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SUMMARY
This paper addresses the problem of self-detection by a
robot. The paper describes a methodology for autonomous
learning of the characteristic delay between motor commands
(efferent signals) and observed movements of visual
stimuli (afferent signals). The robot estimates its own
efferent-afferent delay from self-observation data gathered
while performing motor babbling, i.e., random rhythmic
movements similar to the primary circular reactions
described by Piaget. After the efferent-afferent delay is
estimated, the robot imprints on that delay and can later
use it to successfully classify visual stimuli as either
“self” or “other.” Results from robot experiments performed
in environments with increasing degrees of difficulty are
reported.

KEYWORDS: Self-detection; Self/other discrimination; De-
velopmental robotics; Behavior-based robotics; Autonomous
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1. Introduction
An important problem that many organisms have to solve
early in their developmental cycles is how to distinguish
between themselves and the surrounding environment. In
other words, they must learn how to identify which sensory
stimuli are produced by their own bodies and which are
produced by the external world. Solving this problem
is critically important for their normal development. For
example, human infants that fail to develop self-detection
abilities suffer from debilitating disorders such as infantile
autism and Rett syndrome.33

This paper explores a method for autonomous self-
detection in robots that was inspired by Watson’s work
on self-detection in humans. Watson tested the hypothesis
that infants perform self-detection based on the temporal
contingency between efferent and afferent signals. He
showed that 3-month-old infants can learn a temporal
filter that treats events as self-generated if and only if
they are preceded by a motor command within a small
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temporal window; otherwise they are treated as environment-
generated. The filter, which is sensitive to a specific efferent-
afferent delay (also called the perfect contingency), plays an
important role in bootstrapping human development.

This paper tests the hypothesis that a robot can
autonomously learn its own efferent-afferent delay from self-
observation data and use it to detect the visual features of
its own body. The paper also evaluates if the self-detection
method can be used by the robot to classify visual stimuli as
either “self” or “other.” The effectiveness of this approach
is demonstrated with robot experiments in environments
with increasing degree of difficulty, culminating with self-
detection in a TV monitor.

Why should robots have self-detection abilities? There
are two main reasons. First, computational models of self-
detection in robots may be used to improve our understanding
of how biological species achieve the same task. Self-
detection abilities are highly correlated with the intelligence
of different species (see Section 2). While the reasons for
this connection have not been adequately explained so far it
is nevertheless intellectually stimulating to take even small
steps toward unraveling this mystery. Our computational
model is well grounded in the literature on self-detection
in humans and animals. At this time, however, it would be
premature to claim that our model can be used to explain the
self-detection abilities of biological organisms.

Second, self-detection abilities may facilitate the creation
of super-adaptive robots that can easily change their end
effectors or even their entire bodies while still keeping track
of what belongs to their bodies for control purposes. Self-
reconfigurable robots that are constructed from multiple
identical nodes can benefit from these abilities as well. For
example, if one of the nodes malfunctions, then the robot can
easily detect if it is still attached to its body by observing
that it moves in a temporally contingent way with the motors
of another node. This may prompt operations such as self-
healing and self-repair.

It is important to draw a distinction between self-
recognition and self-detection as this paper deals only with
the latter. According to the developmental literature, it is
plausible that the process of self-recognition goes through
an initial stage of self-detection based on detecting temporal
contingencies. Self-recognition abilities, however, require a
much more detailed representation for the body than the one
needed for self-detection. The notion of “self” has many
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other manifestations.19 Rochat,27 for example, has identified
five levels of self-awareness as they unfold from the moment
of birth to approximately 4–5 years of age. Most of these are
related to the social aspects of the self and thus are beyond
the scope of this paper.

2. Related Work

2.1. Self-detection in humans
Almost every major developmental theory recognizes the fact
that normal development requires “an initial investment in
the task of differentiating the self from the external world.”33

This is certainly the case for the two most influential theories
of the 20th century: Freud’s and Piaget’s. Their theories
disagree about the ways in which self-detection is achieved,
but they agree that the “self” emerges from actual experience
and is not innately predetermined.33

Modern theories of human development also seem to agree
that the self is derived from actual experience. Furthermore,
they identify the types of experience that are required for
that: efferent-afferent loops that are coupled with some sort
of probabilistic estimate of repeatability.

Rochat27 suggests that there are certain events that are
self-specifying. These events are unique as they can only be
experienced by the owner of the body. The self-specifying
events are also multimodal as they involve more than
one sensory or motor modality. Rochat explicitly lists the
following self-specifying events: “When infants experience
their own crying, their own touch, or experience the perfect
contingency between seen and felt bodily movements (e.g.,
the arm crossing the field of view), they perceive something
that no one but themselves can perceive.” [27, p. 723]

According to ref. [19], the self is defined through action-
outcome pairings (i.e., efferent-afferent loops) coupled with
a probabilistic estimate of their regularity and consistency.
Here is how they describe the emergence of what they
call the “existential self”, i.e., the self as a subject
distinct from others and from the world: “[The] existential
self is developed from the consistency, regularity, and
contingency of the infant’s action and outcome in the
world. The mechanism of reafferent feedback provides the
first contingency information for the child; therefore, the
kinesthetic feedback produced by the infant’s own actions
form the basis for the development of self. [...] These
kinesthetic systems provide immediate and regular action-
outcome pairings,” see ref. [19, p. 9]

Watson33 proposes that the process of self-detection is
achieved by detecting the temporal contingency between
efferent and afferent stimuli. The level of contingency that is
detected serves as a filter that determines which stimuli are
generated by the body and which ones are generated by the
external world. In other words, the level of contingency is
used as a measure of selfness. In Watson’s own words: “An-
other option is that imperfect contingency between efferent
and afferent activity implies out-of-body sources of stim-
ulation, perfect contingency implies in-body sources, and
noncontingent stimuli are ambiguous,” see ref. [33, p. 134]

All three examples suggest that the self is discovered quite
naturally as it is the most predictable and the most consistent

part of the environment. Furthermore, all seem to confirm that
the self is constructed from self-specifying events which are
essentially efferent-afferent loops or action-outcome pairs.
There are many other studies that have reached similar
conclusions. See ref. [19] and ref. [21] for an extensive
overview of the literature.

At least one study has tried to identify the minimum set
of perceptual features that are required for self-detection.
Flom and Bahrick7 showed that five-month-old infants can
perceive the intermodal proprioceptive-visual relation on the
basis of motion alone when all other information about the
infants’ legs was eliminated. In their experiments, they fitted
the infants with socks that contained luminescent dots. The
camera image was preprocessed such that only the positions
of the markers were projected on the TV monitor. In this
way the infants could only observe a point-light display18

of their feet on the TV monitor placed in front of them.
The experimental results showed that 5-month-olds were
able to differentiate between self-produced (i.e., contingent)
leg motion and pre-recorded (i.e., noncontingent) motion
produced by the legs of another infant. These results illustrate
that only movement information alone might be sufficient for
self-detection since all other features like edges and texture
were eliminated in these experiments. The robot experiments
described later use a similar experimental design as the
robot’s visual system has perceptual filters that allow the
robot to see only the positions and movements of specific
color markers placed on the robot’s body. Similar to the
infants in the dotted socks experiments, the robot can only
see a point-light display of its movements.

2.2. Self-detection in animals
Many studies have focused on the self-detection abilities of
animals. Perhaps the most influential study was performed
by Gallup10, which reported for the first time the abilities
of chimpanzees to detect a marker placed surreptitiously on
their head using a mirror. Gallup’s discovery was followed
by a large number of studies that have attempted to test
which species of animals can pass the mirror test. Somewhat
surprisingly, the number turned out to be very small:
chimpanzees, orangutans, and bonobos (one of the four
great apes, often called the forgotten ape, see ref. [5]).
There is also at least one study that has documented similar
capabilities in bottlenose dolphins.26 Another recent study
reported that one Asian elephant (out of three that were
tested) conclusively passed the mirror test.24 Attempts to
replicate the mirror test with other primate and nonprimates
species have failed.3, 6, 12, 25

Gallup11 has argued that the interspecies differences are
probably due to different degrees of self-awareness. Another
reason for these differences “may be due to the absence
of a sufficiently well-integrated self-concept,” see ref.
[11, p. 334]. Yet another reason according to ref. [11]
might be that the species that pass the mirror test can direct
their attention both outward (toward the external world) and
inwards (toward their own bodies), i.e., they can become “the
subject of [their] own attention.” Humans, of course, have the
most developed self-exploration abilities and have used them
to create several branches of science, e.g., medicine, biology,
and genetics.
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2.3. Self-detection in robots
Self-detection experiments with robots are still rare. One
of the few published studies on this subject is described
in ref. [20]. They implemented an approach to autonomous
self-detection similar to the temporal contingency strategy
described by Watson.33 Their robot was successful in iden-
tifying movements that were generated by its own body.
The robot was also able to identify the movements of its
hand reflected in a mirror as self-generated motion because
the reflection obeyed the same temporal contingency as the
robot’s body.

In that study, the self-detection was performed at the pixel
level and the results were not carried over to high-level visual
features of the robot’s body. Thus, there was no permanent
trace of which visual features constitute the robot’s body.
Because of this, the detection could only be performed when
the robot was moving. This limitation was removed in a
subsequent study,17 which used probabilistic methods that
incorporate the motion history of the features as well as the
motor history of the robot. The new method calculates and
uses three dynamic Bayesian models that correspond to three
different hypotheses (“self,” “animate other,” or “inanimate”)
for what caused the motion of an object. Using this method
the robot was also able to identify its image in a mirror as
“self.” The method was not confused when a person tried to
mimic the actions of the robot.

The study presented in this paper is similar to the two
studies mentioned above. Similar to ref. [20], it employs
a method based on detecting temporal contingencies, but
also keeps probabilistic estimates over the detected visual
features to distinguish whether or not they belong to the
robot’s body. In this way, the stimuli can be classified as
either “self” or “other” even when the robot is not moving.
Similar to ref. [17], it estimates whether the features belong to
the robot’s body, but uses a different model based on ref. [33]
to update these estimates.

The main difference between our approach and previous
work can be summarized as follows. Self-detection is
ultimately about finding a cause–effect relationship between
the robot’s motor commands and perceptible visual changes
in the environment. Causal relationships are different from
probabilistic relationships, see ref. [22, p. 25], which have
been used in previous models. The only way to really know
if something was caused by something else is to take into
account both the necessity and the sufficiency,22, 33 which is
what our model does. Humans tend to extract and remember
causal relationships and not probabilistic relationships as the
causal relationships are more stable, see ref. [22, p. 25].
Presumably, robots should do the same.

Another difference is that our approach has very few
tunable parameters so presumably it is easier to implement
and calibrate. Also, our model was tested on several data sets
lasting 45 min each, which is an order of magnitude longer
than any previously published results.

Another team of roboticists has attempted to perform self-
detection experiments with robots based on a different self-
specifying event: the so-called double touch.34 The double
touch is a self-specifying event because it can only be
experienced by the robot when it touches its own body. This
event cannot be experienced if the robot touches an object or

if somebody else touches the robot since both cases would
correspond to a single touch event.

3. Problem Statement
For the sake of clarity, the problem of autonomous self-
detection by a robot will be stated explicitly using the
following notation. Let the robot have a set of joints
J = {j1, j2, . . . , jn} with corresponding joint angles � =
{q1, q2, . . . , qn}. The joints connect a set of rigid bodies
B = {b1, b2, . . . , bn+1} and impose restrictions on how the
bodies can move with respect to one another. For example,
each joint, ji , has lower and upper joint limits, qL

i and qU
i ,

which are either available to the robot’s controller or can be
inferred by it. Each joint, ji , can be controlled by a motor
command, move(ji, qi, t), which takes a target joint angle,
qi , and a start time, t , and moves the joint to the target joint
angle. More than one move command can be active at any
given time.

Also, let there be a set of visual features F =
{f1, f2, . . . , fk} that the robot can detect and track over
time. Some of these features belong to the robot’s body,
i.e., they are located on the outer surfaces of the set of rigid
bodies, B. Other features belong to the external environment
and the objects in it. The robot can detect the positions of
visual features and detect whether or not they are moving
at any given point in time. In other words, the robot has
a set of perceptual functions P = {p1, p2, . . . , pk}, where
pi(fi, t) → {0, 1}. That is to say, the function pi returns 1 if
feature fi is moving at time t , and 0 otherwise.

The goal of the robot is to classify the set of features, F ,
into either “self” or “other.” In other words, the robot must
split the set of features into two subsets, Fself and Fother, such
that F = Fself ∪ Fother.

4. Methodology
The problem of self-detection by a robot is divided into two
separate problems as follows:
Subproblem 1: How can a robot estimate its own efferent-
afferent delay, i.e., the delay between the robot’s motor
actions and their perceived effects?
Subproblem 2: How can a robot use its efferent-afferent
delay to classify the visual features that it can detect into
either “self” or “other”?

The methodology for solving these two subproblems is
illustrated by two figures. Figure 1 shows how the robot
can estimate its efferent-afferent delay (subproblem 1) by
measuring the elapsed time from the start of a motor
command to the start of visual movement. The approach
relies on detecting the temporal contingency between motor
commands and observed movements of visual features. To
estimate the delay the robot gathers statistical information by
executing multiple motor commands over an extended period
of time. It will be shown that this approach is reliable even if
there are other moving visual features in the environment
as their movements are typically not correlated with the
robot’s motor commands. Once the delay is estimated the
robot imprints on it (i.e., remembers it irreversibly) and uses
it to solve subproblem 2.
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Fig. 1. The efferent-afferent delay is defined as the time interval between the start of a motor command (efferent signal) and the detection of
visual movement (afferent signal). The robot can learn this characteristic delay (also called the perfect contingency) from self-observation
data.

Figure 2 shows how the estimated efferent-afferent delay
can be used to classify visual features as either “self”
or “other” (subproblem 2). The figure shows three visual
features and their detected movements over time represented
by red, green, and blue lines. Out of these three features
only feature 3 (blue) can be classified as “self” as it is the
only one that conforms to the perfect contingency. Feature
1 (red) begins to move too late after the motor command is
issued and feature 2 (green) begins to move too soon after
the movement command is issued.

A classification based on a single observation can be
unreliable due to sensory noise or a lucky coincidence in
the movements of the features relative to the robot’s motor
command. Therefore, the robot maintains a probabilistic
estimate for each feature as to whether or not it is a part of
the robot’s body. The probabilistic estimate is based on the
sufficiency and necessity indices proposed by Watson.33 The
sufficiency index measures the probability that the stimulus
(visual movement) will occur during some specified period of
time after the action (motor command). The necessity index,
on the other hand, measures the probability that the action
(motor command) was performed during some specified
period of time before the stimulus (visual movement) was

observed. The robot continuously updates these two indexes
for each feature as new evidence becomes available. Features
for which both indexes are above a certain threshold are
classified as “self.” All others are classified as “other.”
Section 7 provides more details about this procedure.

5. Experimental Setup

5.1. Detecting visual features
All experiments in this paper were performed using the CRS
Plus robot arm shown in Fig. 3. The movements of the robot
were restricted to the vertical plane. In other words, only
joints 2, 3, and 4 (i.e., shoulder pitch, elbow pitch, and wrist
pitch) were allowed to move. Joints 1 and 5 (i.e., waist roll
and wrist roll) were disabled and their joint angles were set
to 0.

Six color markers (also called body markers) were placed
on the body of the robot as shown in Fig. 3. Each marker
is assigned a number which is used to refer to this marker
in the text and figures that follow. From the shoulder to the
wrist the markers have the following IDs and colors: (0)
dark orange; (1) dark red; (2) dark green; (3) dark blue; (4)

visual
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visual
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time

command
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time
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Fig. 2. “Self” versus “Other” discrimination. Once the robot has learned its efferent-afferent delay it can use its value to classify the visual
features that it can detect into “self” and “other.” In this figure, only feature 3 (blue) can be classified as self as it starts to move after the
expected efferent-afferent delay plus or minus some tolerance (shown as the brown region). Features 1 and 2 are both classified as “other”
since they start to move either too late (feature 1) or too soon (feature 2) after the motor command is issued.



Self-detection in robots 5

Fig. 3. (Top row) Several of the robot poses selected by the motor babbling procedure. (Bottom row) Color segmentation results for the
same robot poses.

yellow; (5) light green. The body markers were located and
tracked using color segmentation (see Fig. 3). The position
of each marker was determined by the centroid of the largest
blob that matched the specific color. The color segmentation
was performed using a computer vision code that performs
histogram matching in HSV color space with the help of the
openCV library (an open source computer vision package).
The digital video camera (Sony EVI-D30) was mounted on
a tripod and its field of view was adjusted so that it can
see all body markers in all possible joint configurations of
the robot. The image resolution was set to 640 × 480. For all
experiments described in this paper the frames were captured
at 30 frames per second.

5.2. Motor Babbling
All experiments described in this paper rely on a common
motor babbling procedure, which allows the robot to
gather self-observation data (both visual and proprioceptive)
while performing random joint movements. This procedure
consists of random joint movements similar to the primary
circular reactions described by Piaget23 as they are not
directed at any object in the environment. Algorithm 1 shows
the pseudocode for the motor babbling procedure.

During motor babbling the robot’s controller randomly
generates a target joint vector and then tries to move the
robot to achieve this vector. The movements are performed
by adjusting each joint in the direction of the target joint
angle. If the target joint vector cannot be achieved within
some tolerance (2 degrees per joint was used) then after
some timeout period (8 s was used) the attempt is aborted and
another random joint vector is chosen for the next iteration.
The procedure is repeated for a specified number of iterations
(500 iterations were used).

5.3. Visual movement detection
For each image frame a color marker was declared to be
moving if its position changed by more than 1.5 pixels during
the 0.1 s interval immediately preceding the current frame.
The timing intervals were calculated from the timestamps of
the frames stored in the standard UNIX format.

The result of this tracking technique is a binary 0/1 signal
for each of the currently visible markers, similar to the graphs
shown in Fig. 2. These signals are still slightly noisy and
therefore they were filtered with a box filter (also called
averaging filter) of width 5, which corresponds to smoothing
each tracking signal over five consecutive frames. The filter
changes the values of the movement detection signal to
the average for the local neighborhood. For example, if the
movement detection signal is 001011100 then the filter will
output 000111100. On the other hand, if the sequence is
001000 or 001100 then the filter will output 000000.

Algorithm 2 shows the pseudocode for the movement
detector and the box filter.

6. Experimental Results: Learning the
Efferent-Afferent Delay
This section describes the procedure used to estimate the
efferent-afferent delay of the robot as well as the experimental
conditions used to test it. The pseudocode for the procedure
is shown in Algorithm 3. The algorithm uses the results from
the motor babbling procedure described in Section 5.2, i.e.,
it uses the array of motor commands and their timestamps.
It also uses the results from the movement detection method
described in Section 5.3, i.e., it uses the number of captured
frames and the MOVE array which holds information about
what feature was moving during which frame. The algorithm
is presented in batch form but it is straightforward to rewrite
it in incremental form.

The algorithm maintains a histogram of the measured
delays over the interval [0, 6) s. Delays longer than 6 s are
ignored. Each bin of the histogram corresponds to 1/30−th

of a second, which is equal to the time interval between two
consecutive frames. For each frame the algorithm checks
which markers, if any, are starting to move during that
frame. This information is already stored in the MOVE array,
which is returned by the MOVEMENT DETECTOR function
in Algorithm 2. If the start of a movement is detected, the
algorithm finds the last motor command that was executed
prior to the current frame. The timestamp of the last motor
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Algorithm 1 Motor Babbling

GETRANDOMJOINTVECTOR(robot)
1: nJoints ← robot .GETNUMJOINTS()
2: for j ← 0 to nJoints do
3: moveT hisJoint ← RANDOMINT(0,1)
4: if moveT hisJoint = 1 then
5: lowerLimit ← robot .GETLOWERJOINTLIMIT(j )
6: upperLimit ← robot .GETUPPERJOINTLIMIT(j )
7: JV [j ] ← RANDOMFLOAT(lowerLimit , upperLimit)
8: else
9: // Keep the the current joint angle for this joint.

10: JV [j ] ← robot .GETCURRENTJOINTANGLE(j )
11: end if
12: end for
13: return JV

ISROBOTATTARGETJOINTVECTOR(robot, targetJV, tolerance)
1: nJoints ← robot .GETNUMJOINTS()
2: for j ← 0 to nJoints do
3: dist ← ABS(targetJV [j ] - robot .GETCURRENTJOINTANGLE(j ))
4: if dist > tolerance then
5: return f alse

6: end if
7: end for
8: return true

MOTORBABBLING(robot, nI terations, timeout, tolerance, sleepT ime)
1: for i ← 0 to nI terations do
2: motor[i].targetJV ← GETRANDOMJOINTVECTOR(robot)
3: motor[i].t imestamp ← GETTIME()
4: repeat
5: robot .MOVETOTARGETJOINTVECTOR(motor[i].targetJV )
6: SLEEP(sleepT ime)
7: if (GETTIME() - motor[i].t imestamp) > timeout then
8: // Can’t reach that joint vector. Try another one on the next iteration.
9: break

10: end if
11: done ← ISROBOTATTARGETJOINTVECTOR(robot, motor[i].targetJV, tolerance)
12: until done = true

13: end for
14: return motor

command is subtracted from the timestamp of the current
frame and the resulting delay is used to update the histogram.
Only one histogram update per frame is allowed, i.e., the bin
count for only one bin is incremented by one. This restriction
ensures that if there is a large object with many moving parts
in the robot’s field of view the object’s movements will not
bias the histogram and confuse the detection process. The
pseudocode for the histogram routines is given in ref. [28].

The bins of the histogram can be viewed as a bank of
delay detectors each of which is responsible for detecting
only a specific timing delay. It has been shown that
biological brains have a large number of neuron-based
delay detectors specifically dedicated to measuring timing
delays.8, 16 Supposedly, these detectors are fine tuned to detect
only specific timing delays, just like the bins of the histogram.

After all delays are measured the algorithm finds the bin
with the largest count, which corresponds to the peak of the
histogram. To reduce the effect of noisy histogram updates,
the histogram is thresholded with an empirically derived
threshold equal to 50% of the peak value. For example, if
the largest bin count is 200, then the threshold will be set to
100. After thresholding, the mean delay can be estimated by
multiplying the bin count of each bin with its corresponding
delay, then adding all products and dividing the sum by the
total bin count.

The value of the mean delay by itself is not very useful,
however, as it is unlikely that other measured delays will have
the exact same value. In order to classify the visual features
as either “self” or “other” the measured delay for the feature
must be within some tolerance interval around the mean. This
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Algorithm 2 Movement Detection

ISMOVING(markerID, treshold, imageA, imageB)
1: posA ← FINDMARKERPOSITION(markerID, imageA)
2: posB ← FINDMARKERPOSITION(markerID, imageB)
3: �x ← posA.x − posB.x

4: �y ← posA.y − posB.y

5: dist ←
√

(�x)2 + (�y)2

6: if dist > threshold then
7: return 1
8: else
9: return 0

10: end if

BOXFILTER(sequence[ ][ ], index, m)
1: sum ← 0
2: for i ← index − 2 to index + 2 do
3: sum ← sum + sequence[i][m]
4: end for
5: if sum ≥ 3 then
6: return 1
7: else
8: return 0
9: end if

MOVEMENTDETECTOR(nFrames, �t, treshold)
1: // Buffer some frames in advance so the BoxFilter can work OK
2: for i ← 0 to 3 do
3: f rame[i].image ← GETNEXTFRAME()
4: f rame[i].t imestamp ← GETTIME()
5: end for
6: for i ← 4 to nFrames do
7: f rame[i].image ← GETNEXTFRAME()
8: f rame[i].t imestamp ← GETTIME()
9: // Find the index, k, of the frame captured �t seconds ago

10: startT S ← f rame[i].t imestamp - �t

11: k ← index

12: while ((f rame[k].t imestamp < startT S) and (k > 0)) do
13: k ← k − 1
14: end while
15:
16: // Detect marker movements and filter the data
17: for m ← 0 to nMarkers do
18: MOV E[i][m] ← ISMOVING(m, treshold, f rame[i].image, f rame[k].image)
19: MOV E[i − 2][m] ← BOXFILTER(MOV E, i − 2, m)
20: end for
21: end for
22: return MOV E

interval was shown as the brown region in Fig. 2. One way to
determine this tolerance interval is to calculate the standard
deviation of the measured delays, σ , and then classify a
feature as “self” if its movement delay, d, lies within one
standard deviation of the mean, μ. In other words, the feature
is classified as “self” if μ − σ ≤ d ≤ μ + σ .

The standard deviation can be calculated from the
histogram. Because the histogram is thresholded, however,
this estimate will not be very reliable as some delays that
are not outliers will be eliminated. In this case, the standard

deviation will be too small to be useful. On the other hand, if
the histogram is not thresholded the estimate for the standard
deviation will be too large to be useful as it will be calculated
over the entire data sample which includes the outliers as
well. Thus, the correct estimation of the standard deviation
is not a trivial task. This is especially true when the robot is
not the only moving object in the environment.

Fortunately, the psychophysics literature provides an
elegant solution to this problem. It is well know that, the
discrimination abilities for timing delays in both animals and
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Algorithm 3 Learning the efferent-afferent delay

CALCULATE EFFERENT AFFERENT DELAY(nFrames, f rame[ ], MOV E[ ][ ], motor[ ])
1: // Skip the frames that were captured prior to the first motor command.
2: start ← 1
3: while f rame[start].t imestamp < motor[0].t imestamp do
4: start ← start + 1
5: end while
6:
7: // Create a histogram with bin size=1/30−th of a second
8: // for the time interval [0, 6) seconds.
9: hist ←INITHISTOGRAM(0.0, 6.0, 180)

10:
11: idx ← 0 // Index into the array of motor commands
12: for k ← start to nFrames − 1 do
13: // Check if a new motor command has been issued.
14: if f rame[k].t imestamp > motor[idx + 1].t imestamp then
15: idx ← idx + 1
16: end if
17:
18: for i ← 0 to nMarkers − 1 do
19: // Is this a 0 → 1 transition, i.e., start of movement?
20: if ((MOV E[k − 1][i] = 0) and (MOV E[k][i] = 1)) then
21: delay ← f rame[k].t imestamp − motor[idx].t imestamp

22: hist .ADDVALUE(delay)
23: break // only one histogram update per frame is allowed
24: end if
25: end for
26: end for
27:
28: // Threshold the histogram at 50% of the peak value.
29: maxCount ← hist .GETMAXBINCOUNT()
30: threshold ← maxCount/2.0
31: hist .THRESHOLD(threshold)
32:
33: efferent-afferent-delay ← hist .GETMEAN()
34: return efferent-afferent-delay

humans obey Weber’s law.13, 30, 31 This law is named after
the German physician Ernst Heinrich Weber (1795–1878)
who was one of the first experimental psychologists. Weber
observed that the sensory discrimination abilities of humans
depend on the magnitude of the stimulus that they are trying
to discriminate against. The law can be stated as |�I

I
| = c,

where I represents the magnitude of some stimulus, �I is
the value of the just noticeable difference (JND), and c is a
constant that does not depend on the value of I . The fraction
�I
I

is known as the Weber fraction. The law implies that
the difference between two signals is not detected if that
difference is less than the Weber fraction.

Weber’s law can also be used to predict if the difference
between two stimuli I and I ′ will be detected. The stimuli
will be indistinguishable if the following inequality holds
| I−I ′

I
| < c, where c is a constant that does not depend on the

values of I and I ′.
A similar discrimination rule is used in the robot

experiments: |μ−d

μ
| < β, where μ is the mean efferent-

afferent delay, d is the currently measured delay between

a motor command and perceived visual movement, and β is
a constant that does not depend on μ.

Weber’s law applies to virtually all sensory discrimination
tasks in both animals and humans, e.g., distinction between
colors and brightness,1 distances, sounds, weights, and
time.13, 30, 31 Furthermore, in timing discrimination tasks
the just noticeable difference is approximately equal to
the standard deviation of the underlying timing delay, i.e.,
σ
μ

= β. Distributions with this property are know as scalar
distributions because the standard deviation is a scalar
multiple of the mean.13 This result has been used in some
of the most prominent theories of timing interval learning,
e.g., refs. [9, 13–15].

Thus, the problem of how to reliably estimate the standard
deviation of the measured efferent-afferent delay becomes
trivial. The standard deviation is simply equal to a constant
multiplied by the mean efferent-afferent delay, i.e., σ = βμ.
The value of the parameter β can be determined empirically.
For timing discrimination tasks in pigeons its value has been
estimated at 30%, i.e., σ

μ
= 0.3, see ref. [4, p. 22]. Other
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Fig. 4. Frames from a test sequence in which the robot is the only
moving object.
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Measured efferent-afferent delay for dataset 1 (in seconds)

Fig. 5. Histogram for the measured efferent-afferent delays in data
set 1.

estimates for different animals range from 10% to 25% see
ref. [31, p. 328]. In the robot experiments described below
the value of β was set to 25%.

6.1. Test case with a single robot
The first set of experiments tested the algorithm under ideal
conditions when the robot is the only moving object in the
environment (see Fig. 4). The experimental data consists of
two data sets, which were collected by running the motor
babbling procedure for 500 iterations. For each data set
the entire sequence of frames captured by the camera were
converted to JPG files and saved to disk. The frames were
recorded at 30 frames per second at a resolution of 640 × 480
pixels and processed offline. Each data set corresponds
roughly to 45 min of wall clock time. This time limit was
selected so that the data for one data set can fit on a single
DVD with storage capacity of 4.7 GB. Each frame also has a
timestamp denoting the time at which the frame was captured.
The motor commands (along with their timestamps) were
also saved as a part of the data set.

Figure 5 shows a histogram for the measured efferent-
afferent delays in data set 1 (the results for data set 2 are
similar). Each bin of the histogram corresponds to 1/30−th of
a second, which is equal to the time between two consecutive
frames. As can be seen from the histogram, the average
measured delay is approximately 1 s. This delay may seem
relatively large but is unavoidable due to the slowness of the
robot’s controller. A robot with a faster controller may have a
shorter delay. For comparison, the average efferent-afferent
delay reported in ref. [20] for a more advanced robot was
0.5 s.
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Fig. 6. The average efferent-afferent delay and its corresponding
standard deviation for each of the six body markers calculated using
data set 1. In this figure only, the standard deviation was calculated
using the raw data without using the Weber fraction.

Fig. 7. Frames from a test sequence with two robots in which the
movements of the robots are uncorrelated. Each robot is controlled
by a separate motor babbling routine. The robot on the left (robot 1)
is the one trying to estimate its own efferent-afferent delay.

The measured delays are also very consistent across
different body markers. Figure 6 shows the average measured
delays for each of the six body markers as well as their
corresponding standard deviations in data set 1. As expected,
all markers have similar delays and the small variations
between them are not statistically significant.

Algorithm 3 estimated the following efferent-afferent
delays for each of the two data sets: 1.02945 s (for data
set 1) and 1.04474 s (for data set 2). The two estimates are
very close to each other. The difference is less than 1/60−th

of a second, or half a frame.

6.2. Test case with two robots: uncorrelated movements
This experiment was designed to test whether the robot can
learn its efferent-afferent delay in situations in which the
robot is not the only moving object in the environment. In
this case, another robot arm was placed in the field of view
of the first robot (see Fig. 7). A new data set with 500 motor
commands was generated.

Because there was only one robot available to perform this
experiment the second robot was generated using a digital
video special effect. Each video frame containing two robots
is a composite of two other frames with only one robot in each
(these frames were taken from the two data sets described in
Section 6.1). The robot on the left (robot 1) is in the same
position as in the previous data sets. To get the robot on the
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Fig. 8. Histogram for the measured delays between motor
commands and observed visual movements in the test sequence
with two robots whose movements are uncorrelated (see Fig. 7).

right (robot 2), the left part of the second frame was cropped,
flipped horizontally, translated and pasted on top of the right
part of the first frame.

Similar experimental designs are quite common in self-
detection experiments with infants (e.g., ref. 2, 33). In these
studies the infants are placed in front of two TV screens. On
the first screen the infants can see their own leg movements
captured by a camera. On the second screen they can see
the movements of another infant recorded during a previous
experiment.

Under this test condition the movements of the two robots
are uncorrelated. The frames for this test sequence were
generated by combining the frames from data set 1 and data
set 2 (described in Section 6.1). The motor commands and all
frames for robot 1 come from data set 1; the frames for robot
2 come from data set 2. Because the two motor babbling
sequences have different random seed values the movements
of the two robots are uncorrelated. In this test, robot 1 is the
one that is trying to estimate its efferent-afferent delay.

Figure 8 shows a histogram for the measured delays in this
sequence. As can be seen from the figure, the histogram
has some values for almost all of its bins. Nevertheless,
there is still a clearly defined peak that has the same shape
and position as in the previous test cases, which were
conducted under ideal conditions. The algorithm estimated
the efferent-afferent delay at 1.02941 s after the histogram
was thresholded with a threshold equal to 50% of the peak
value.

Because the movements of robot 2 are uncorrelated with
the motor commands of robot 1 the detected movements for
the body markers of robot 2 are scattered over all bins of the
histogram. Thus, the movements of the second robot could
not confuse the algorithm into picking a wrong value for
the mean efferent-afferent delay. The histogram shows that
these movements exhibit almost an uniform distribution over
the interval from 0 to 5 s. The drop off after 5 s is due to the
fact that robot 1 performs a new movement approximately
every 5 s. Therefore, any movements performed by robot 2
after the 5-s interval will be associated with the next motor
command of robot 1.

Fig. 9. Frames form a test sequence with six static background
markers.

Fig. 10. Frames from a test sequence with two robots in which the
robot on the right mimics the robot on the left. The mimicking delay
is 20 frames (0.66 s).

6.3. Test case with a single robot and static background
features
This experimental setup tested Algorithm 3 in the presence
of static visual features placed in the environment. In
addition to the robot’s body markers, six other markers
were placed on the background wall (see Fig. 9). All
background markers remained static during the experiment,
but it was possible for them to be occluded temporarily by the
robot’s arm. Once again, the robot was controlled using the
motor babbling procedure. A new data set with 500 motor
commands was collected using the procedure described in
Section 6.1.

The histogram for this data set, which is not shown here
due to space limitations but is given in ref. [28], is similar to
the histograms shown in the previous subsection. Once again
almost all bins have some values. This is due to the detection
of false positive movements for the background markers due
to partial occlusions that could not be filtered out by the box
filter.

These false positive movements exhibit an almost uniform
distribution over the interval from 0 to 5 s. This is to be
expected as they are not correlated with the motor commands
of the robot. As described in the previous section, there is
a drop off after 5 s, which is due to the fact that the robot
executes a new motor command approximately every 5 s.
Therefore, any false positive movements of the background
markers that are detected after the 5 s interval will be
associated with the next motor command.

In this case the average efferent-afferent delay was
estimated at 1.03559 s.

6.4. Test case with two robots: mimicking movements
Under this test condition the robot on the right (robot 2) is
mimicking the robot on the left (robot 1). The mimicking
robot starts to move 20 frames (0.66 s) after the first robot.
As in Section 6.2, the second robot was generated using a
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Fig. 11. Histogram for the measured delays between motor
commands and observed visual movements in the mimicking test
sequence with two robots (see Fig. 10). The left peak is produced
by the movements of the body markers of the first robot. The right
peak is produced by the movements of the body markers of the
second/mimicking robot.

digital video special effect. Another data set of 500 motor
commands was constructed using the frames of data set
1 (described in Section 6.1) and offsetting the left and right
parts of the image by 20 frames.

Because the mimicking delay is always the same, the
resulting histogram (see Fig. 11) is bimodal. The left peak,
centered around 1 s, is produced by the body markers of the
first robot. The right peak, centered around 1.7 s, is produced
by the body markers of the second robot. Algorithm 3 cannot
deal with situations like this and therefore it selects a delay
that is between the two peaks (Mean = 1.36363 s, Stdev =
0.334185). Calculating the mean delay from the raw data
produces an estimate that is between the two peak values as
well (Mean = 1.44883 sec, Stdev = 0.52535).

It is possible to modify Algorithm 3 to avoid this problem
by choosing the peak that corresponds to the shorter delay, for
example. Evidence from animal studies, however, shows that
when multiple time delays (associated with food rewards)
are reinforced the animals learn “the mean of the reinforced
distribution, not its lower limit,” see ref. [13, p. 293], i.e., if
the reinforced delays are generated from different underlying
distributions the animals learn the mean associated with
the mixture model of these distributions. Therefore, the
algorithm was left unmodified.

Another reason to leave the algorithm intact exists: the
mimicking test condition is a degenerate case that is highly
unlikely to occur in any real situation, in which the two robots
are independent. Therefore, this negative result should not
undermine the usefulness of Algorithm 3 for learning the
efferent-afferent delay. The probability that two independent
robots will perform the same sequence of movements over
an extended period of time is effectively zero. Continuous
mimicking for extended periods of time is certainly a
situation that humans and animals never encounter in the
real world.

The results of the mimicking robot experiments suggest
an interesting study that can be conducted with monkeys
provided that a brain implant for detecting and interpreting

the signals from the motor neurons of an infant monkey were
available. The decoded signals could then be used to send
movement commands to a robot arm, which would begin
to move shortly after the monkey’s arm. If there is indeed
an imprinting period, as Watson33 suggests, during which
the efferent-afferent delay must be learned then the monkey
should not be able to function properly after the imprinting
occurs and the implant is removed.

7. Experimental Results: “Self” versus “Other”
Discrimination
The basic methodology for performing this discrimination
was already shown in Fig. 2. In the concrete implementation,
the visual field of view of the robot is first segmented
into features and then their movements are detected using
the method described in Section 5.3. For each feature the
robot maintains two independent probabilistic estimates that
jointly determine how likely it is for the feature to belong to
the robot’s own body.

The two probabilistic estimates are the necessity index and
the sufficiency index as described by Watson.32, 33 Fig. 12
shows an example with three visual features and their
calculated necessity and sufficiency indexes. The necessity
index measures whether the feature moves consistently after
every motor command. The sufficiency index measures
whether for every movement of the feature there is a
corresponding motor command that precedes it. In other
words:

Necessity index

= Number of temporally contingent movements

Number of motor commands
,

Sufficiency index

= Number of temporally contingent movements

Number of observed movements for this feature
.

For each feature, fi , the robot maintains a necessity index,
Ni , and a sufficiency index, Si . The values of these indexes
at time t are given by Ni(t) and Si(t). Following Fig. 12,
the values of these indexes can be calculated by maintaining
three counters: Ci(t), Mi(t), and Ti(t). Their definitions are
as follows: Ci(t) represents the number of motor commands
executed by the robot from some start time t0 up to the
current time t . Mi(t) is the number of observed movements
for feature fi from time t0 to time t ; and Ti(t) is the number of
temporally contingent movements observed for feature fi up
to time t . The first two counters are trivial to calculate. The
third counter, Ti(t), is incremented every time the feature fi

is detected to move (i.e., when Mi(t) = 1 and Mi(t − 1) = 0)
and the movement delay relative to the last motor command
is approximately equal to the mean efferent-afferent delay
plus or minus some tolerance interval. In other words,

Ti(t) =

⎧⎪⎨
⎪⎩

Ti(t − 1) + 1 : if Mi(t) = 1 and

Mi(t − 1) = 0 and
∣∣∣μ − di

μ

∣∣∣< β,

Ti(t − 1) : otherwise,
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Fig. 12. The figure shows the calculated values of the necessity (Ni) and sufficiency (Si) indexes for three visual features. After two
motor commands, feature 1 is observed to move twice but only one of these movements is contingent upon the robot’s motor commands.
Thus, feature 1 has a necessity N1 = 0.5 and a sufficiency index S1 = 0.5. The movements of feature 2 are contingent upon both motor
commands (thus N2 = 1.0) but only two out of four movements are temporally contingent (thus S2 = 0.5). Finally, feature 3 has both N3
and S3 equal to 1.0 as all of its movements are contingent upon the robot’s motor commands.

where μ is the estimate for the mean efferent-afferent delay;
di is the delay between the currently detected movement of
feature fi and the last motor command; and β is a constant.
The value of β is independent from both μ and di and is
equal to Weber’s fraction (see Section 6). The inequality in
this formula essentially defines the width of the temporal
contingency regions (see the brown regions in Fig. 12).

The necessity and sufficiency indexes at time t can be
calculated as follows:

Ni(t) = Ti(t)
Ci(t)

,

Si(t) = Ti(t)
Mi(t)

.

Both of these indexes are updated over time as new
evidence becomes available, i.e., after a new motor command
is issued or after the feature is observed to move. The belief
of the robot that fi is part of its body at time t is given jointly
by Ni(t) and Si(t). If the robot has to classify feature fi it can
threshold these values; if both are greater than the threshold
value, α, the feature fi is classified as “self.” In other
words,

fi ∈
{

Fself : if and only if Ni(t) > α and Si(t) > α,

Fother : otherwise.

Ideally, both Ni(t) and Si(t) should be 1. In practice,
however, this is rarely the case as there is always some
sensory noise that cannot be filtered out. Therefore, for all
robot experiments the threshold value, α, was set to 0.75,
which was empirically derived.†

† It is worth mentioning that Ni(t) is the maximum likelihood
estimate of Pr(feature i moves | motor command executed) and
also that Si(t) is the maximum likelihood estimate of Pr(motor
command executed | feature i moves). The comparison of the two

The subsections that follow test this approach for “self”
versus “other” discrimination in a number of experimental
situations. In this set of experiments, however, it is assumed
that the robot has already estimated its own efferent-afferent
delay and is only required to classify the features as either
“self” or “other” using this delay.

These test conditions are the same as the ones described
in the previous section. For all experiments that follow, the
value of the mean efferent-afferent delay was set to 1.035
and the value of β was set to 0.25. Thus, a visual movement
will be classified as temporally contingent to the last motor
command if the measured delay is between 0.776 and 1.294 s.

7.1. Test case with a single robot
The test condition here is the same as the one described
in Section 6.1 and uses the same two data sets with 500
motor babbling commands in each. In this case, however,
the robot already has an estimate for its efferent-afferent
delay and is only required to classify the markers as either
“self” or “other.” Because the two data sets don’t contain any
background markers, the robot should classify all markers as
“self.” The experiments show that this was indeed the case.

Figure 13 shows the value of the sufficiency index
calculated over time for each of the six body markers in
data set 1 (the results are similar for data set 2). As mentioned
above, these values can never be equal to 1.0 for a long period
of time due to sensory noise. In this case, the sufficiency
indexes for all six markers are greater than 0.75 (which is the
value of the threshold α).

An interesting observation about this plot is that after the
initial adaptation period (approximately 5 min) the values for
the indexes stabilize and do not change much. This suggests
that these indexes can be calculated over a running window
instead of over the entire data set with very similar results.

indexes with a constant ensures that the strength of the causal
connection in both directions meets a certain minimum threshold.
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Fig. 13. The figure shows the value of the sufficiency index
calculated over time for the six body markers. The index value
for all six markers is above the threshold α = 0.75. The values
were calculated using data set 1.
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Fig. 14. The value of the necessity index calculated over time for
each of the six body markers in data set 1. This calculation does
not differentiate between the type of motor command that was
performed. Therefore, not all markers can be classified as “self” as
their index values are less than the threshold α = 0.75 (e.g., M0
and M1). The solution to this problem is shown in Fig. 15 (see text
for more details).

The oscillations in the first 5 min of each trial (not shown)
are due to the fact that all counters and index values initially
start from zero. Also, when the values of the counters are
relatively small (e.g., 1–10) a single noisy update for any
counter results in large changes for the value of the fraction
that is used to calculate a specific index (e.g., the difference
between 1/2 and 1/3 is large but the difference between 1/49
and 1/50 is not).

Figure 14 shows the value of the necessity index calculated
over time for each of the six markers in data set 1 (the results
are similar for data set 2). The figure shows that the necessity
indexes are consistently above the 0.75 threshold only for
body markers 4 and 5 (yellow and green). At first this may
seem surprising; after all, the six markers are part of the
robot’s body and, therefore, should have similar values for
their necessity indexes. The reason for this result is that the

robot has three different joints which can be affected by
the motor babbling routine (see Algorithm 1). Each motor
command moves one of the three joints independently of
the other joints. Furthermore, one or more of these motor
commands can be executed concurrently.

Thus, the robot has a total of seven different types of motor
commands. Using binary notation these commands can be
labeled as: 001, 010, 011, 100, 101, 110, and 111. In this
notation, 001 corresponds to a motor command that moves
only the wrist joint; 010 moves only the elbow joint; and
111 moves all three joints at the same time. Note that 000
is not a valid command since it does not move any of the
joints. Because markers 4 and 5 are located on the wrist they
move for every motor command. Markers 0 and 1, however,
are located on the shoulder and thus they can be observed to
move only for four out of seven motor commands: 100, 101,
110, and 111. Markers 2 and 3 can be observed to move for
6 out of 7 motor commands (all except 001), i.e., they will
have a necessity index close to of 6/7 which is approximately
0.85 (see Fig. 14).

This example shows that the probability of necessity may
not always be computed correctly as there may be several
competing causes. In fact, this observation is well supported
fact in the statistical inference literature, see ref. [22, p. 285].
“Necessity causation is a concept tailored to a specific event
under consideration (singular causation), whereas sufficient
causation is based on the general tendency of certain event
types to produce other event types,” see ref. [22, p. 285].
This distinction was not made by Watson32, 33 as he was only
concerned with discrete motor actions (e.g., kicking or no
kicking) and it was tacitly assumed that the infants always
kick with both legs simultaneously.

While the probability of necessity may not be identifiable
in the general case, it is possible to calculate it for each
of the possible motor commands. To accommodate for the
fact that the necessity indexes, Ni(t), are conditioned upon
the motor commands the notation is augmented with a
superscript, m, which stands for one of the possible types
of motor commands. Thus, Nm

i (t) is the necessity index
associated with feature fi and calculated only for the mth

motor command at time t . The values of the necessity index
for each feature fi can now be calculated for each of the m

possible motor commands as Nm
i (t) = T m

i (t)
Cm

i (t) , where Cm
i (t) is

the total number of motor commands of type m performed up
to time t; and T m

i (t) is the number of movements for feature
fi that are temporally contingent to motor commands of type
m. The calculation for the sufficiency indexes remains the
same as before.

Using this notation, a marker can be classified as “self” at
time t if the value of its sufficiency index Si(t) is greater than
α and there exists at least one type of motor command, m,
such that Nm

i (t) > α. In other words,

fi ∈
{
Fself : if and only if ∃m : Nm

i (t) > α and Si(t) > α,

Fother : otherwise.

Figure 15 shows the values of the necessity index for
each of the six body markers calculated over time using data
set 1 and the new notation. Each graph in this figure shows
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(b) marker 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45

N
e
c
e
s
s
it
y
 I
n
d
e
x

Time (in minutes)

001
010
011
100
101
110
111

(c) marker 2
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(d) marker 3
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(e) marker 4
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(f) marker 5

Fig. 15. The figures shows the values of the necessity index, Nm
i (t), for each of the six body markers (in data set 1). Each figure shows

seven lines that correspond to one of the seven possible types of motor commands: 001, . . . , 111. To be considered for classification as
“self” each marker must have a necessity index Nm

i (t) > 0.75 for at least one motor command, m, at the end of the trial. All markers are
classified as “self” in this data set.

seven lines, which correspond to one of the seven possible
motor commands. As can be seen from the figure, for each
marker there is at least one motor command, m, for which the
necessity index Nm

i (t) is greater than the threshold, α = 0.75.
Thus, all six markers are correctly classified as “self.” The
results are similar for data set 2.

It is worth noting that the approach described here relies
only on identifying which joints participate in any given
motor command and which markers are observed to start
moving shortly after this motor command. The type of robot
movement (e.g., fast, slow, fixed speed, variable speed) and
how long a marker is moving as a result of it does not
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Table I. Values of the necessity and sufficiency indexes at the end of the trial. All markers are classified correctly as “self” or “other”.

Marker max
m

(Nm
i (t)) Si(t) Threshold α Classification Actual

M0 0.941 0.905 0.75 “self” “self”
M1 1.000 0.925 0.75 “self” “self”
M2 1.000 0.912 0.75 “self” “self”
M3 1.000 0.995 0.75 “self” “self”
M4 1.000 0.988 0.75 “self” “self”
M5 1.000 0.994 0.75 “self” “self”
M6 0.066 0.102 0.75 “other” “other”
M7 0.094 0.100 0.75 “other” “other”
M8 0.158 0.110 0.75 “other” “other”
M9 0.151 0.107 0.75 “other” “other”
M10 0.189 0.119 0.75 “other” “other”
M11 0.226 0.124 0.75 “other” “other”

affect the results produced by this approach. The following
subsections test this approach under different experimental
conditions.

7.2. Test case with two robots: Uncorrelated movements
This experimental condition is the same as the one described
in Section 6.2. The data set recorded for the purposes of
Section 6.2 was used here as well. If the self-detection
algorithm works as expected only 6 of the 12 markers should
be classified as “self” (markers M0–M5). The other six
markers (M6–M11) should be classified as “other.” Table I
shows that this is indeed the case.

Figure 16 shows the sufficiency indexes for the six body
markers of the first robot (i.e., the one trying to perform the
self versus other discrimination—left robot in Fig. 7). As
expected, the index values are very close to 1. Figure 17
shows the sufficiency indexes for the body markers of the
second robot. Since the movements of the second robot are
not correlated with the motor commands of the first robot
these values are close to zero.
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Fig. 16. The figure shows the sufficiency indexes for each of the six
body markers of the first robot (left robot in Fig. 7). As expected,
these values are close to 1, and thus, above the threshold α = 0.75.
The same is true for the necessity indexes (not shown). Thus, all
markers of the first robot are classified as “self.”

The necessity indexes for each of the 6 body markers of the
first robot for each of the seven motor commands are very
similar to the plots shown in the previous subsection. As
expected, these indexes (not shown) are greater than 0.75 for
at least one motor command. Figure 18 shows the necessity
indexes for the markers of the second robot. In this case, the
necessity indexes are close to zero. Thus, these markers are
correctly classified as “other.”

7.3. Test case with a single robot and static background
features
This test condition is the same as the one described in
Section 6.3. In addition to the robot’s body markers, six
additional markers were placed on the background wall (see
Fig. 9). Again, the robot performed motor babbling for 500
motor commands. The data set recorded for the purposes of
Section 6.3 was used here as well.

Table II shows the classification results at the end of
the test. The results demonstrate that there is a clear
distinction between the two sets of markers: markers M0–M5
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Fig. 17. The figure shows the sufficiency indexes for each of the
six body markers of the second robot (right robot in Fig. 7). As
expected, these values are close to 0, and thus, below the threshold
α = 0.75. The same is true for the necessity indexes as shown in
Fig. 18. Thus, the markers of the second robot are classified as
“other.”
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Table II. Values of the necessity and sufficiency indexes at the end of the trial. The classification for each marker is shown in the
last column.

Marker max
m

(Nm
i (t)) Si(t) Threshold α Classification Actual

M0 0.977 0.887 0.75 “self” “self”
M1 1.000 0.943 0.75 “self” “self”
M2 1.000 0.998 0.75 “self” “self”
M3 1.000 0.995 0.75 “self” “self”
M4 1.000 0.840 0.75 “self” “self”
M5 1.000 0.996 0.75 “self” “self”
M6 0.000 0.000 0.75 “other” “other”
M7 0.068 0.140 0.75 “other” “other”
M8 0.017 0.100 0.75 “other” “other”
M9 0.057 0.184 0.75 “other” “other”
M10 0.147 0.112 0.75 “other” “other”
M11 0.185 0.126 0.75 “other” “other”

are classified correctly as “self.” All background markers,
M6–M11, are classified correctly as “other.” The background
markers are labeled clockwise starting from the upper left
marker (red) in Fig. 9. Their colors are: red (M6), violet
(M7), pink (M8), tan (M9), orange (M10), light blue (M11).

All background markers (except marker 8) can be
temporarily occluded by the robot’s arm, which increases
their position tracking noise. This results in the detection
of occasional false positive movements for these markers.
Therefore, their necessity indexes are not necessarily equal
to zero. Nevertheless, by the end of the trial the maximum
necessity index for all background markers is well below
0.75 and, thus, they are correctly classified as “other.” Due to
space limitations the necessity and sufficiency plots are not
shown here. They are given in ref. [28].

7.4. Test case with two robots: Mimicking movements
This test condition is the same as the one described
in Section 6.4. The mean efferent-afferent delay for this
experiment was also set to 1.035 s. Note that this value is
different from the wrong value (1.36363 s) estimated for this
degenerate case in Section 6.4.

Table III shows the values for the necessity and sufficiency
indexes at the end of the 45 min interval. As expected, the

sufficiency indexes for all body markers of the first robot are
close to 1. Similarly, the necessity indexes are close to 1 for
at least one motor command. For the body markers of the
second robot the situation is just the opposite. Due to space
limitations the necessity and sufficiency plots are not shown
here, but they are given in ref. [28].

Somewhat surprisingly, the mimicking test condition
turned out to be the easiest one to classify. Because the second
robot always starts to move a fixed interval of time after the
first robot, almost no temporally contingent movements are
detected for its body markers. Thus, both the necessity and
sufficiency indexes for most markers of the second robot
are equal to zero. Marker 8 is an exception because it is
the counterpart to marker 2 which has the noisiest position
detection.

8. Self-Detection in a TV monitor
The experiment described in this section adds a TV monitor
to the existing setup as shown in Fig. 19. The TV image
displays the movements of the robot in real time as they are
captured by a second camera that is different from the robot’s
camera. This experiment was inspired by similar setups used
by Watson33 in his self-detection experiments with infants.

Table III. Values of the necessity and sufficiency indexes at the end of the trial. All markers are classified correctly as “self” or “other” in
this case.

Marker max
m

(Nm
i (t)) Si(t) Threshold α Classification Actual

M0 0.941 0.905 0.75 “self” “self”
M1 1.000 0.925 0.75 “self” “self”
M2 1.000 0.918 0.75 “self” “self”
M3 1.000 0.995 0.75 “self” “self”
M4 1.000 0.988 0.75 “self” “self”
M5 1.000 0.994 0.75 “self” “self”
M6 0.000 0.000 0.75 “other” “other”
M7 0.022 0.007 0.75 “other” “other”
M8 0.059 0.011 0.75 “other” “other”
M9 0.000 0.000 0.75 “other” “other”
M10 0.000 0.000 0.75 “other” “other”
M11 0.000 0.000 0.75 “other” “other”
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(b) marker 7
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(c) marker 8
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(d) marker 9
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(e) marker 10
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(f) marker 11

Fig. 18. The necessity index, Nm
i (t), for each of the six body markers of the second robot. Each figure shows seven lines that correspond

to one of the seven possible types of motor commands: 001, . . . , 111. To be considered for classification as “self,” each marker must have
a necessity index Nm

i (t) > 0.75 for at least one motor command, m, at the end of the trial. This is not true for the body markers of the
second robot shown in this figure. Thus, they are correctly classified as “other” in this case.

The experiment tests whether a robot can use its estimated
efferent-afferent delay to detect that an image shown in a TV
monitor is an image of its own body.

A new data set with 500 movement commands
was gathered for this experiment. Similarly to previous
experiments, the robot was under the control of the motor
babbling procedure. The data set was analyzed in the same

way as described in the previous sections. The only difference
was that the position detection for the TV markers was
slightly more noisy than in previous data sets. Therefore, the
raw marker position data was averaged over three consecutive
frames (the smallest number required for proper averaging).
Also, detected marker movements shorter than six frames in
duration were ignored.
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Fig. 19. Frames from the TV sequence. The TV image shows in
real time the movements of the robot captured from a video camera
that is different from the robot’s camera.

Fig. 20. Frames from the TV sequence in which some body markers
are not visible in the TV image due to the limited size of the TV
screen.
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Fig. 21. The sufficiency indexes calculated over time for the six TV
markers. These results are calculated before taking the visibility of
the markers into account.

The results for the sufficiency and necessity indexes for
the robot’s six body markers are similar to those described
in the previous sections and thus will not be discussed any
further. This section will only describe the results for the
images of the six body markers in the TV monitor, which
will be refereed to as TV markers (or TV0, TV1, . . . , TV5).

Figure 21 shows the sufficiency indexes calculated for
the six TV markers. Somewhat surprisingly, the sufficiency
indexes for half of the markers do not exceed the threshold
value of 0.75 even though these markers belong to the robot’s
body and they are projected in real time on the TV monitor.
The reason for this, however, is simple and it has to do with
the size of the TV image. Unlike the real body markers,
which can be seen by the robot’s camera for all body poses,
the projections of the body markers in the TV image can
only be seen when the robot is in specific body poses. For
some body poses the robot’s arm is either too high or too low
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Fig. 22. The sufficiency indexes calculated over time for the six TV
markers. These results are calculated after taking the visibility of
the markers into account.

and thus the markers cannot be observed in the TV monitor.
Figure 20 shows several frames from the TV sequence to
demonstrate this more clearly. The actual visibility values for
the six TV markers are as follows: 99.9% for TV0, 99.9% for
TV1, 86.6% for TV2, 72.1% for TV3, 68.5% for TV4, and
61.7% for TV5. In contrast, the robot’s markers (M0–M5)
are visible 99.9% of the time.

This result prompted a modification of the formulas for
calculating the necessity and sufficiency indexes. In addition
to taking into account the specific motor command, the
self-detection algorithm must also take into account the
visibility of the markers. In all previous test cases, all body
markers were visible for all body configurations (subject
to the occasional transient sensory noise). Because of that,
visibility was never considered even though it was implicitly
included in the detection of marker movements. For more
complicated robots (e.g., humanoids) the visibility of the
markers should be taken into account as well. These robots
have many body poses for which they may not be able to see
some of their body parts (e.g., hand behind the back).

To address the visibility issue, the following changes were
made to the way the necessity and sufficiency indexes are
calculated. The robot checks the visibility of each marker for
all frames in the time interval immediately following a motor
command. Let the kth motor command be issued at time Tk

and the (k+1)-st command be issued at time Tk+1. Let T̂k ∈
[Tk, Tk+1) be the time at which the kth motor command is no
longer considered contingent upon any visual movements.
In other words, T̂k = Tk + μ + βμ, where μ is the average
efferent-afferent delay and βμ is the estimate for the standard
deviation calculated using Weber’s law (see Section 6). If the
ith marker was visible during less than 80% of the frames
in the interval [Tk, T̂k), then the movements of this marker
(if any) are ignored for the time interval [Tk, Tk+1) between
the two motor commands. In other words, none of the three
counters (Ti(t), Ci(t), and Mi(t)) associated with this marker
and used to calculate its necessity and sufficiency indexes are
updated until the next motor command.

Figure 22 shows the sufficiency indexes for the six TV
markers after correcting for visibility. Now their values are
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(a) marker TV0
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(b) marker TV1
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(c) marker TV2
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(d) marker TV3
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(e) marker TV4
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(f) marker TV5

Fig. 23. Values of the necessity index, Nm
i (t), for each of the six TV markers. Each figure shows seven lines that correspond to one of the

seven possible types of motor commands: 001, . . . , 111. To be considered for classification as “self” each marker must have at the end of
the trial a necessity index, Nm

i (t) > 0.75 for at least one motor command, m. These graphs are calculated after taking the visibility of the
TV markers into account.

all above the 0.75 threshold. The only exception is the yellow
marker (TV4) which has a sufficiency index of 0.64 even after
correcting for visibility. The reason for this is the distortion
of the marker’s color, which appears very similar to the
background wall in the TV image. As a result, its position
tracking is noisier than before.

Figure 23 shows the necessity indexes calculated for each
type of motor command for each TV marker (after taking the
visibility of the markers into account). As can be seen from

Fig. 22 and Fig. 23, five out of six TV markers are correctly
classified as “self” because at the end of the trial they all
have a sufficiency index greater than 0.75 and a necessity
index greater than 0.75 for at least one motor command. The
only marker that was not classified as “self” was the yellow
marker for reasons explained above.

The results of this section demonstrate, to the best of my
knowledge, the first-ever experiment of self-detection in a
TV monitor by a robot. Furthermore, it is possible to build
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upon these results to achieve video-guided robot behaviors
(another first). In other words, it is possible for a robot to
detect its own image in a TV monitor and use that image to
guide its own reaching movements in order to grasp an object
that can only be seen in the TV image. See ref. [28] and [29]
for more details.

9. Summary and Conclusions
This paper described a methodology for autonomous self-
detection by a robot. The methodology is based on the
detection of the temporal contingency between motor
commands (efferent signals) and visual movements (afferent
signals) to estimate the efferent-afferent delay of the robot.
It was shown how the robot could estimate its own
efferent-afferent delay from self-observation data gathered
while the robot performs motor babbling, i.e., random
joint movements similar to the primary circular reactions
described by Piaget.23 The results demonstrate that the
self-detection algorithm performs well for the experimental
conditions described in this paper.

This paper also introduced a method for feature-level
self-detection based on the ideas proposed by Watson.33

The method maintains a probabilistic estimate across all
features as to whether or not they belong to the robot’s
body. The probabilities are estimated based on estimates of
necessity and sufficiency. The sufficiency index measures
the probability of the stimulus (visual movement) occurring
some specified amount of time after the behavior (motor
command). The necessity index estimates the probability
that the a behavior (motor command) was performed in a
temporal window before the stimulus (visual movement) was
observed. By using these two indexes the robot can overcome
the problems associated with the detection of false positives
and false negatives, which are bound to occur due to lucky
coincidences.

The experimental results show that a robot can successfully
distinguish between its own body and the external
environment. The robot was able to correctly classify
different visual stimuli as either “self” or “other.” This was
possible even when there were other moving objects in
the environment because the movements of environmental
features (including other robots) were not perfectly correlated
with the motor commands of the robot. Also, the method
proposed here was successfully used by the robot to detect its
self-image in a TV monitor, which is an original contribution
of this research.

The results show that Watson’s ideas are suitable for
robotic applications. There are some implementation details,
however, that Watson did not foresee (or maybe they were
not applicable to his experimental setups with infants). For
example, the size of the TV image imposes a restriction on
which body markers can be seen and for which body poses.
Previous studies with infants (e.g., ref. [2, 33]) have tacitly
assumed that the required features are visible at all times.
Without correcting for visibility the values of the necessity
and sufficiency indexes can exhibit at most medium levels of
contingency. Another factor that is not mentioned by Watson
is that the self-detection algorithm must take into account
the types of motor commands that are issued as not all body

markers are moved by a given motor command. Without this
correction the necessity indexes cannot reach the near perfect
values required for successful self-detection. Both of these
modifications were implemented and tested successfully on
the robot.

One limitation of the current implementation is that it
makes the assumption that visually distinct features exist
on the surface of the robot’s body and that these features can
be identified and tracked reliably. The color markers were
chosen in order to solve the tracking and correspondence
problems in a computationally efficient way. Future work
should focus on either eliminating the need for distinct
perceptual features or adding the ability to learn these
features from actual experience.

Future work can also focus on extending the computational
methods and ideas presented here to other sensory domains.
For example, it should be possible to couple the robot’s
motor commands with auditory data in order to implement
auditory self-detection. In other words, the robot should be
able to detect its own mechanical noises. Furthermore, it
should be possible to classify auditory events as either caused
by the robot or produced by the environment. Applications
to other sensory modalities such as touch should also be
straightforward.
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