function pointers. Because, we do not resolve function pointers, we will
miss function C in MPGo; it will contain only the functions A and B. The good thing
is, the matching pair graph provides the human analyst with hints about the pairing
possibility between LA and UB . Results in Section 4 show only a small percentage of
unpaired locks due to presence of function pointers.

3.3. Step 3: Event Flow Graph
In this step, we prune the CFG to form equivalence classes of CFG paths. This is
done by introducing an innovative compact derivative of CFG, called the event flow
graph (EFG). Mathematically, the EFG defines an equivalence relation on the CFG
paths, where each path in the EFG corresponds to a group/class of equivalent paths
in the CFG. Two CFG paths are considered equivalent if they have the same event
trace. Each event trace is a sequence of relevant events on a CFG path. The set of
relevant events are defined with respect the lock/unlock pairing analysis. The EFG
is the minimal graph for computing all the event traces, i.e., each path in the EFG
produces a unique event trace.

We have a novel linear-time algorithm - in the size of a given CFG - to compute EFG
without examining each CFG path. The algorithm is modeled as a set of graph trans-
formations starting with a CFG. The algorithm is an adaptation of Tarjan’s algorithm
to compute strongly-connected components of a directed graph [Tarjan 1972]. Below,
we present the details of our CFG pruning algorithm to compute EFG:
(0) Marking Event Nodes. The initial step in our CFG pruning algorithm is marking
the event nodes in the given CFG that are relevant to lock/unlock pairing analysis. In
our CFG representation, the CFG has unique entry and exit nodes and a CFG node
corresponds to a single program statement. Given the matching pair graph MPGo for
signature o and the CFG GCFG for function f ∈ MPGo, the events of interest for lock-
/unlock pairing are as follows: (1) the CFG nodes that correspond to lock/unlock func-
tion calls that are associated with signature o, and (2) the CFG nodes that correspond
to call-sites for functions in MPGo.
(1) T-Irreducible Graph Construction: Start with a CFG GCFG with the marked
event nodes and transform it into a T-irreducible graph GT-irr by applying the following
set of basic transformations T = {T1, T2, T3} until the resultant graph cannot be further
reduced by applying transformations in T .
T1: Elimination of Non-branching and Non-event Nodes
Let n be a non-event node with a single successor m. The T1 transformation is the
consumption of node n by m. Induced edges are introduced so that the predecessors of
node n become predecessors of node m. (Figure 2(a))

The T1 transformation eliminates every node from CFG that is neither a branch
node nor an event node. These nodes are removed because they are irrelevant to the
analysis.
T2: Elimination of Self-Loop Edges
Let n be a non-event node that has a self-loop edge (n, n). The T2 transformation re-
moves that edge. (Figure 2(b))

The intuition behind T2 transformation is: in a loop block that contains no event
nodes, execution of the loop is immaterial. Therefore, T2 removes the self-loop edges.
T3: Elimination of Irrelevant Branch Nodes

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

39:8 A. Tamrawi et al.

Let n be a non-event node that has two or more outgoing edges, all pointing to the same
successor m of n. Then the T3 transformation is the consumption of node n by m and
the predecessors of node n become predecessors of node m. (Figure 2(c))

The intuition behind the T3 transformation is as follows: Imagine the case where
a branch node n has only non-event nodes on its branches, and all those branches
ultimately merge at node m. If the non-event nodes on those branches are eliminated
by the T1 transformation, all branches will point to node m. At this point, the branching
at n is irrelevant so the branch node n can be eliminated.

Fig. 2. T-irreducible graph transformations: (a)T1, (b)T2, (c)T3

DEFINITION 1. GCG is the condensation graph of a directed graph G if each
strongly-connected component (SCC) of G contracts to a single node in GCG and the
edges of GCG are induced by edges in G.

(2) Non-Event Condensation Graph Construction: Compute the subgraph GI of
GT-irr induced by its non-event nodes. Then, construct the non-event condensation
graph GNECG of GI.
(3) Event Condensation Graph: Construct a new graph GECG by adding the event
nodes in GT-irr to GNECG. If an edge exists between an SCC and an event node n in
GT-irr then introduce an edge in GECG between the contracted node for that SCC and
the event node n.
(4) Condensed EFG Construction: Transform GECG into a T -irreducible graph
GcEFG by applying the set of basic transformation T = {T1, T2, T3} as in Step (1). The
resultant graph GcEFG after this step is the condensed EFG.
(5) EFG Construction: Transform GcEFG into GEFG by expanding each remaining
contracted SCC in GcEFG back to the original SCC as in GT-irr. The resultant graph
GEFG after this step is the EFG.

Figures 3(a-f) illustrate our CFG pruning approach by showing the successive
graphs constructed by our CFG to EFG graph transformations, starting with the CFG
(graph a) and ending with the EFG (graph f) where the highlighted nodes correspond
to the event nodes of interest for pairing L(o) with U(o). It is sufficient to perform the
lock/unlock pairing analysis using the pruned CFG (EFG) instead of the CFG. The path
analysis becomes much simpler as there are many fewer equivalence classes compared
to the corresponding number of paths in a CFG; EFG has 2 paths while CFG has at
least 9 paths. Moreover, EFG can minimize computation for checking path feasibility
as path’s Boolean expressions may get much simpler; the EFG has one branch node
compared to the five branch nodes in its corresponding CFG.
CFG to EFG Complexity. The algorithmic complexity of constructing the T-
irreducible graph (Steps 1 and 4) is O(|V | + |E|) where |V | and |E| are the respective
numbers of nodes and edges in the CFG. For detecting the SCCs in step (2), we use
an algorithm by Tarjan [Tarjan 1972] to compute strongly-connected components of a
directed graph. The run-time of this algorithm is also O(|V | + |E|), yielding a linear

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

L-SAP: Scalable and Accurate Lock/Unlock Pairing for the Linux Kernel 39:9

Fig. 3. A transformation from CFG to EFG (CFG Pruning)

run-time complexity of O(|V |+|E|) for our CFG pruning (CFG to EFG transformation).
It is important to note that the algorithm is independent on the number of paths.
Notes about the EFG: The EFG is a compact derivative of the CFG. It retains only
the event nodes and relevant branch nodes that are of interest to our lock/unlock pair-
ing analysis and it has many fewer equivalence classes compared to the corresponding
number of paths in a CFG. Thus, the lock/unlock pairing analysis (path analysis) be-
comes much simpler. Also, the computation for checking path feasibility is minimized
as the EFG retains only the subset of the CFG branch nodes that are relevant to the
pairing analysis. We recommend reading through our technical report [Tamrawi and
Kothari 2014] for more uses, case studies, details, and mathematical proofs on the
correctness and compactness of EFGs.

3.4. Step 4: Pairing Algorithm
L-SAP iterates over the set of signatures to apply the pairing algorithm to each MPGo

to pair the locks and unlocks with signature o. For efficiency, the pairing algorithm
computes context-sensitive function summaries using the EFGs computed in the pre-
vious step. Note that, if a function appears in two matching pair graphs with corre-
sponding signatures o1 and o2, then the function would have two contexts as well as
two summaries. L-SAP visits the matching pair graph in a bottom-up manner while:
(1) computing compact function summaries for each visited function, plugging in the
summaries of the callees at call-sites while analyzing the callers, and (2) keeping track
of the lock/unlock pairs, unpaired locks, and deadlocks.

3.4.1. Compact Function Summaries. For each function, the function summary is com-
puted by traversing its EFG in a depth-first manner while keeping track of all en-
try/exit locks/unlocks on all EFG paths. Let us illustrate our approach to computing

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

39:10 A. Tamrawi et al.

compact function summaries. Figures 4(a) and (b) show the EFG for functions f and
g. In this example, f calls g at statement: Call g;. The function summary for g should
retain the information relevant for analyzing f . The pairing analysis is concerned with
what follows a given lock: (i) a lock followed by unlock implies pairing, (ii) a lock fol-
lowed by another lock implies a deadlock, and (iii) a lock not followed by lock or unlock
implies an unpaired lock.

Fig. 4. Compact function summaries for caller (f) and callee (g)

The function summary consists of two sub-summaries: entry and exit summaries.
The entry summary for g summarizes: (i) the possible unlock(s) in g that can be

paired with LP (o), (ii) the lock(s) in g that cause deadlocks with LP (o), and (iii) the
possibility of not pairing LP (o) with lock/unlock in g. Case (iii) is possible if there
exists a path in g that does not have locks/unlocks. The entry summary for g - denoted
by entry summary in Figure 4(d)- includes: the entry locks (L1(o) and L3(o)), the entry
unlock (U2(o)), and the THROUGH state denoting the existence of paths in g that do not
have any locks/unlocks.

The exit summary for g summarizes: (a) the possible lock(s) in g that can be paired
with the lock (LE(o))/unlock (UE(o)) in f , and (b) the possibility that a lock before
calling g can be paired with a lock/unlock after calling g. Case (b) is possible if there is
a THROUGH state in g. The exit summary for g - denoted by exit summary in Figure 4(d)
- includes: the exit locks (L2(o) and L3(o)) and the THROUGH state.

Since the pairing algorithm is traversing the MPGo in a bottom-up manner, the
summary for g is available to compute the summary for f . Figure 4(c) shows the entry
and exit summaries for f . Note that: (1) the entry summary for g is part of the entry
summary of f because the entry locks/unlocks in g can be the entry locks/unlocks for f

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

L-SAP: Scalable and Accurate Lock/Unlock Pairing for the Linux Kernel 39:11

too, and (2) the exit summary of g is part of the exit summary of f as the exit locks in
g can be the exit locks in f .

3.4.2. Pairing Algorithm. Listing 1 describes the pairing algorithm. It iterates over the
set of signatures and takes as input: the matching pair graph MPGo, the EFG for each
function within MPGo. Then, it outputs: the set of lock/unlock pairs, unpaired locks,
and deadlocks (if any).

1 main (MPGo)
2 f u nc t i o ns ← r e v e r s e t o p o l o g i c a l s o r t (MPGo) ;
3 for (each f u n c t i o n i n f u n c t i o n s)
4 efg ← get EFG (f u n c t i o n) ;
5 entry node ← get en t ry node (efg) ;
6 ex i t node ← ge t ex i t node (efg) ;
7 node summary ← {pre sum : {} , post sum : {}};
8 traverse efg (entry node , node summary) ;
9 summary . entry summary ← pre sum for entry node ;

10 summary . exit summary ← post sum for ex i t node ;
11 summaries . put (func t i on , summary) ;
12 i f (f u n c t i o n ∈ roo ts (MPGo)) AND (summary . exit summary conta ins a lock)
13 r e p o r t the lock (s) i n summary . exit summary as unpaired lock (s) ;
14 end
15
16 traverse efg (node , ns)
17 i f node conta ins a lock f u n c t i o n c a l l
18 i f ns . post sum conta ins a lock
19 r e p o r t a p o t e n t i a l deadlock between the cu r ren t lock the lock (s) i n ns . post sum .
20 update the pre sum and post sum of ns wi th the cu r ren t lock .
21 else i f the node i s a c a l l−s i t e for f u n c t i o n w i t h i n MPGo

22 sum ← summaries . get (c a l l e d f u n c t i o n by node) ;
23 i f (ns . post sum conta ins a lock) AND (sum. entry summary conta ins a lock)
24 r e p o r t a p o t e n t i a l deadlock between the lock (s) i n ns . post sum and the lock (s) i n sum.

entry summary ;
25 ns . pre sum ← sum. entry summary ;
26 ns . post sum ← sum. exit summary ;
27 else i f node i s unlock
28 update the pre sum and post sum of ns wi th t h i s unlock ;
29
30 i f node i s v i s i t e d before AND ns holds the same summary when the node p rev ious l y v i s i t e d
31 return ns . pre sum ;
32
33 pre sum ← {} ;
34 for (each s i n successors (node))
35 pre sum + = traverse efg (s , ns . post sum) ;
36 i f ns . post summary conta ins a lock AND pre summary conta ins an unlock
37 r e p o r t lock / unlock p a i r i n g between the lock (s) i n ns . post summary and the unlock (s) i n

pre sum ;
38 update ns . pre sum wi th pre sum ;
39 return ns . pre sum ;
40 end

Listing 1. Pairing Algorithm

The pairing algorithm (Listing 1) starts by visiting the matching pair graph MPGo

in a bottom-up manner (lines 2-13). For each function in MPGo, the algorithm re-
trieves the EFG (line 4), gets the entry/exit nodes (lines 5-6), and passes the entry node
and its empty node summary to the function traverse efg to start the EFG traversal
in a depth-first manner (line 8). Upon the return of traverse efg (lines 9-12), the func-
tion summary for function is computed as follows: the entry summary is the same as
the entry summary (pre sum) for the EFG entry node (line 9), and the exit summary is
equivalent to the (post sum) of the EFG exit node (line 10). This function summary is
then stored in a global structure (summaries) for later use (line 11). Lines (12-13) check
whether the current function is one of the roots in MPGo and the exit summary of its
summary contains a lock. If so, it reports the lock(s) in exit summary as unpaired locks.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

39:12 A. Tamrawi et al.

Lines (17-20) of function traverse efg check whether the currently visited node
(node) contains a lock function call, if that is the case: the algorithm checks if there
is a potential deadlock by checking if the post sum of the previously visited node con-
tains a lock. If so, it reports a potential deadlock between the lock in ns.post sum and
the current lock at node. Finally, it updates the current node summary with the cur-
rent lock. In lines (21-26), the algorithm checks if the current node (node) is a call-site
for a function within MPGo, then if the entry summary of the called function contains
a lock and the post sum of previously visited node contains a lock (line 23): the algo-
rithm reports a potential deadlock between the lock(s) in ns.post sum and the lock(s)
in sum.entry summary (line 24). At lines 25-26, the current node summary is updated
with the summary of the called function. In case of the current visited node is an un-
lock function call (lines 27-28), then the algorithm updates the current node summary
with the current unlock.

In our pairing algorithm, traverse efg can visit an EFG node multiple times if new
information that affects the locking/unlocking analysis is present. At lines (30-31),
the algorithm checks whether the current node is visited before and it stops traversing
through this node, if the current node summary is the same as the one when previously
visited. In other words, if no new information is presented at this node, then no need
to re-visit the node. Otherwise, the traversal continues to line 33. Lines (33-35) iterate
through the successors of the current node and passes each successor to traverse efg
to recursively visit subsequent nodes. Upon the return of traverse efg, the pre sum is
updated with the entry summary for each of its successors. Once iterating through the
successors is completed (lines 36-37), the algorithm checks whether the post sum of
the current node contains a lock and the pre sum of the successors contains an unlock,
if that is the case: the algorithm reports locks/unlocks pairing between the lock(s) in
ns.post sum and the unlock(s) in pre sum of successors. Then at line 38, the algorithm
updates the pre sum of the current node’s with the pre sum of successors. Finally, the
updated pre sum for the current node is returned (line 39).

3.5. Step 5: Feasibility Check for Potential-Error Paths
A path on which a lock is not paired with an unlock may or may not be an error depend-
ing on whether the path is feasible or not. This also applies to a path that has a lock
paired with another lock. Thus, checking feasibility of such paths is required to avoid
false positives. Unlike existing approaches to static lock/unlock pairing, L-SAP does
not encode any information about path feasibility throughout the lock/unlock pairing
algorithm. Instead, it only checks the feasibility of potential-error paths. These are the
paths that have a lock that is : (1) not paired with any unlocks, or (2) paired with a
lock with the same signature (potential deadlock). L-SAP applies feasibility analysis to
EFG paths instead of CFG paths. This is because the EFG contains fewer paths/con-
ditions than its corresponding CFG. Currently, L-SAP can perform intra-procedural
feasibility analysis as follows:

Let the lock Lp in function A be unpaired lock, and p be the path that has Lp. Then,
if p is an intra-procedural path, L-SAP will check the feasibility of the EFG path p. If
p is an inter-procedural path (i.e., across functions), then L-SAP will only check the
feasibility of the sub-path of p contained within A. We call the intra-procedural EFG
path that will be checked for feasibility, a potential-error path.

To check the feasibility of a potential-error path, L-SAP traverses this path and
calculates a path condition which is the conjunction (AND) (∧) of the branch conditions
along that path. These are the conditions that must be true for the path to be executed.
Then, it translates the path condition to Boolean expressions by assigning a Boolean
variable to each condition. To reveal the branch condition correlations in the Boolean
expressions, L-SAP uses textual equality. For example, let (error ∧ !error) be a path

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

L-SAP: Scalable and Accurate Lock/Unlock Pairing for the Linux Kernel 39:13

condition for a problematic path. Then, by assigning each condition a boolean variable,
the corresponding boolean expression will be: c1 ∧ c2 where (c1 = error) and (c2 =
!error). Based on the textual equality between error in c1 and c2, L-SAP can infer the
correlation: c2 =!c1. Thus, the resulting boolean expression should be: c1∧!c1. This final
expression’s satisfiability will be tested to determine the problematic path’s feasibility.

Finally, L-SAP uses BDDs [Whaley 2010] to check the satisfiability of the resultant
boolean expressions for each potential-error path to determine its feasibility. In future,
we hope to advance our feasibility analysis to cover inter-procedural potential-error
paths and to infer more accurate branch correlations via techniques such as: global
value numbering [Click 1995] or constant propagation [Wegman and Zadeck 1991].

4. IMPLEMENTATION AND EXPERIMENTAL RESULTS
In this section, we discuss lock/unlock pairing analysis results obtained by evaluating
L-SAP on three recent versions of the Linux kernel. These three versions together have
37 million lines of complex multi-threaded C code. To evaluate L-SAP, we have con-
sidered three evaluation criteria: (1) competitiveness against the currently top-rated
Linux kernel device driver verification tool (LDV) [LDV 2015], (2) analysis speed, and
(3) pairing accuracy. Our experiments were done on a 3.0 GHZ Intel Core2 Duo proces-
sor machine with 128 GB memory, running Ubuntu Linux 14.

4.1. Implementation and Experimental Setup
We implemented L-SAP using Atlas from EnSoft [Ensoft 2002]. Atlas is a platform
to develop program comprehension, analysis, and validation tools. Both Atlas platform
and L-SAP are Eclipse plugins. Atlas first compiles the given source code and creates a
graph database of relationships between program artifacts. Then, one can interactively
comprehend and/or analyze the source code using Atlas’s interpreter or by writing Java
programs to analyze the source code using Atlas APIs. For more information about
Atlas, refer to [Deering et al. 2014] and EnSoft’s website [Ensoft 2002]. Atlas is freely
available for academic use.
L-SAP leverages the Atlas’s query capabilities for lock/unlock mapping (Section 3.1)

and generating the matching pair graph (Section 3.2). It also uses Atlas APIs to im-
plement: the algorithm to transform a CFG into an EFG (Section 3.3), the lock/unlock
pairing algorithm (Listing 1), and the feasibility analysis (Section 3.5). L-SAP is pub-
licly available for download [Tamrawi 2015].

We used L-SAP to analyze three recent versions (3.17-rc1, 3.18-rc1 and 3.19-rc1) of
the Linux kernel along with the device drivers. We enabled all possible x86 build con-
figurations via allmodconfig flag to incorporate all source files. In Table II, columns
LOC, Functions, Build, Nodes, Edges, and Time show for each kernel version the num-
bers for lines of code, functions, build time, nodes and edges in the graph database
pre-computed by Atlas and the time for this pre-computation.

Table II. Linux Kernel Artifacts

Kernel LOC Functions Build Index (Graph Database)
Nodes Edges Time

3.17-rc1 12.3 M 571,012 15m 12s 43.1 M 133.4 M 2h 14m
3.18-rc1 12.3 M 571,498 15m 48s 43.2 M 133.6 M 2h 5m
3.19-rc1 12.4 M 577,650 16m 29s 43.4 M 134.2 M 2h 15m

We compare L-SAP against the Linux Driver Verification tool (LDV) [LDV 2015]
which is the current top-rated tool in the software verification competition (SV-
COMP) [Beyer 2012; Beyer 2013; Beyer 2014] in the Linux device drivers verification
category. The LDV’s developers were generous to provide us with the LDV’s results on
the same versions of the Linux kernel and the same build configurations we have used.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

39:14 A. Tamrawi et al.

4.2. Experimental Results
4.2.1. Lock/Unlock Pairing Analysis. L-SAP is applied to pair the locks/unlocks for the

mutex and spin synchronization mechanisms in the Linux kernel (Table I).
Table III shows the comparison of L-SAP and LDV. Column Type identifies the syn-

chronization mechanism. Columns Sigs, Locks and Unlocks show the numbers for sig-
natures and lock/unlock call-sites. For instance, in kernel 3.18-rc1, for the spin syn-
chronization, the numbers for signatures, lock call-sites, and unlock call-sites are re-
spectively 2180, 14265, and 16917. Note that a lock may be paired with multiple unlocks
on different execution paths.

The Paired column shows the number of paired locks, i.e., L-SAP can successfully
pair a lock with unlock(s) with the same signature on all execution paths. For spin
signatures, L-SAP can accurately pair 99.4% of the locks in kernel 3.17-rc1 and 99.5%
of the locks for the other two versions. For mutex signatures, L-SAP can accurately pair:
99.1% of the locks in 3.17-rc1, 98.8% in 3.18-rc1, and 99.3% in 3.19-rc1. For spin lock,
the percentages of locks paired by LDV are: 63.2%, 64.2%, and 63.9%. For mutex lock,
the percentages of locks paired by LDV are: 69.7%, 68.8%, and 69.2%. After manually
examining Paired cases for imprecision assessment, we found that L-SAP does not
produce any false negatives and can correctly pair all the cases in Paired column.

Column P-Unpaired shows the number unpaired locks reported by L-SAP. These
are the cases in which potential-error paths are found to be feasible by L-SAP. After
manually examining P-Unpaired cases, the cases confirmed as actual bugs are reported
in Column A-Unpaired. We have reported these bugs and they have been accepted by
the Linux community.

LDV fails to handle an average of 34% of the locks: 3% due to false positives and 31%
due to scalability (LDV crashes). By contrast, L-SAP does not have scalability issue, it
correctly handles all but (0.5%) of spin locks and (0.9%) of mutex locks. We also checked
that L-SAP subsumes all correct parings done by LDV, and every lock unpaired by L-
SAP is either unpaired or not handled by LDV. Thus, L-SAP is strictly and significantly
more accurate than LDV.

Column Analysis Time denotes the total time needed for each analysis. L-SAP takes
(∼ 53) minutes for spin locks, and (12 to 15) minutes for mutex locks. Overall, L-SAP
takes three hours for completing the analysis of three versions of the Linux kernel
while LDV takes 156 hours.

4.2.2. Bug Case Study. Listing 2 shows an actual bug found by L-SAP. For brevity, we
show only the relevant code. In function megasas reset fusion, there is a lock at line
4 and its corresponding unlock is at line 10. The bug occurs when the function exits at
line 7. In this case, the locked object instance->reset mutex is never unlocked.

1 / / Source f i l e : d r i v e r s / scs i / megaraid / megara id sas fus ion . c
2 i n t megasas reset fus ion (. . .)
3 {
4 /∗ . . . ∗ /
5 mutex lock (& instance−>reset mutex) ;
6 i f (instance−>adprecovery == MEGASAS HW CRITICAL ERROR){
7 /∗ . . . ∗ /
8 return FAILED ;
9 }

10 /∗ . . . ∗ /
11 mutex unlock (& instance−>reset mutex) ;
12 return r e t v a l ;
13 }

Listing 2. Bug in (v3.17-rc1): Unpaired Lock (Line 4)

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

L-SAP: Scalable and Accurate Lock/Unlock Pairing for the Linux Kernel 39:15

Ta
bl

e
III

.m
u
t
e
x

an
d
s
p
i
n

lo
ck

/u
nl

oc
k

pa
iri

ng
re

su
lts

on
Li

nu
x

ke
rn

el
ve

rs
io

ns
(3

.1
7-

rc
1,

3.
18

-r
c1

an
d

3.
19

-r
c1

)

K
er

ne
l

T
yp

e
Si

gs
L

oc
ks

U
nl

oc
ks

L
-S

A
P

L
D

V
Pa

ir
ed

P
-U

np
ai

re
d

A
-U

np
ai

re
d

A
na

ly
si

s
T

im
e

Pa
ir

ed
P

-U
np

ai
re

d
A

-U
np

ai
re

d
A

na
ly

si
s

T
im

e

3.
17

-r
c1

s
p
i
n

2,
16

5
14

,1
80

16
,8

17
14

,0
97

(9
9.

4%
)

83
1

53
m

20
s

8,
96

2
(6

3.
2%

)
30

0
26

h
16

m
m
u
t
e
x

1,
68

7
7,

88
7

9,
49

7
7,

81
3

(9
9.

1%
)

74
1

14
m

55
s

5,
49

4
(6

9.
7%

)
40

0
26

h
31

m

3.
18

-r
c1

s
p
i
n

2,
18

0
14

,2
65

16
,9

17
14

,1
88

(9
9.

5%
)

77
3

53
m

57
s

9,
15

2
(6

4.
2%

)
32

0
30

h
22

m
m
u
t
e
x

1,
66

4
7,

89
3

9,
55

0
7,

80
1

(9
8.

8%
)

92
0

12
m

59
s

5,
42

7
(6

8.
8%

)
48

0
29

h
40

m

3.
19

-r
c1

s
p
i
n

2,
20

6
14

,3
93

17
,0

26
14

,3
14

(9
9.

5%
)

79
2

53
m

25
s

9,
20

4
(6

3.
9%

)
31

0
31

h
55

m
m
u
t
e
x

1,
70

0
7,

99
1

9,
65

3
7,

93
8

(9
9.

3%
)

53
0

15
m

29
s

5,
52

7
(6

9.
2%

)
44

0
29

h
12

m

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

39:16 A. Tamrawi et al.

The seven bug cases reported in Column A-Unpaired are similar to the case listed
here. In earlier versions of the Linux kernel, we have found and reported more complex
bugs with inter-procedural paths. Some of these complex bugs persisted over several
years through successive versions of the kernel. A complete listing of the seven bug
cases reported by L-SAP in Column A-Unpaired and other cases not reported in this
paper is in [Tamrawi 2015].

4.2.3. Limitations of Our Pairing Analysis. According to Table III, the percentage of falsely
reported unpaired locks and deadlocks is small: (0.5%) for spin locks and (0.9%) for
mutex locks. This inadequacy of our analysis can be attributed to the following limita-
tions:

— Inability to process function pointers. L-SAP cannot track the inter-procedural cases
in which a function is called via a function pointer.

— Not being able to recognize infeasibility of paths in some cases due to: (a) the lack
of inter-procedural feasibility analysis, and (b) the use of textual equality is not ad-
vanced enough to find complex correlations between branch conditions.

— The use of signature-based analysis in lock/unlock mapping (Section 3.1) can lead to
inaccuracies. We found this to be rare (< 0.2% of the lock instances).

Listing 3 presents an example that illustrates an analysis roadblock not currently
handled by L-SAP. The difficulty is that hash locks is a pointer to an array of spin
objects all with the same type-based signature. In this case, L-SAP falsely reports a
deadlock between the lock at line 4 and the lock at line 6 because the spin objects at
lines 4 and 6 are not distinguished by the signature-based analysis. We have not found
a good way to address this roadblock. Even with generic pointer analyses, it is still
challenging to distinguish between different elements of an array.

1 / / Source f i l e : d r i v e r s /md/ ra id5 . c
2 s t a t i c i n l i n e void l o c k a l l d e v i c e h a s h l o c k s i r q (. . .)
3 {
4 /∗ . . . ∗ /
5 s p i n l o c k (conf−>hash locks) ;
6 for (i = 1 ; i < NR STRIPE HASH LOCKS ; i ++)
7 s p i n l o c k (conf−>hash locks + i) ;
8 /∗ . . . ∗ /
9 }

Listing 3. Signature Problem (v3.19-rc1)

4.2.4. CFG versus EFG. Table IV presents the average and maximum number of nodes
in a function before and after CFG pruning (EFG). Our CFG pruning significantly
reduces both average and maximum number of nodes, which is essential for the scala-
bility of L-SAP.

Table IV. Nodes count before/after CFG pruning

Kernel Before Pruning (CFG) After Pruning (EFG)
Average Maximum Average Maximum

3.17-rc1 34 747 7 105
3.18-rc1 34 935 7 119
3.19-rc1 34 935 7 105

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

L-SAP: Scalable and Accurate Lock/Unlock Pairing for the Linux Kernel 39:17

5. RELATED WORK
In this section, we survey previous work related to static lock/unlock pairing and CFG
pruning techniques.

5.1. Data Races and Deadlocks Detection
Detecting data races and deadlocks is a well-known challenging problem [Engler and
Ashcraft 2003]. Although not directly related, there are many papers on dynamic anal-
yses to detect race conditions and deadlocks [Savage et al. 1997; Cheng et al. 1998;
Choi et al. 2002; Xie et al. 2013; Dinning and Schonberg 1990; Mellor-Crummey 1991;
Perkovic and Keleher 1996; Marino et al. 2009; Prvulovic and Torrellas 2003; Huang
et al. 2014; Hsiao et al. 2014]. However, running a program to examine all possible be-
haviors is prohibitively expensive and time-consuming. Thus, automated static analy-
ses are crucial to complement testing and dynamic analyses.

Relevant static approaches can be divided into: model checking methods that em-
phasize precision, and static program analysis methods that emphasize scalability.

5.1.1. Model Checking. Software model checking and its applicability are surveyed
in [Jhala and Majumdar 2009]. Classical techniques model systems as labeled transi-
tion systems (LTS) and verify properties in temporal logic (TL). Software model check-
ing requires significant effort to model the system (that involves writing an abstract
specification for the system in a specific language that the model checker understands).
Model checking an entire system such as the Linux kernel (> 12 MLOC) is a monu-
mental task. This is clear from the lock/unlock pairing timing results (Table III) for
LDV [LDV 2015] which uses Blast [Beyer et al. 2007] model checker. Other model
checkers such as [Henzinger et al. 2004; Qadeer and Wu 2004; Chandra et al. 1999]
have been applied to find and prove absence of data races. Abstract model checkers
are designed to scale by mapping program states to an abstract domain [Cousot and
Cousot 1977]. However, these checkers have limited applicability to special-purpose
programs [Henzinger et al. 2014; Ivančić et al. 2008].

5.1.2. Static Analyzers. Warlock [Sterling 1993], Extended Static Checking [Detlefs
et al. 1998] (ESC) and ESC/Java [Leino et al. 2000] are static race detection approaches
for C, Modula-3 and Java respectively. These approaches utilize a theorem prover to
find race conditions. However, these approaches require annotations to inject knowl-
edge into the analysis and to reduce the number of false positives. Thus, applying these
approaches to large code bases such as the Linux kernel would require time-consuming
and tedious annotation effort and at the end annotations can be erroneous and check-
ing their correctness would be a daunting task for millions of lines of complex code.

Saturn [Dillig et al. 2008] is considered a scalable static analysis engine that is both
sound and complete with respect to the user-provided analysis script (abstraction),
written in its Calypso language. ESP [Das et al. 2002] is a path-sensitive analysis
tool that scales to large programs by merging superfluous branches leading to the
same analysis state. However, the lock analysis script bundled with Saturn and ESP
is neither sound nor complete, most notably because of its lack of global alias analysis
and incomplete function summaries for inter-procedural analyses.

RacerX [Engler and Ashcraft 2003] and Relay [Voung et al. 2007] are static lock-
set based analyses for C code that scale to large real world programs including the
Linux kernel. RacerX [Engler and Ashcraft 2003] uses a top-down approach to com-
pute absolute locksets (the set of locks held by the program) at each program point.
RacerX is able to run on an older version of the Linux kernel (v 2.5.62 - 1.8 MLOC)
in tens of minutes. In contrast, Relay [Voung et al. 2007] uses a bottom-up approach
to compute relative locksets, which describes the changes in the locks being held rela-

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

39:18 A. Tamrawi et al.

tive to the function entry point, at each program point. Relay was able to analyze an
older version of the Linux kernel (v 2.6.15 - 4.5 MLOC) in 72 hours. RacerX reports
that in order to scale, the analysis discards valuable information, such as truncat-
ing the function summaries. Consequently, discarding possible races. Moreover, both
approaches (RacerX and Relay) require significant post-processing of large volume of
warnings/false positives to produce evidence for manual validation. Unlike these ap-
proaches, L-SAP produces evidence which includes the matching pair graph (MPG) of
the minimum set of functions for inter-procedural analysis and the call chains between
them, the event flow graphs and a compact summary for each of the functions in MPG.
This evidence makes it easy for the human analyst to cross-check the results produced
by L-SAP, or to complete the analysis manually for the cases where L-SAP reports
potential-error paths but cannot provide conclusive results. A complete listing of all
the pairing information (graph evidence) produced by L-SAP is in [Tamrawi 2015].

Locksmith [Pratikakis et al. 2006; Pratikakis et al. 2011] is a sound static race de-
tector for C. It uses a constraint based technique to infer the correlation of memory lo-
cations to the locks that protect them. If a shared location is not consistently protected
by the same lock, a race is reported. Locksmith analyzes source code fast. However, it
finds superficial errors and it produces a number of false alarms, which is about 90%
on the device drivers of an older version of the Linux kernel and about 98% on some
POSIX applications.

Recently, Cho et al. [Cho et al. 2013] proposed a lock/unlock pairing mechanism that
combines an inter-procedural analysis and dynamic checking for better detection of
races and deadlocks. Their analysis uses dynamic checking to compensate for imper-
fections in their static analysis. However, the proposed dynamic analysis introduces
an overhead for the overall analysis. Moreover, the lock/unlock pairing mechanism has
been only applied to code orders of magnitude smaller than the Linux kernel.

To the best of our knowledge, we are not aware of any scalable and accurate program
analysis tool that can verify the lock/unlock pairing property for the recent versions of
the Linux kernel.

5.2. CFG Pruning Techniques
Event flow graphs are inspired by the work done by Neginhal et al. [Neginhal and
Kothari 2006]. They developed the C-Vision tool that introduced the notion of event
view. C-Vision reductions are based on user-input to determine irrelevant nodes/edges
to be removed. There is no algorithmic notion to compute the compact CFG. However,
in this paper, we provide a linear-time algorithm to compute the event flow graph with
regard to the given events of interest to lock/unlock pairing analysis. Thus, leading to
significantly-improved scalability.

CFG pruning techniques have been proposed in [Ramanathan et al. 2007; Cho et al.
2013] to overcome the computational complexity of exploring all paths. EFGs can com-
plement their techniques as the EFG transformation achieves further reduction in the
graph size. Other pruning techniques have been introduced by Choi et al. [Choi et al.
1991] and Ramalingam [Ramalingam 1997] to optimize data flow graphs. While there
is some commonality, those techniques are not well-suited for our lock/unlock pairing
analysis; the equivalence relation -defined by [Choi et al. 1991; Ramalingam 1997]- is
defined with regard to data flow analysis problems. This equivalence relation is dif-
ferent from the one defined by EFG. Path-sensitive analysis requires preserving the
unique event traces and that will not be achieved by the cited techniques.

6. EXTENSIBILITY AND FUTURE WORK
We plan to improve our analysis to overcome the limitations outlined in Section 4.2.3.
We also plan to extend and reformulate our lock/unlock pairing algorithm to address

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

L-SAP: Scalable and Accurate Lock/Unlock Pairing for the Linux Kernel 39:19

many other problems such as: pairing of memory allocation and deallocation to de-
tect memory leaks, or pairing of sensitive sources and malicious sinks to detect mal-
ware [Holland et al. 2015]. The underlying accuracy and scalability challenges for
these other pairing problems are essentially the same as the lock/unlock pairing. How-
ever, the actual analysis difficulties can vary. Our ongoing study of actual difficulties
for pairing memory allocation and deallocation calls in the Linux kernel indicates that
the problem can be addressed by further enhancements of the algorithmic innovations
reported in this paper. Thus, our future work will generalize the pairing algorithm to
address a broad class of pairing problems.

7. CONCLUSIONS
L-SAP is a static tool that uses a novel scalable and accurate lock/unlock pairing anal-
ysis. It uses algorithmic innovations based on a study of observed difficulties for lock-
/unlock pairing in the Linux kernel. We evaluated L-SAP on three recent versions of
the Linux kernel along with the device drivers. The evaluation results show major ac-
curacy and scalability improvements over the currently top-rated Linux kernel device
driver verification tool (LDV) [LDV 2015]. The analysis using L-SAP has led to the
discovery of seven synchronization bugs. For each pairing of a lock with corresponding
unlocks with the same signature, L-SAP produces evidence which includes the match-
ing pair graph (MPG) of the minimum set of functions for inter-procedural analysis
and the call chains between them, the event flow graphs and a compact summary for
each of the functions in MPG. This evidence makes it easy for the human analyst to
cross-check the results produced by L-SAP, or to complete the analysis manually for
the cases where L-SAP reports potential-error paths but cannot provide conclusive
results.

ACKNOWLEDGMENTS

The authors would like to thank thank EnSoft [Ensoft 2002] for providing/assisting us with Atlas.

REFERENCES
Dirk Beyer. 2012. Competition on software verification. In Tools and Algorithms for the Construction and

Analysis of Systems. Springer, 504–524.
Dirk Beyer. 2013. Second competition on software verification. In Tools and Algorithms for the Construction

and Analysis of Systems. Springer, 594–609.
Dirk Beyer. 2014. Status report on software verification. In Tools and Algorithms for the Construction and

Analysis of Systems. Springer, 373–388.
Dirk Beyer, Thomas A Henzinger, Ranjit Jhala, and Rupak Majumdar. 2007. The software model checker

Blast. International Journal on Software Tools for Technology Transfer 9, 5-6 (2007), 505–525.
Dirk Beyer and Alexander K Petrenko. 2012. Linux driver verification. In Leveraging Applications of Formal

Methods, Verification and Validation. Applications and Case Studies. Springer, 1–6.
Rastislav Bodik, Rajiv Gupta, and Mary Lou Soffa. 1997. Refining data flow information using infeasible

paths. In Software EngineeringESEC/FSE’97. Springer, 361–377.
Satish Chandra, Brad Richards, and James R Larus. 1999. Teapot: A domain-specific language for writing

cache coherence protocols. Software Engineering, IEEE Transactions on 25, 3 (1999), 317–333.
Guang-Ien Cheng, Mingdong Feng, Charles E Leiserson, Keith H Randall, and Andrew F Stark. 1998. De-

tecting data races in Cilk programs that use locks. In Proceedings of the tenth annual ACM symposium
on Parallel algorithms and architectures. ACM, 298–309.

Hyoun Kyu Cho, Terence Kelly, Yin Wang, Stéphane Lafortune, Hongwei Liao, and Scott Mahlke. 2013.
Practical lock/unlock pairing for concurrent programs. In Code Generation and Optimization (CGO).

Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. 1991. Automatic construction of sparse data flow evalu-
ation graphs. In Proceedings of the 18th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages. ACM, 55–66.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

39:20 A. Tamrawi et al.

Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan, Vivek Sarkar, and Manu Sridharan.
2002. Efficient and precise datarace detection for multithreaded object-oriented programs. In ACM SIG-
PLAN Notices, Vol. 37. ACM, 258–269.

A. Church. 1936. A note on the Entscheidungsproblem. J. Symb. Log. 1, 1 (1936), 40–41.
Cliff Click. 1995. Global code motion/global value numbering. In ACM SIGPLAN Notices, Vol. 30. ACM,

246–257.
Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified lattice model for static analysis

of programs by construction or approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages. ACM, 238–252.

Manuvir Das, Sorin Lerner, and Mark Seigle. 2002. ESP: Path-sensitive program verification in polynomial
time. In ACM SIGPLAN Notices, Vol. 37. ACM, 57–68.

Tom Deering, Suresh Kothari, Jeremias Sauceda, and Jon Mathews. 2014. Atlas: a new way to explore soft-
ware, build analysis tools. In Companion Proceedings of the 36th International Conference on Software
Engineering. ACM, 588–591.

David L Detlefs, K Rustan M Leino, Greg Nelson, and James B Saxe. 1998. Extended static checking. (1998).
Isil Dillig, Thomas Dillig, and Alex Aiken. 2008. Sound, complete and scalable path-sensitive analysis. In

ACM SIGPLAN Notices, Vol. 43. ACM, 270–280.
Anne Dinning and Edith Schonberg. 1990. An empirical comparison of monitoring algorithms for access

anomaly detection. Vol. 25. ACM.
Dawson Engler and Ken Ashcraft. 2003. RacerX: effective, static detection of race conditions and deadlocks.

In ACM SIGOPS Operating Systems Review, Vol. 37. ACM, 237–252.
Ensoft. 2002. EnSoft Corp. (2002). Retrieved September 30, 2015 from http://www.ensoftcorp.com
Patrice Godefroid and Shuvendu K Lahiri. 2012. From Program to Logic: An Introduction. In Tools for

Practical Software Verification. Springer, 31–44.
Kang Gui and Suraj Kothari. 2010. A 2-phase method for validation of matching pair property with case

studies of operating systems. In Software Reliability Engineering (ISSRE), 2010 IEEE 21st Interna-
tional Symposium on. IEEE, 151–160.

Thomas A Henzinger, Ranjit Jhala, and Rupak Majumdar. 2004. Race checking by context inference. In
ACM SIGPLAN Notices, Vol. 39. ACM, 1–13.

Thomas A Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L McMillan. 2014. Abstractions from
proofs. ACM SIGPLAN Notices 49, 4 (2014), 79–91.

Benjamin Holland, Tom Deering, Suresh Kothari, Jon Mathews, and Nikhil Ranade. 2015. Security Toolbox
for Detecting Novel and Sophisticated Android Malware. ICSE (2015).

Chun-Hung Hsiao, Jie Yu, Satish Narayanasamy, Ziyun Kong, Cristiano L Pereira, Gilles A Pokam, Peter M
Chen, and Jason Flinn. 2014. Race detection for event-driven mobile applications. In ACM SIGPLAN
Notices, Vol. 49. ACM, 326–336.

Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. 2014. Maximal sound predictive race detection with
control flow abstraction. ACM SIGPLAN Notices 49, 6 (2014), 337–348.

Franjo Ivančić, Zijiang Yang, Malay K Ganai, Aarti Gupta, and Pranav Ashar. 2008. Efficient SAT-based
bounded model checking for software verification. Theoretical Computer Science 404, 3 (2008), 256–274.

Ranjit Jhala and Rupak Majumdar. 2009. Software model checking. ACM Computing Surveys (CSUR) 41, 4
(2009), 21.

LDV. 2015. Linux Driver Verification (LDV) tool. (2015). Retrieved September 30, 2015 from http://
linuxtesting.org/project/ldv

K Rustan M Leino, Greg Nelson, and James B Saxe. 2000. ESC/Java user’s manual. ESC 2000 (2000), 002.
Ondrej Lhoták. 2006. Program analysis using binary decision diagrams. Ph.D. Dissertation. McGill Univer-

sity.
Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. 2009. LiteRace: effective sampling for

lightweight data-race detection. In ACM Sigplan Notices, Vol. 44. ACM, 134–143.
John Mellor-Crummey. 1991. On-the-fly detection of data races for programs with nested fork-join paral-

lelism. In Proceedings of the 1991 ACM/IEEE conference on Supercomputing. ACM, 24–33.
Armand Navabi, Nicholas Kidd, and Suresh Jagannathan. 2010. Path-Sensitive Analysis Using Edge

Strings. (2010).
Srinivas Neginhal and Suraj Kothari. 2006. Event Views and Graph Reductions for Understanding System

Level C Code. In ICSM.
Minh Ngoc Ngo and Hee Beng Kuan Tan. 2007. Detecting large number of infeasible paths through recog-

nizing their patterns. In Proceedings of the the 6th joint meeting of the European software engineering

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

http://www.ensoftcorp.com
http://linuxtesting.org/project/ldv
http://linuxtesting.org/project/ldv

L-SAP: Scalable and Accurate Lock/Unlock Pairing for the Linux Kernel 39:21

conference and the ACM SIGSOFT symposium on The foundations of software engineering. ACM, 215–
224.

Aditya V Nori, Sriram K Rajamani, SaiDeep Tetali, and Aditya V Thakur. 2009. The Yogi Project: Software
property checking via static analysis and testing. In Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 178–181.

Dejan Perkovic and Peter J Keleher. 1996. Online data-race detection via coherency guarantees. In OSDI,
Vol. 96. 47–57.

Polyvios Pratikakis, Jeffrey S Foster, and Michael Hicks. 2006. LOCKSMITH: context-sensitive correlation
analysis for race detection. ACM SIGPLAN Notices 41, 6 (2006), 320–331.

Polyvios Pratikakis, Jeffrey S Foster, and Michael Hicks. 2011. LOCKSMITH: Practical static race detection
for C. ACM Transactions on Programming Languages and Systems (TOPLAS) 33, 1 (2011), 3.

Milos Prvulovic and Josep Torrellas. 2003. ReEnact: Using thread-level speculation mechanisms to debug
data races in multithreaded codes. In Computer Architecture, 2003. Proceedings. 30th Annual Interna-
tional Symposium on. IEEE, 110–121.

Shaz Qadeer and Dinghao Wu. 2004. KISS: keep it simple and sequential. In ACM SIGPLAN Notices, Vol. 39.
ACM, 14–24.

G Ramalingam. 1997. On sparse evaluation representations. Springer.
Murali Ramanathan, Ananth Grama, and Suresh Jagannathan. 2007. Path-sensitive inference of function

precedence protocols. In ICSE.
Henry Gordon Rice. 1953. Classes of recursively enumerable sets and their decision problems. Trans. Amer.

Math. Soc. 74, 2 (1953), 358–366.
Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson. 1997. Eraser:

A dynamic data race detector for multithreaded programs. ACM Transactions on Computer Systems
(TOCS) 15, 4 (1997), 391–411.

Nicholas Sterling. 1993. WARLOCK-A Static Data Race Analysis Tool.. In USENIx Winter. 97–106.
Ahmed Tamrawi. 2015. L-SAP. (2015). Retrieved September 30, 2015 from http://home.engineering.iastate.

edu/∼atamrawi/l-sap
Ahmed Tamrawi and Suresh Kothari. 2014. Event-Flow Graphs for Efficient Path-Sensitive Analyses. arXiv

preprint arXiv:1404.1279 (2014).
Robert Tarjan. 1972. Depth-first search and linear graph algorithms. SIAM journal on computing 1, 2 (1972),

146–160.
Alan Mathison Turing. 1936. On computable numbers, with an application to the Entscheidungsproblem. J.

of Math 58, 345-363 (1936), 5.
Vesal Vojdani and Varmo Vene. 2009. Goblint: Path-sensitive data race analysis. In Annales Univ. Sci. Bu-

dapest., Sect. Comp, Vol. 30. 141–155.
Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. 2007. RELAY: static race detection on millions of lines of

code. In Proceedings of the the 6th joint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software engineering. ACM, 205–214.

Mark N Wegman and F Kenneth Zadeck. 1991. Constant propagation with conditional branches. ACM
Transactions on Programming Languages and Systems (TOPLAS) 13, 2 (1991), 181–210.

John Whaley. 2010. JavaBDD-Java Binary Decision Diagram Library. (2010).
Xinwei Xie, Jingling Xue, and Jie Zhang. 2013. Acculock: Accurate and efficient detection of data races.

Software: Practice and Experience 43, 5 (2013), 543–576.

Received February 2007; revised March 2009; accepted June 2009

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, Article 39, Pub. date: March 2010.

http://home.engineering.iastate.edu/~atamrawi/l-sap
http://home.engineering.iastate.edu/~atamrawi/l-sap

	Introduction
	Major Challenges and Motivation
	Path-Explosion
	Inter-procedural Analysis
	Pointers
	Feasibility Analysis

	L-SAP Approach
	Step 1: Lock/Unlock Mapping
	Step 2: Matching Pair Graph
	Step 3: Event Flow Graph
	Step 4: Pairing Algorithm
	Compact Function Summaries
	Pairing Algorithm

	Step 5: Feasibility Check for Potential-Error Paths

	Implementation and Experimental Results
	Implementation and Experimental Setup
	Experimental Results
	Lock/Unlock Pairing Analysis
	Bug Case Study
	Limitations of Our Pairing Analysis
	CFG versus EFG

	Related Work
	Data Races and Deadlocks Detection
	Model Checking
	Static Analyzers

	CFG Pruning Techniques

	Extensibility and Future Work
	Conclusions

