
SYMake: A Build Code Analysis Tool for Makefiles

Ahmed Tamrawi, Hoan Anh Nguyen, Hung Viet Nguyen, Tien N. Nguyen
Iowa State University

{atamrawi,hoan,hung,tien}@iastate.edu

Abstract—Software building is an important task during
software development. However, program analysis supports for
build code are still limited, especially for build code written
in a dynamic language such as Make. We propose SYMake, a
novel program analysis tool for build code in Makefiles that is
capable of detecting several types of code smells and errors and
providing automatic supports in renaming of variables, targets,
and extracting them into new ones. SYMake also provides the
analysis on defined rules, targets, prerequisites, and associated
information to help developers to better understand build code
in a Makefile and its included ones.

Keywords-Make; Symbolic Evaluation; Build Maintenance

I. INTRODUCTION

A. Software Building with Make

In software development, software building is a crucial
process to produce the deliverables, executable code, and/or
documentations from source code and associated libraries.
A building process is specified in build files which contain
a set of rules that direct a build tool on how to derive the
target programs from their corresponding sources. Among
several build tools, Make [1], a build tool supporting build
code written in make dynamic language, is very widely used.

Figure 1 shows a Makefile that specifies the rules to
build the main, sender and receiver programs from the cor-
responding code in either Java or C, and data files. Make
processes a Makefile in two phases. In the first phase, called
evaluation phase, it proceeds with the evaluation of all
statements, variables, and rules in the Makefile based on
the input command, and the input and running environment,
and then resolves them into a set of concrete build rules.
The evaluation phase enables users to specify in a Makefile
multiple building configurations for different environments
or inputs. For example, Figure 2 displays the result of the
evaluation phase when a command ’make -f myMakefile’ is
entered and the running machine has installed Java. Each
rule typically contains a set of targets, a set of prerequisites,
and a recipe, which is a set of OS Shell commands to
build the targets from the prerequisites. From that result,
Make constructs a concrete dependency graph (CDG), in
which nodes are targets, prerequisites, and recipes, and edges
connect prerequisites to a recipe, or a recipe to targets. In the
second phase, called execution phase, based on the CDG,
Make executes the Shell commands to produce the target
files from their prerequisite files, if the modifying time of a
prerequisite file is later than those of target files.

Let us explain the content of myMakefile and how Make’s
evaluation phase is performed on it. Line 1 in Figure 1
aims to check if the current machine has installed Java.
The if statement at lines 3-11 is used to set the respective
extensions for output files and source files, and the build
commands for two languages, Java and C. Lines 13-18
define the variables, which are used to specify the names of
target files and those of corresponding prerequisite files for
both sender and receiver sides. Line 20 defines the target
install with its prerequisites being defined via the variable
$executables. The result is line 1 of Figure 2. That variable in
turn defines a target for the rule at lines 28-29 whose results
are lines 4 and 7 in Figure 2. The foreach loop (line 26) is
used to iterate over the values of the variable $executables
(i.e. two target files for the sender and receiver), and to
define/produce two building rules for them via the execution
of the macro function at lines 22-24. For the case of Java,
those two resulting rules are at lines 3 and 6 of Figure 2 after
they are combined with lines 4 and 7. Lines 31-32 define
an implicit rule in Make. It is used for building any file that
ends with ’.dat’. In this example, the result after applying that
implicit rule is two concrete rules at lines 9-13 of Figure 2.
Lines 34-40 define the rules for building main.jar and main.o.

B. Challenges in Build Code Maintenance

Despite its popularity, maintenance tool supports for Make
build code are still very limited. Due to the dynamic nature
in Make’s evaluation, it is challenging to build the analysis
tools such as for refactoring or code smell detection in
Makefiles. The reason has twofolds. Firstly, the analysis for
the names of variables or targets, and automatic renaming
for them is not straightforward. Since Make is dynamic, the
name of a variable (i.e. an identifier) can be the result of
the evaluation of other variables. For example, at lines 17
and 18, the prefixes of the variables on the left-hand sides
are defined based on the values of other variables $sender
and $receiver. Moreover, a regular text search tool cannot
distinguish between the identifiers for variables and the
string values in build code. For example, at line 13 (sender :=
sender$(ext)), the variable sender is defined as a concatenation
from the string literal sender and the value of variable ext.

Importantly, the variable at line 17 also illustrates another
challenge. That is, the identifier of the variable $(sender) src
is composed of multiple sub-strings. Assume that, a user
wants to rename the suffix src, a tool must rename all three

1 javaComp := $(shell which java)
2
3 ifneq ($(javaComp), ” ”)
4 ext = .jar
5 srcExt = .java
6 cmd = javac
7 else
8 ext = .o
9 srcExt = .c

10 cmd = gcc
11 endif
12
13 sender := sender$(ext)
14 receiver := receiver$(ext)
15 executables := $(sender) $(receiver)
16
17 $(sender) src= sender src$(srcExt) sender impl$(srcExt) $(wildcard *.dat)
18 $(receiver) src = main rcv$(srcExt) socket$(srcExt) receiver src$(srcExt)
19
20 install : $(executables)
21
22 define ProgramMacro =
23 $(1) : $$($(1) src)
24 endef
25
26 $(foreach exec,$(executables),$(eval $(call ProgramMacro,$(exec))))
27
28 $(executables):
29 $(cmd) $∧ −o $@
30
31 %.dat : %$(ext)
32 getData $∧ −o $@
33
34 ifneq ($(javaComp), ’’)
35 main.jar : main.java javaConf.dat
36 installJava $∧ −o $@
37 else
38 main.o : main.c ccConf.data
39 installCC $∧ −o $@
40 endif

Figure 1. An example of build code in Make

following locations: $(sender) src (line 17), $(receiver) src
(line 18), and $$($(1) src) (line 23). The reason is that,
when executing foreach (line 26), at the first iteration,
$$($(1) src) (line 23) will be resolved to the name of variable
$(sender) src (line 17), and at the second iteration to the name
of $(receiver) src (line 18). Therefore, $$($(1) src) (line 23)
affects both the variables at lines 17 and 18, and all three
texts at those locations must be renamed consistently.

Secondly, automatic analysis for the dependencies among
prerequisites/targets is also challenging. For example, my-
Makefile code has a subtle error that causes a cyclic depen-
dency in the concrete dependency graph. Assume that, when
a user enters ’make -f myMakefile’ on a machine with Java,
Make builds its CDG from the code in Figure 2, and runs
the rule install (line 1). It first updates install’s prerequisites by
running sender.jar (line 3) and receiver.jar rules (line 6). Then,
it successfully produces sender.jar and receiver.jar programs.
However, if Make is requested to build install, a cycle could
occur. Rule sender.jar depends on the files that are fetched
from the current directory with $(wildcard *.dat) (line 17). The
cycle occurs if there exists a file with the name sender.dat
in the user directory since Make matches that file with the
implicit rule at line 31, and adds the following rule:

1 install : sender.jar receiver.jar
2
3 sender.jar : sender src.java sender impl.java sample.dat
4 javac sender src.java sender impl.java sample.dat −o sender.jar
5
6 receiver.jar : main rcv.java socket.java receiver src.java
7 javac main rcv.java socket.java receiver src.java −o receiver.jar
8
9 javaConf.dat : javaConf.jar

10 getData javaConf.jar −o javaConf.dat
11
12 sample.dat : sample.jar
13 getData sample.jar −o sample.dat
14
15 main.jar : main.java javaConf.dat
16 installJava main.java javaConf.dat −o main.jar

Figure 2. Result after the evaluation phase on myMakefile

1 sender.dat : sender.jar
2 genData sender.jar −o sender.dat

A cycle is formed because sender.jar and sender.dat are
prerequisites of each other. This causes an error in the
execution phase. This bug is difficult to reveal at static
time and even at run-time because it depends on the user
environment/directory, and the input. Due to the dynamic
nature of Make, similar difficulty also exists when a tool
wants to detect if a build rule is subsumed by an implicit
rule (e.g. the one at line 31).

II. SYMAKE APPROACH

To address those challenges, we build SYMake, a tool to
detect several types of code smells and errors in Makefiles.
SYMake also supports renaming for variables/targets whose
names might be fragmented. Let us describe our techniques.

A. Symbolic Dependency Graph

SYMake first processes a Makefile and performs a sym-
bolic evaluation to produce a data structure called a Symbolic
Dependency Graph (SDG), which represents all possible
build rules and dependencies among targets and prerequisites
via respective recipe commands. It takes into account all
possible inputs and user environments by representing them
via symbolic string values. The SDG has the following
nodes: 1) target/prerequisite nodes, 2) recipe nodes, 3) Select
node to represent alternative dependencies from a target to
either of multiple recipes and prerequisites, and 4) a rule
block contains all nodes/edges related to a rule. An SDG
differs from a Make’s CDG in that a component of a rule
(target, prerequisite, or recipe) in an SDG might not be
completely resolved into concrete strings due to user inputs
or environment values (e.g. $(wildcard *.dat) in Figure 1).
Instead, a node in SDG, representing a component of a rule,
refers to a data structure, called V-model, which represents
the symbolic string values for the component of the rule.

A V-model has two types of leaf nodes, literal and
symbolic, to represent concrete and unresolved string values,

install Select

rcp1

rcp2

sender.jar

receiver.jar

sender.o

receiver.o

rcp3 sender_src.java

sender_impl.java

SYM01

rcp4

rcp5

rcp6

Concat

'javac'

'sender' 'sender_src.java' 'sender_impl.java'

SYM01

V-model for rcp3

depends

depends

refers-to

literal node

target/

prerequisite

recipe node

Legend:

sym node
Concat

'.jar'

Concat

Concat

'sender_impl' Ref:srcExt

'.jar'

refers-to

V-model for srcExt

Figure 3. Symbolic Dependency Graph and V-models

+

sender.jar

foreach

eval

call ProgramMacro

exec

executables

$

sender

sender ext

.jar

true

if

SYM01

wildcard

*.dat

arg

Legend:

line 26

line 26

line 26

line 26

line 15

line 13

line 13 line 4

line 3

from SDG

from SDG

line 13

line 13

literal

variable

if cond

+ Concat

foreach,

built-in

function call

user-

defined

functioncall

Figure 4. T-models for sender.jar (left), SYM01 (right)

respectively. There are three types of inner nodes. Concat
and Select node represent a concatenated string value and
a string value selected from the values corresponding to the
sub-trees of that node, respectively. V-model contains also a
Reference node represents a reference to a variable and its
child is a V-model representing the value of that variable.

Figure 3 shows part of the SDG and its V-models for
Figure 1. The target node install (line 20) can have either of
the two different sets of prerequisites and recipes depending
on whether Java compiler is installed or not (lines 3-
11): {sender.jar, receiver.jar} or {sender.o, receiver.o}. In turn,
sender.jar depends on the recipe rcp3 whose string content is
represented by its V-model. Also, rcp3 depends on the set of
prerequisites sender src.java, sender impl.java, and a symbolic
node SYM01 representing the result returned from a call to
wildcard to get data files from the current directory (line 17).

B. Evaluation Trace Model

During symbolically evaluating a Makefile, for each re-
sulting string value that represents a part of a rule or a recipe
in an SDG, SYMake provides a labeled acyclic graph (called
T-model) to represent how that string value is computed and
manipulated via program entities in the Makefile. The T-
model contains 3 type of nodes: data, control, and opera-
tion/action nodes. A data node can be either a variable or
literal node. A control node can be either an if or foreach node
to represent branching or repetition points in the evaluation.
For representing an operation/action, an T-model contains
1) a Concat node, 2) Evaluation node to represent variable
evaluation, and 3) Function Call node. Figure 4 shows the

Figure 5. A variable is selected and a rule node is expanded

Figure 6. A screen shot of SYMake with SDG

T-model of sender.jar (left), and that of SYM01 (right).
From the infrastructure of SDG and associated V-models,

and T-models, we develop algorithms in SYMake to detect
code smells and errors such as cyclic dependencies, loops of
recursive variables, duplicate prerequisites, rule inclusions,
etc. With T-models, SYMake is also able to support auto-
matic renaming for variables and targets/prerequisites, and
extracting new targets. More details can be found in [2].

III. SYMAKE’S FUNCTIONALITY

Generally, SYMake has the following functions: Make-
file’s symbolic evaluation and SDG displaying, renaming
and refactoring support, and Makefile’s code smell detection.

A. SYMake Symbolic Evaluation

SYMake’s interface contains four main views: the Make-
file view, rules and variables view, and a task view for code
smell detection and refactoring tasks. SYMake allows a user
to load a Makefile for analysis and it will symbolically
evaluate the loaded Makefile. Figure 5 shows myMakefile in
SYMake. The resulting SDG graph can be viewed as in
Figure 6. For example, install node corresponds to the install
target (line 20, Figure 1). sender.jar depends on rcp3 which
refers to its V-model. In turn rcp3 depends on the prerequisite
nodes sender src.java, sender impl.java, and SYM100001.

SYMake displays also the views for variables and rules
in the loaded Makefile. When a variable is selected from

Figure 7. Variable renaming as src is highlighted

the variable’s view, SYMake highlights all corresponding
locations where the variable is initialized/referenced. Fig-
ure 5 shows SYMake as a user selects variable ext. Similar
to variables, if the user selects a rule, the corresponding
references for that rule are highlighted in the Makefile view.
For each rule, the sub-tree in the rules’ view represents its
prerequisites and recipe and the respective code locations.

B. Renaming and Extracting

To rename, the user selects a variable and clicks on
Rename Variable. A pop-up window will ask the user for the
new name. Figure 7 shows SYMake when the user requests
to rename the suffix src to libs. Similar to renaming vari-
ables, Rename Target button is used to rename a target. For
target extracting, the user first selects a set of prerequisites
and then creates a new target for them.

C. Code Smell Detection

To detect the types of code smells and errors listed in the
previous section, a user can simply click on Detect Code
Smells button. SYMake will display for each detected smell
the corresponding smell type, source code locations involved
in the smell, and a smell description showing all Makefile
elements involved in that smell/error.

Figure 8 shows an example of a detected smell. A detected
cyclic dependency in myMakefile is shown at the lines 17, 23,
28, and 31, and between the rules sender.jar and %.dat.

IV. RELATED WORK

Prior work has shown that the maintenance of build
files could cause a high percentage of overhead on general
development efforts in a software process [3], [4], [5], [6].
Build code needs to be maintained and changed with a
comparable normalized churn rate to that of source code
and could contain as many defects due to that high rate [4].

A related work to SYMake is MAKAO [7], [8]. It
provides visualization and code smell detection supports for
Makefiles. There are key departure points in SYMake in
comparison with MAKAO. First, SYMake aims to provide
program analysis on Make build code. MAKAO focuses more

Figure 8. Cyclic dependency detection

on visualization and reverse engineering for different views
on build architecture. Moreover, MAKAO can only work on
concrete dependency graph for a Makefile, thus it cannot
support renaming/extracting, and code smell detections for
Make code as in SYMake. As seen in Section I, due to
dynamicism, program elements in a Makefile are not always
fully exposed in build code (i.e. before evaluation phase).

Another work from Gunter [9] aims to formulate the
execution phase on a concrete dependency graph (CDG),
rather than the evaluation phase. CDG is modeled as a
special Petri net and the execution phase is modeled as a
marking process from source nodes to target ones. That work
does not aim to support build code analysis as in SYMake.

V. CONCLUSIONS

SYMake 1 is a tool for build code analysis in Makefiles
that is based on symbolic evaluation to statically detect
code smells and errors and support renaming and extracting
variables/targets. Tool demo can be viewed online 2.

REFERENCES

[1] S. Feldman, “Make: A program for maintaining computer programs,” Software
Practice, vol. 9, pp. 255–265, 1979.

[2] A. Tamrawi, H. A. Nguyen, H. V. Nguyen, and T. N. Nguyen, “Build Code
Analysis with Symbolic Evaluation,” Submitted to ICSE 2012.

[3] L. Hochstein and Y. Jiao, “The cost of the build tax in scientific software,” in
ACM/IEEE ESEM ’11. ACM, 2011.

[4] S. McIntosh, B. Adams, T. H. Nguyen, Y. Kamei, and A. E. Hassan, “An
empirical study of build maintenance effort,” in ICSE ’11. ACM, 2011.

[5] B. Adams, K. D. Schutter, H. Tromp, and W. D. euter, “The evolution of the
linux build system,” Electronic Communications of the ECEASST, vol. 8, 2008.

[6] S. McIntosh, B. Adams, and A. E. Hassan, “The evolution of ant build systems,”
in MSR, 2010, pp. 42–51.

[7] B. Adams, H. Tromp, K. De Schutter, and W. De Meuter, “Design recovery
and maintenance of build systems,” in ICSM 2007, pp. 114 –123, IEEE.

[8] ——, “Makao,” in ICSM 2007. pp. 517 –518, IEEE.

[9] C. A. Gunter, “Abstracting dependencies between software configuration
items,” ACM TOSEM, vol. 9, no. 1, pp. 94–131, 2000.

1http://home.engineering.iastate.edu/~atamrawi/SYMake/
2http://home.engineering.iastate.edu/~atamrawi/SYMake/demo.html

http://home.engineering.iastate.edu/~atamrawi/SYMake/
http://home.engineering.iastate.edu/~atamrawi/SYMake/demo.html

	Introduction
	Software Building with Make
	Challenges in Build Code Maintenance

	SYMake Approach
	Symbolic Dependency Graph
	Evaluation Trace Model

	SYMake's Functionality
	SYMake Symbolic Evaluation
	Renaming and Extracting
	Code Smell Detection

	Related Work
	Conclusions
	References

