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Abstract— Human beings have the remarkable ability to cat-
egorize everyday objects based on their physical and functional
properties. Studies in developmental psychology have shown that
infants can form such object categories by actively interacting
and playing with objects in their surroundings. It is infeasible to
pre-program a robot with knowledge about every single object
that might appear in a home or an office. If robots are to
succeed in human inhabited environments, they would also need
the ability to form object categories and relate them to one
another. In this work, we present an approach to interactive
object categorization in which the robot uses the natural sounds
produced by objects to form object categories. The method is
evaluated on an upper-torso humanoid robot which performs
five different manipulation behaviors (grasp, shake, drop, push,
and tap) on 36 common household objects (e.g., cups, balls, boxes,
pop cans, etc.). Using unsupervised hierarchical clustering, the
robot is able to form a hierarchical taxonomy of the objects that
it interacts with. The results show that the formed categories
capture certain physical properties of the objects and allow the
robot to quickly recognize the correct category for a novel object
after a single interaction with it.

I. I NTRODUCTION

According to psychologist Don Norman, natural sound
conveys valuable information about the things we cannot
see [1]. Natural sound also contains information about the
interaction between the physical objects that generate it [1, p.
103]. Studies in psychology and cognitive science have shown
that humans can extract the physical properties of objects from
the sounds that the objects produce [2, 3]. Unlike our sense
of vision, which is always constrained to a particular viewing
direction, our auditory sense allows us to infer events in the
world that are often outside the reach or range of other sensory
modalities [1, p. 103].

A robot operating in a human-inhabited environment should
be able to use sound as a source of information about events in
its immediate surroundings. For example, such a robot could
use sound to recognize important events in the home or office
(e.g., an object falling to the ground) without the need for
a direct line of sight. Like humans, humanoid robots will
undoubtedly interact with objects (whether purposefully or by
accident) outside of their field of view - in which case auditory
input may be the primary source of information about the
nature of the object.

This work addresses the problem of how a robot can
use acoustic information to learn about common household
and office objects and their physical properties. Inspired by
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Fig. 1. The humanoid robot used in the experiments. a) the robotat the time
the experiments were conducted; b) the robot in its current form.

principles and insights from developmental psychology, we
present a framework in which the robot learns about natural
sounds of physical objects through its own active interaction
with them. Several key issues are addressed:

• Can a robot learn to recognize a large set of objects using
only acoustic information?

• Can a robot form object categories using natural sound?
• Do these learned object categories capture some of the

physical properties (e.g., material type) of the objects?

To investigate these questions, we used a humanoid robot
(see Figure 1) which interacts with 36 common objects by
performing five different behaviors on them: grasping, shaking,
dropping, pushing, and tapping. The robot represents each de-
tected sound as a sequence of state activation patterns through
a Self-Organizing Map(SOM). The SOM allows the robot
to turn the high-dimensional sound input into a sequence of
tokens from a finite alphabet (i.e., the set of nodes in the map).
Using supervised learning methods, the robot is able to learn
models that can perform object recognition using sound alone,
as well as detect certain physical properties of the object (e.g.,
material type). Furthermore, using an unsupervised approach,
the robot is able to form a hierarchical object categorization
(i.e., a taxonomy) of the objects it explored, which captures
some of their physical properties.



II. RELATED WORK

A. Psychology

The work presented in this paper is directly inspired and
motivated by studies and research in psychology and cognitive
science. In particular, the ecological approach to auditory
perception provides the insight thateveryday listeningconsists
of perceiving the properties of a sound’s source (e.g., a car
engine, footsteps, etc.), rather than the properties of a sound
itself (e.g., pitch, tone, etc.) [2]. Hence, everyday listening is
an important source of information - it allows us to perceive
events outside our field of view, as well as recognize the
physical properties of the objects involved.

These insights have been confirmed by numerous experi-
mental studies involving human subjects. For example, Warren
et al. [4] demonstrate that humans are extremely good at
categorizing individual sound tokens extracted frombouncing
andbreakingacoustic events. Furthermore, sound also allows
us to perceive certain physical properties of objects: Grassi
et al. [3] show that human subjects were able to provide
reasonably good estimates for the size of a ball dropped on
plates by simply hearing the impact sound. Giordanoet al. [5]
conducted a study which demonstrated that human beings can
accurately recognize an object’s material (one of wood, glass,
steel and plexiglass) when listening to the sounds generated
when the object is struck. Motivated by these examples, the
work in this paper investigates methods that would allow a
robot to use sound as a source of information about objects
in a similar manner.

B. Robotics

Despite the importance of natural sound, there have been
relatively few studies examining how a robot can use sound
as a source of information about objects, and their physical
properties. One of the first studies that explore this topic was
conducted by Krotkovet al. [6] in which the robot identifies
the material type (aluminum, brass, glass, wood, and plastic)
of several objects by probing them with its end effector. In
a similar fashion, Richmondet al. [7] [8] have developed a
robot platform for measuring contact sounds between a robot’s
end-effector and objects of different materials. By modeling
the spectrogram of the sounds using spectrogram averaging
across multiple trials, the robot was able to detect different
types of materials from contact sounds.

Torres-Jaraet al. [9] demonstrated a robot that can recognize
objects using the sounds generated when tapping on them
with its end effector. After tapping on a novel object, the
spectrogram of the detected sound is matched to one that is
already in the training set which results in a prediction forthe
object’s type. This allowed the robot to correctly recognize
four different objects.
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Fig. 2. The 36 objects used in the experiments (not shown to scale). First
column, from top to bottom: pasta box, paper cup, box of paperclips, metal
cup, metal plate, metal flange, hockey puck, plastic green cup,plastic green
ball, hard plastic bottle, styrofoam eraser, egg carton, detergent bottle, soft
plastic bottle, empty cracker box, cosmetic bottle, coffee jar, small pill bottle;
Second column: wooden stick, wooden plank, wooden cube, vitamin C bottle,
tupperware (with play block inside), metal box, tennis ball,box of thumbtacks,
box of spoons, empty shampoo bottle, box of screws, plastic container, pop
can (Red Bull), pink plastic cup, pop can (Mt. Dew), rubber ball, orange
plastic ball, mixed nuts jar.



These previous studies, however, involved a relatively small
number of objects and exploratory robot behaviors. In our pre-
vious work [10] we have shown that sound-based object recog-
nition can be scaled up to a larger number of objects across
multiple behaviors. Our robot used three machine learning
methods (k-Nearest Neighbor, Support Vector Machine and
Bayesian Network) to perform object recognition on eighteen
different objects by applying three different behaviors (push,
grasp, and drop). Features extracted from the spectrogram
of each sound were used as input to the robot’s recognition
model. The study in [10] was expanded in [11] to include an
even larger number of objects (36) and two new behaviors -
tapping and shaking. The robot was able to recognize the type
of object and the type of interaction (i.e., behavior) usingonly
the detected sound, and the sound feature representation was
shown to be superior to that of [10].

The experiments in this paper use the dataset and sound
representation proposed in [11] to show how a robot can not
only perform acoustic-based object recognition, but also form
object categories and detect the physical properties of objects
from natural sound.

III. EXPERIMENTAL SETUP

A. Robot

The robot used in this study is an upper-torso humanoid
robot, with the 7-DOF Barrett Whole Arm Manipulator
(WAM) and the 3-finger Barrett Hand as its end effector (see
Fig. 1.a). The robot arm is controlled in real time from a Linux
PC at 500 Hz over a CAN bus interface.

The robot is equipped with a Rode NT1-A microphone,
also seen in Fig. 1.a. Sound input was recorded at 44.1 KHz
using the Java Sound API over a single 16 bit channel. The
microphone’s output was routed through an ART Tube MP
Studio pre-amplifier.

B. Objects

The set of objects,O, that the robot interacts with consists
of 36 different objects, shown in Fig. 2. The objects include
common household items such as balls, cups, containers,
bottles, boxes, etc. Some of the objects (e.g., the coffee jar, the
box of thumbtacks, etc.) have contents inside of them which
produce sounds when shaken. The objects are made of varying
materials including metal, plastic, rubber, paper, and wood.
The selection criteria for the objects were: must be graspable
by the robot, must not contain liquids (even if they could),
and must not be fragile (i.e., no glass objects).

Each object was manually labeled with two labels corre-
sponding to two different object properties: 1) the object’s
material type (out of five possible categories); and 2) whether
or not the object has contents inside of it (either yes or no).In
the case of the material property, several different materials
were considered:metal, wood, plastic, and paper. Objects
with unique materials were put in the category ofother. It is
important to note that the labeling, even though performed by a
human, should be considerednoisysince some objects contain
more than one material. Furthermore, while only 5 material

G
ra

sp
S

ha
ke

D
ro

p
P

us
h

Ta
p

Before After

Fig. 3. Beforeandafter snapshots of the five behaviors used by the robot.

categories were considered, the actual number of materials
present is much higher - for example, the plastic used to make
the plastic bottle is quite different from the plastic used to
make the plastic ball.

C. Behaviors

The robot’s set of behaviors,B, consists of five exploratory
behaviors that the robot performs on each object:grasp, shake,
drop, push, and tap. The behaviors were implemented using
the Barrett WAM API. Fig. 3 showsbeforeand after images
for each exploratory behavior. The recording of each sound
was automatically initiated at the start of each behavior and
stopped once the behavior was completed.

IV. LEARNING METHODOLOGY

A. Feature Extraction using a Self-Organizing Map

The robot in this study employs the sound feature represen-
tation introduced in [11], repeated here for clarity. Each sound,
Si, is represented as a sequence of nodes in a Self-Organizing
Map (SOM) [12]. To obtain such a representation, features
from each sound were first extracted using the log-normalized
Discrete Fourier Transform (DFT). The DFT was computed
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Fig. 4. Audio signal processing and sound representation: a) The raw sound
recorded after the robot performs theshakebehavior on the Vitamin C bottle.
b) Computed spectrogram of the sound. The horizontal axis denotes time,
while the vertical dimension denotes the 33 frequency bins. Orange-yellow
color indicates high intensity. c) The sequence of states inthe SOM for
the detected sound, obtained after each column vector of the spectrogram
is mapped to a node in the SOM. The length of the sequenceSi is li, which
is the same as the length of the horizontal time dimension of the spectrogram
shown in b). Each sequence tokensi

j ∈ A, whereA is the set of SOM nodes.
Figure adapted from [11].

using 25 + 1 = 33 frequency bins with a window of26.6
milliseconds (ms), computed every10.0 ms. The SPHINX4
natural language processing library (with default parameters)
was used to compute the DFT [13]. Fig. 4 a) and b) show
an sample sound wave and the resulting spectrogram after
applying the Fourier transform. The spectrogram encodes the
intensity level of each frequency bin (vertical axis) at each
given point in time (horizontal axis).

Let Pi be a spectrogram, such thatPi = [ci
1, c

i
2, . . . , c

i
li
]

where eachci
j ∈ R

33 (i.e., ci
j is the 33-dimensional column

feature vector of the spectrogram at time slicej) and li is
the number of column vectors in the spectrogramPi. Given a
collection of spectrograms,P = {Pi}

K
i=1, a set of column

vectors is sampled from them as an input dataset used to
train a two dimensional SOM of size 6 by 6, i.e., containing
a total of 36 nodes. The SOM is trained with input data
points,cj

i ∈ R
33 which represent the intensity levels for each

of the 33 spectrogram frequency bins at a given point in
time. Due to memory and runtime constraints, only1/8 of
the total available column vectors inP, sampled at random,
were used to train the SOM. The SOM was trained using the
Growing Hierarchical SOM toolbox for Java [14]. The default

parameters for a non-growing 2-D single layer map. Figure 5
gives a visual overview of the training procedure.

After training the SOM, each spectrogram,Pi, is mapped to
a sequence of states,Si, in the SOM by mapping the columns
of Pi to nodes in the map. To do this, each column spectrogram
vector ci

j ∈ R
33 is mapped to the node in the SOM with the

highest activation value given the inputci
j . Thus, each sound

is represented as a sequence,Si = si
1s

i
2 . . . si

li
, where each

si
k ∈ A, A is the set of SOM nodes, andli is the number of

column vectors in the spectrogram, as shown in Fig. 4. In other
words, each sequenceSi consists of a sequence of activated
states in the SOM.

The machine learning algorithm used in this study requires
a symmetric similarity function that can compute how similar
two sequencesSi andSj are. Computing similarity measures
between a pair of sequences over a finite alphabet (e.g., strings)
is a well established area of computer science, resulting
in a wide variety of algorithms for exact and approximate
string matching [15]. In this study, we define a similarity
function, NW (Si, Sj), between two such sequences to be
the normalized global alignment score using the Needleman-
Wunch alignment algorithm [16, 15]. The global sequence
alignment algorithm has been used for string comparison in
various domains, such as bioinformatics, and natural language
processing, among others [15]. To compute the score between
two sequences, a substitution cost must be defined over each
pair of tokens in the alphabet. In this study, the substitution
cost between two statessp and sq is set to the Euclidean
distance between the corresponding SOM nodes (each of
which is described by itsx andy coordinate in the 2-D plane)
in the map.

B. Data Collection

Let B = [grasp, shake, drop, push, tap] be the robot’s set of
exploratory behaviors. The robot performs 10 trials with each
of the 36 objects for each of the 5 behaviors, resulting in a
total of 5× 10× 36 = 1800 interactions. During theith trial,
the robot records a data triple of the form(Bi, Oi, Si), where
Bi ∈ B is the performed behavior,Oi ∈ O is the object in the
interaction, andSi = si

1s
i
2 . . . si

li
is the sequence of activated

SOM nodes over the duration of the sound. In other words,
each triple,(Bi, Oi, Si), indicates that soundSi was detected
when performing behaviorBi on objectOi.

C. Learning Algorithm

The first task of the robot is to learn a model such that
given a sound sequence,Si, the robot can estimate the object
class,Oi, present in the interaction that generated the sound
Si. In other words, given a soundSi, the robot should be able
to estimatePr(Oi = o|Si) for each objecto ∈ O.

To estimate these probabilities the robot uses the k-Nearest
Neighbor machine learning algorithm. K-Nearest Neighbor (k-
NN) is a memory-basedlearning algorithm which does not
build an explicit model of the data. Instead, it stores all labeled
training data points and uses them when the model is queried
to make a prediction [17, 18].
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Fig. 5. Illustration of the procedure used to train the Self-Organizing Map
(SOM). Given a set of spectrograms, a set of column vectors are sampled at
random and used as a dataset for training the SOM. Figure adapted from [11]

When making a prediction on a test data point, k-NN finds
its k closest neighbors in the training set, i.e., given a test data
point Si, k-NN finds thek training data points most similar to
Si. The algorithm returns a class label prediction which is a
smoothed average of the labels of the selected neighbors. As
in our previous work [11], the normalized global alignment
score,NW (Si, Sj), is used as the similarity metric between
two data pointsSi andSj .

In the experiments in this study,k was set to 3. An estimate
for Pr(Oi = o|Si) is computed by counting the class labels
of thek neighbors. For instances, if two of the three neighbors
have object class labelplastic ball then Pr(Oi = plastic
ball|Si) = 2

3
. Similarly, if the class label of the remaining

neighbor isplastic cup, thenPr(Oi = plastic cup|Si) = 1
3
.

V. OBJECTCATEGORIZATION

In this study, the robot uses its object recognition model to
acquire object categories using an unsupervised hierarchical
clustering approach. The intuition behind the method used by
the robot is that if a set of objects make very similar sounds,
it will be difficult for the robot to detect which precise object
from the set was present during the interaction. For example,
it may be the case that the robot’s recognition model outputs
rubber ball in many of the cases when the actual object in
the interaction istennis ball. In such a scenario, the two
objects should be considered similar and hence, grouped into
a category (see Figure 6). Following, we show how: 1) the
robot uses its recognition model to construct a pairwise object
similarity matrix; and 2) how given such a similarity matrix,
the robot constructs a hierarchical clustering of the objects.
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Fig. 6. A simple example of how a confusion matrix can be used as a way
to measure object similarity. Theijth entry in the confusion matrix specifies
how often the sound generated by objecti was classified as being generated
by object j (out of 50 possible trials, 10 for each of the 5 behaviors). For
example, the robot’s recognition model outputsrubber ball in several of the
trials in which the actual object in the interaction istennis ball. Similarly,
the robot also confuses the two pill bottles with each other,and hence, they
should be considered similar in terms of the sounds they generate. Section V
describes how the confusion matrix is used to compute a symmetricpair-wise
similarity measure between each pair of objects, which in turnis used as an
input to a hierarchical clustering algorithm.

A. Object Similarity Matrix

To compute an object similarity matrix, the robot uses the
k-NN object recognition model (described in the previous
section) as follows. LetD = {(Bi, Oi, Si)}

N
i=1 be the set of

trial data available to the robot. Next, the robot evaluatesits
own object recognition model by performing 10-fold cross-
validation on the available data. The result of this procedure
is a |O| × |O| confusion matrixC, where the value in the
entry Cij indicates how often objecti was predicted as object
j. To construct a symmetric similarity matrix between each
pair of objects, let the matrixC′ be defined such that each
entry C ′

ij = 0.5 ∗ Cij + 0.5 ∗ Cji. Finally, the values in the
resulting matrix are scaled so that each entry is in the range
between0.0 and1.0, and the diagonal values are set to1.0. The
result of this procedure is a symmetric similarity matrixW.
Figure 6 visualizes how a confusion matrix can be used as a
way to detect pair-wise object similarity. The next subsection
describes how the resulting similarity matrixW is used as
input to a hierarchical clustering algorithm.
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Fig. 7. Visualization of the learned hierarchical object categorization, obtained after recursively applying the Spectral Clustering algorithm using the acquired
object similarity matrix. The similarity matrix was obtained from the confusion matrix after the robot’s k-NN object recognition model was evaluated using
10-fold cross-validation. Nine object categories are learned, many of which group objects either by their material type,or by whether or not the objects have
contents inside of them.

B. Hierarchical Clustering

To construct an hierarchical object categorization, the robot
uses theSpectral Clusteringalgorithm which falls into the
family of graph-basedor similarity-basedclustering algo-
rithms [19]. Given a similarity matrix,W, the algorithm
partitions the input data points (i.e., the objects) into disjoint
clusters by exploiting the eigenstructure of the matrixW.
Because finding an optimal graph partitioning is NP-complete,
Shi and Malik [20] proposed an approximation that optimizes
the normalized cutobjective function. The algorithm, as ap-
plied to our problem, can be summarized in the following
steps:

1) Let Wn×n be the symmetric matrix containing the
similarity score for each pair of objects.

2) Let Dn×n be the degree matrix ofW, i.e., a diagonal
matrix such thatDii =

∑
j Wij .

3) Solve the eigenvalue system(D − W)x = λDx for
the eigenvector corresponding to the second smallest
eigenvalue and use it to bi-partition the graph.

4) If necessary, recursively bi-partition each subgraph ob-
tained at Step 3.

Hence, the algorithm recursively bi-partitions the graph
(which is induced by the similarity matrixW) until a stopping

criterion in reached, producing a tree structure. In this study,
the algorithm is recursively applied until the size of each
subgraph falls down to 5 or less objects (the number was
chosen heuristically based on the input size (36 objects) such
that each object category will consist of at least 3 objects).
The output of this procedure is a hierarchical taxonomy (i.e.,
a tree), T , which specifies the learned hierarchical object
categorization.

VI. RESULTS

A. Learned Object Categories

Figure 7 shows the learned hierarchical object categorization
after obtaining the similarity matrix and recursively applying
spectral clustering. At first glance, some of the categories
appear to capture certain physical properties of the objects: for
example, clusters 1 and 2 (which are siblings in the treeT )
consist almost exclusively of metal objects. Cluster 3, on the
other hand contains five of the objects that have small contents
inside of them (e.g., pill bottles and boxes of thumbtacks,
screws, and paperclips). Cluster 4 contains three out of the
four balls in the dataset. All except one of the paper objectsin
the set are grouped together in Cluster 5. As expected, the two
plastic cups (which differ only in size) are grouped together,
along with a plastic shampoo bottle in Cluster 6.



TABLE I

INFORMATION GAIN INDUCED BY THE LEARNED OBJECT

CATEGORIZATION WITH RESPECT TO TWO PHYSICAL PROPERTIES

Object Entropy Avg. leaf entropy Avg. leaf entropy
property at root (learned) (random)

Material 1.40 0.42 ± 0.32 0.86 ± 0.25

Contents 0.56 0.18 ± 0.27 0.40 ± 0.29

Cluster 7 contains mostly wooden objects, while Cluster 8
contains exclusively plastic objects. The last one, Cluster 9,
appears to simply hold the remaining 4 objects, which vary by
material (three plastic and one metal) and contents (the plastic
tupperware has contents, while the rest do not).

It is still desirable, however, to have a quantitative measure
that captures the quality of the learned object taxonomy. Todo
that, we look at how well the taxonomy captures two physical
properties of the objects: 1) their material, and 2) whetheror
not they have contents inside them.

Following, each object is manually given a label correspond-
ing to one of five material classes:plastic, paper, wood, metal,
andother(Figure 2 shows how each object was labeled). Given
a set of objectsO′ (which may be a sub-set of the full setO),
let pi for i = 1, . . . , n be the estimated probability that an
object drawn from that set will be made of theith material
type. Let H ′

n = −
∑n

i=1 pilog2(pi) be theShannon entropy
for the setO′. If the learned categorizationT captures the
physical property of material, then the average entropy forthe
objects in each leaf node inT should be significantly lower
than the entropy at the root node. In other words, the taxonomy
will induce an information gainwith respect to the physical
property of material. Similarly, the taxonomy should induce
such an information gain with respect to the second physical
property we examine, which is whether or not an object has
contents inside of it.

Naturally, some information gain will be the result of the
fact that the leaf nodes will contain significantly less objects
than the root node. To control for this, the entropies at the leaf
nodes are also computed for a random object categorization,
obtained by randomly permuting the similarity matrixW used
to compute the hierarchical clustering. This procedure was
repeated 10 times, in order to compute robust estimates for
the mean leaf entropy and its standard deviation. In the case
of the learned object categorization, the mean and standard
deviations were estimated from the nine leaf nodes in the
learned taxonomy.

The results of this test are summarized in Table I. As
expected, there is substantial information gain induced by
the learned categorization with respect to the two physical
properties considered. More importantly, the informationgain
of the learned object taxonomy is greater than that of a
random object categorization. This result shows that object
categorization using acoustics can capture some of the physical
properties of the objects that the robot is exposed to.

TABLE II

RECOGNITION ACCURACY WITH K-NN MODEL

Behavior Object Recognition Category Recognition

Grasp 67.89 % 81.94 %
Shake 49.47 % 60.00 %
Drop 85.79 % 94.44 %
Push 82.89 % 93.06 %
Tap 78.15 % 87.22 %

Average 72.84 % 83.33 %

B. Object Category Recognition

Next, the robot’s k-NN model is evaluated on how well it
can detect the object in each interaction from the detected
sound. Similarly, the robot is also evaluated on how well
it can recognize the test object’s category (i.e., which leaf
node in the learned taxonomyT does the object belong to).
The performance of the models is reported in terms of the
percentage of correct predictions (i.e., accuracy) where:

% Accuracy = # correct predictions

# total predictions
× 100

The accuracies in both cases are estimated using 10-fold
cross validation. The results are summarized in Table II. Asa
reference, the expected change accuracy for object recognition
is 1/36 ≈ 2.7%. The robot is best able to recognize the object
in the drop, push, and tap interactions. However, even when
shaking the objects, the robot is able to achieve recognition
accuracy substantially better than chance since many of the
objects have distinct contents inside of them which make noise
when shaken.

The results also show that the robot achieves high recog-
nition accuracy when predicting the category of the object as
opposed to the object itself. On average, there is a≈ 10%
improvement over the object recognition accuracy. This result
indicates that even when the robot is unable to recognize the
precise object in the interaction, it can still detect the category
of that object with high accuracy.

C. Detecting the Physical Properties of Objects

In this experiment, the task of the robot is to detect
two physical properties of the object from the sound that it
generates. The two properties are: 1) the object’s material
type (5 class classification problem), and 2) whether or not
the object has contents inside of it (binary classification prob-
lem). This experiment tests how well the robot can perform
acoustic recognition when the objects’ labels are provided
externally (i.e., by a human), as opposed to the robot’s own
object categorization. This experiment is inspired by studies
in psychology [3], which show that human beings can often
perceive certain physical properties of the objects (such as
size and material) from the sound that the objects generate
during physical interactions. As in the previous experiment,
the performance accuracies are estimated using 10-fold cross-
validation.

Table III shows the results of this experiment. For reference,
the chance recognition accuracies for the two physical prop-



TABLE III

RECOGNITION OFPHYSICAL PROPERTIES WITH K-NN MODEL

Behavior Material (five classes) Contents (yes/no)

Grasp 84.17 % 91.38 %
Shake 59.17 % 95.55 %
Drop 92.50 % 98.61 %
Push 94.17 % 97.22 %
Tap 90.28 % 96.11 %

Average 84.06 % 95.78 %

erties are 52.78 % and 75.00 % respectively for the object’s
material type and contents (the chance rates are obtained by
labelling each test data point with a class label sampled from
the prior class distribution). The results indicate that the robot
is able to recognize the material of the test object, as well
as whether the object has contents inside of it substantially
better than chance. The material of the objects is most easily
detected when they are dropped or pushed. It is important to
note that while only 5 material classes were considered, the
actual number of materials present in the selected objects is
much higher. For example, there are objects with diffierent
types of plastic (e.g., soft plastic bottle vs. hard plasticball)
and different types of paper (egg-carton vs. pasta box vs.
styrofoam eraser). Yet, the robot is able to achieve a reasonably
high recognition accuracy. These results confirm that natural
sound contains invariant information regarding the physical
properties of objects.

VII. CONCLUSIONS ANDFUTURE WORK

This paper described how a robot can couple exploratory
behaviors on objects with the natural sounds produced during
these interactions in order to accurately recognize and catego-
rize different household objects. The robot used its acoustic-
based recognition model to detect pair-wise object similarity,
allowing it to construct a full hierarchical object categorization
in an unsupervised manner. The learned object categorization
was quantitatively shown to capture two physical object prop-
erties: 1) the object’s material type, and 2) whether or not
the object has contents inside of it. Finally, we showed that
the robot can detect these two object properties using acoustics
alone. Hence natural sound has an important role to play in the
robot’s grounded representation of physical object properties.

The robot represented sound input through the use of a Self-
Organizing Map, which helped reduce the dimensionality of
each sound. The robot was evaluated on 36 different household
objects, using 5 different exploratory behaviors: grasp, shake,
drop, push, and tap. The number of objects and behaviors
show that acoustic recognition can be scaled up to a large set
of objects, across multiple different exploratory behaviors.

The work presented here demonstrated some initial steps
that allow a robot to learn about natural sound through its own
interaction with the world. However, several key questionsre-
main: how can a robot use its acquired models of natural sound
to recognize interactions performed by others (e.g., humans)?
How can the proposed acoustic-based object representationbe

generalized to include sensory input across multiple modalities
(e.g., vision, proprioception, etc.)?

For future work, we plan to evaluate how well the robot can
use its learned representation to reason about not only its own
interactions with objects, but also those of others. A household
robot that can detect an object breaking from across the hall
will be far more useful than one that can only detect such an
event through a direct line of sight. Furthermore, the proposed
representation should be integrated with multiple modalities.
For example, the sound of an object being dropped on the
floor not only contains information about the event and the
object, but also about the object’s actual movement (i.e., falling
down). Extending the object categorization method to multiple
modalities and interactions will allow a robot to learn precisely
such audio-visual associations.
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