
Unsupervised Audio Speech Segmentation Using the

Voting Experts Algorithm

Matthew Miller
Developmental Robotics Laboratory

Iowa State University
mamille@iastate.edu

Alexander Stoytchev
Developmental Robotics Laboratory

Iowa State University
alexs@iastate.edu

Abstract

Human beings have an apparently innate ability to segment continuous
audio speech into words, and that ability is present in infants as young as
8 months old. This propensity towards audio segmentation seems to lay
the groundwork for language learning in human beings. To artificially
reproduce this ability would be both practically useful and theoretically
enlightening. In this paper we propose an algorithm for the unsuper-
vised segmentation of audio speech, based on the Voting Experts (VE)
algorithm, which was originally designed to segment sequences of dis-
crete tokens into categorical episodes. We demonstrate that our proce-
dure is capable of inducing breaks with an accuracy substantially greater
than chance, and suggest possible avenues of exploration to further in-
crease the segmentation quality. We also show that this algorithm can
reproduce results obtained from segmentation experiments performed
with 8-month-old infants.

1 Introduction

Human beings have an apparently innate ability to segment continuous spoken speech into words,
and that ability is present in infants as young as 8 months old [1]. Presumably, the language learning
process begins with learning which utterances are tokens of the language and which are not. Several
experiments have shown that this segmentation is performed in an unsupervised manner, without
requiring any external cues about where the breaks should go [1][2]. Saffran and others have sug-
gested that humans use statistical properties of the audio stream to induce segmentation. An accurate
characterization of this ability would presumably be a theoretical and practical breakthrough in au-
tomatic language processing. Along those lines, this paper proposes a method for the unsupervised
segmentation of spoken speech, based on an algorithm designed to segment discrete time series into
meaningful episodes. We suggest that our model may capture the human process of segmentation
in some small way. To substantiate our claim, we replicate an experiment that was performed on 8
month old infants, and show that our algorithm performs similarly to the children.

Paul Cohen has suggested an unsupervised algorithm called Voting Experts (VE) that uses the in-
formation theoretical properties of internal entropy and boundary entropy to segment discrete time
series into categorical episodes [3]. VE has previously demonstrated, among other things, the ability
to accurately segment plain text that has had the spaces and punctuation removed [4]. More gen-
erally, Cohen has suggested that the information theoretic model of VE may be a useful model for
human chunking, i.e., human beings might be using these same information theoretical markers to
segment sensory data. In this paper we extend VE to work on audio data. The extension is not a triv-
ial or straightforward one, since VE was designed to work on sequences of discrete tokens and audio
speech is continuous. We then use this algorithm to reproduce Saffran et al.’s original experiments
[1] and show that VE can model their original results.

1



2 Related Work

Our work is directly inspired by the psychological studies of audio segmentation in human beings
[1][2][5]. These studies show us that the unsupervised segmentation of natural language is pos-
sible, and does not require prohibitively long exposure to the audio stream. In the original infant
experiments the infants were played a stimulus stream consisting of three-syllable nonsense words
appearing in random order [1]. Those words were tupiro, golabu, bidaku and padoti. The stream
was generated by a speech synthesizer and contained no audio cues as to the locations of the word
boundaries. That is, there were no substantial pauses between words, or any variation in the tone or
speed of the artificial voice. The only indication of the word breaks was the statistical relationships
between the phonemes.

After the infants were acclimated to this audio stream, they were played a second stimulus stream
consisting of a single three syllable word repeated over and over. In some cases that word was drawn
from the original “language,” and in other cases it was not. By observing the reaction of the infants,
specifically their listening times, the experimenters were able to demonstrate that the infants had
learned the words and word boundaries of the first stream.

This is an amazing conclusion, especially given the short duration of the stimulus streams and their
lack of prosodic information. This gives us an insight into one way in which human beings begin to
learn language. We use statistical properties of audio streams to break them into chunks. The goal
of this paper is to model that process and to suggest that an artificial system might also be able to
put that model to good use.

However, these studies do little to direct us towards a functioning algorithm capable of such a feat.
Conversely, there are several related algorithms capable of segmenting categorical time series into
episodes [6][7][8][9][10][11]. But these are typically supervised algorithms, or not specifically
suited for segmentation. In fact, many of them have more to do with finding minimum description
lengths of sequences than with finding logical segmentations.

As mentioned, this work makes use of the Voting Experts algorithm [3], which was designed to
do with discrete token sequences what we are trying to do with real audio. That is, given a time
series, specify all of the logical breaks to segment the series into categorical episodes. One major
contribution of this paper is transforming an audio signal so that the VE model can be applied to it.

3 Overview of the Voting Experts Algorithm

The VE algorithm is based on the hypothesis that natural breaks in a sequence are usually accompa-
nied by two information theoretic signatures [3][12]. These are low internal entropy of chunks, and
high boundary entropy between chunks. A chunk can be thought of as a sequence of related tokens.
For instance, if we are segmenting text, then the letters can be grouped into chunks that represent
the words.

Internal entropy can be understood as the surprise associated with seeing a group of objects together.
More specifically, it is the negative log of the probability of those objects being found together.
Given a short sequence of tokens taken from a longer time series, the internal entropy of the short
sequence is the negative log of the probability of finding that sequence in the longer time series. So
the higher the probability of a chunk, the lower its internal entropy.

Boundary entropy is the uncertainty at the boundary of a chunk. Given a sequence of tokens, the
boundary entropy is the expected information gain of being told the next token in the time series.
This is calculated as HI(c) = −

∑m

h=1
P (h, c)log(P (h, c)) where c is this given sequence of to-

kens, P (h, c) is the conditional probability of symbol h following c and m is the number of tokens
in the alphabet. Well formed chunks are groups of tokens that are found together in many different
circumstances, so they are somewhat unrelated to the surrounding elements. This means that, given
a subsequence, there is no particular token that is very likely to follow that subsequence.

In order to segment a discrete time series, VE preprocesses the time series to build an n-gram trie,
which represents all its subsequences of length less than or equal to n. It then passes a sliding
window of length n over the series. At each window location, two “experts” vote on how they
would break the contents of the window. One expert votes to minimize the internal entropy of the
induced chunks, and the other votes to maximize the entropy at the break. The experts use the trie
to make these calculations. After all the votes have been cast, the sequence is broken at the “peaks”

2



- locations that received more votes than their neighbors, so long as the total votes at the location
exceeded a threshold Vt. For all of our experiments we chose n = 7 and Vt = 5. This algorithm can
be run in linear time with respect to the length of the sequence, and can therefore be used to segment
very long sequences. For further technical details of VE, or a discussion of the roles of Vt and n, see
the journal article [3].

It is important to emphasize the VE model over the actual implementation of VE. The goal of our
work is to segment audio speech based on information theoretic markers, and to evaluate how well
they work for this task. In order to do this, we use a particular implementation of Voting Experts,
and transform the audio data into a format it can use. This is not necessarily the best way to apply
this model to audio segmentation, but it is one way to approach the problem.

The model of segmenting based on low internal entropy and high boundary entropy is also closely
related to the work in psychology mentioned earlier [2]. Specifically, they suggest that humans
segment audio streams based on conditional probability. That is, given two phonemes A and B,
we conclude that AB is part of a word if the conditional probability of B occurring after A is high.
Similarly, we conclude that AB is not part of a word if the conditional probability of B given A is low.
The information theoretic markers of VE are simply a more sophisticated characterization of exactly
this idea. Internal entropy is directly related to the conditional probability inside of words. And
boundary entropy is directly related to the conditional probability between words. This relationship
motivates the claim that the VE model at least partially captures the human chunking process.

4 Datasets

We obtained two stimulus streams from the infant speech segmentation experiments performed by
Saffran et al.[1]. Each audio stream is 60 seconds long and contains roughly 90 “words.” The first
stream (stream A) was composed, as described above, of randomly ordered instances of the four
words tupiro, golabu, bidaku and padoti. The second stream (stream B) was composed of random
instances of the words tilado, dapiku, pagotu and burobi. The second language is composed of the
same syllables as the first, but arranged so that the concatenation of words in either language cannot
produce a word from the other. So in some sense these two audio streams are disjoint.

In the original experiment, the infants were played a stream similar to stream A, and then tested on
a single word repeated over and over. This method is useful when evaluating infants because it is
simple. However, we can perform a more sophisticated evaluation of our model since it produces
explicit break locations. We found it more informative to test our model by training it on one
stimulus stream and then testing it on the other. This provides more information on the performance
of the model, but the results can clearly be compared to those of the infant experiments.

In order to evaluate the segmentations induced by our algorithm, we manually recorded the times-
tamps of all phoneme and word boundaries in the two stimulus streams. It is impossible for this
process to be absolutely precise, since spoken audio is not actually composed of distinct phonemes.
Many times the sound morphs from one allophone to the next, providing no clear boundary between
them. However, the speech in the streams used by Saffran et al. is extremely regular, which allowed
us to consistently place breaks at the same location in each word. The resulting “answer keys” were
as accurate as possible, however the true breaks in a word are, after a certain point, a matter of opin-
ion. This is a fundamental problem in the evaluation of any speech segmentation. We will discuss
how we dealt with these problems in the section entitled Evaluation Methodology.

5 Audio Segmentation Algorithm

The following three steps are required in order to segment an audio stream using the VE algorithm.
First, the audio stream must be temporally discretized. Second, those discretized values must be
tokenized by labeling them based on some small alphabet. Finally, the VE algorithm can segment
the token sequence. The induced breaks must then be translated back into temporal break locations
in the original audio stream.

5.1 Discretization

We used the raised cosine windower, the pre-emphasizer and the discrete Fourier transform in the
Sphinx software package to obtain the spectrogram of each stimulus stream. This is a very standard
procedure, and a technical explanation of each of these steps is available in the Sphinx documenta-

3



tion [13]. We performed the Fourier Transform at 512 points. However, since we are only concerned
with the power of the audio signal at each frequency level, and not the phase, the points are redun-
dant. Only the first 257 points contain unique information. This transformation converted a 16kHz
mono audio file into a sequence of power spectrums, representing the intensity information in 257
frequency bins, taken every 10ms. These power spectrums can be viewed as a spectrogram repre-
senting the intensity information over time (see Figure 1).

5.2 Tokenization

The FFT converts the audio into a discrete sequence of continuous real-valued vectors. These vectors
must then be tokenized. The method of tokenization will certainly affect the overall segmentation
quality, and there are a broad range of techniques that could be used. We chose a fairly simple,
unsupervised method that was found to work. This step could certainly be improved to the benefit of
the overall segmentation. However, our aim is merely to test the model and demonstrate its potential.
In order to do so, we trained a Self-Organizing Map (SOM) [14] on each audio stream’s spectrogram
information. Each time slice of the spectrogram was treated as a single instance. So the SOM was
essentially used to cluster similar sounds together.

In order to avoid specifying the number of SOM nodes a priori, we used a Growing Grid SOM
(GGSOM) for our experiments. A GGSOM is a self-organizing map that automatically grows to
an appropriate size [15]. It adds nodes to the SOM until the variance of the instances mapped to
any individual node is less than τ times the variance of the entire dataset, where τ is the “error
parameter.” This effectively ensures that no single node will account for more than τ of the total
error. This way the SOM ends up sized appropriately for the particular problem, and the data is
mapped roughly evenly among the nodes. For our experiments we chose a τ = 0.05. This lead to an
SOM with 15 nodes for each stimulus stream. One would expect an SOM trained on spoken audio
to have many more distinct states, but the stimulus streams are extremely limited, containing only
12 distinct syllables repeated over and over. We used the implementation of a Growing Hierarchical
SOM (GH-SOM) in the Java SOM Toolbox to train our Growing Grid [16].

After training a GGSOM on the spectrogram data we then used it to classify each time slice of the
spectrogram. Each node in the SOM was given a unique label. Each time slice of the spectrogram
was then labeled according to the node with the highest activation value for that time slice. So the
clustering produced a sequence of node labels corresponding to each instance in the spectrogram
(see Figure 1). In this way we produced a discrete sequence of tokens representing the audio data.

In the resulting sequence, it was common for several consecutive instances to be mapped to the same
node in the SOM. For instance, silence always maps to the same SOM node, so any period of silence
in the original audio was represented by several instances of the same node in the discrete sequence.
This also happened for similar sounds that were held for any length of time. In order to be time
independent, we collapsed these repeated sequences into just one instance of the given node. This
effectively denotes a prolonged period of the same sound by a single state (see Figure 1).

SOM

1 32

4 5 6

7 8 9

10 11 12

13 14 15

1 1 1 1 1 1 1 1 1 
4 4 3 3 3 3 7 7 1 
1 1 1 10 10 10 5
5 5 5 6 6 3 3 3 3
1 1 1 1 1 2 2 2 1
1 13 13 13 14 13
8 8 8 1 1 1 1 1 1

1 4 3 7 1 10 5 6 3
1 2 1 13 14 13 8 1

SOM States

SOM States Collapsed

Voting 

Experts

1323.0 

1533.0 

1573.0 

1673.0

...

Break TimestampsSpectrogram

Figure 1: The audio segmentation process: The spectrogram of an audio stream is used to train
an SOM, which is then used to label each time slice of the spectrogram. The repeated labels are
removed, and that sequence is used to train the Voting Experts model, which then segments the
sequence and specifies the timestamps of the induced breaks (in milliseconds).

4



5.3 Segmentation

In order to segment the tokenized sequences, we ran VE on the sequence of SOM states. VE placed
breaks at locations of low internal entropy and high boundary entropy. Then, after accounting for the
collapsed (i.e., repeated) tokens, it produced the time stamps of all of the induced break locations in
each audio stream. These breaks were then checked against the answer keys that had been manually
created for each stimulus stream.

6 Evaluation Methodology

In order for an induced break to count as a correct break, it had to be placed within 13ms of a true
break location. The reason the breaks were given a 13ms window on either side is that Sphinx uses
a 26.6ms wide Hamming window to calculate the spectrogram information. The breaks produced
by the algorithm correspond to the center of that window. We counted an induced break as “correct”
if there was a true break anywhere inside that window.

A distinction was also made between breaks between phonemes and breaks between words. When
marking the true breaks in each stimulus stream, the exact beginning and end of each word was
recorded. Instead of marking a single break location between words, this specified a window in
which the break must occur. The time between some pairs of words was trivially small. The time
between others was longer. However, since the stimulus streams were generated artificially, the time
between word pairs was consistent. An induced break was counted as breaking two words if it was
placed anywhere in the window between them, plus or minus 13.3ms. This makes the evaluation of
word breaks much more reliable than than the evaluation of phoneme breaks. As mentioned before,
the true break between a pair of phonemes can be indeterminate. So it is sometimes illegitimate to
specify a break location and then expect a segmentation algorithm to induce that exact break within
13.3ms. However, the boundary between words can be more clearly delimited, and we can be certain
that the true word break lies in the window specifying that boundary.

Unfortunately these large boundaries make it easier for the algorithm to accidentally induce a break
between two words. Thus, even random breaks will be counted as correct a significant portion of
the time. Accordingly, we used a Monte Carlo method to simulate random segmentations for each
experiment. Each reported result is accompanied by the results of inducing 100 random segmenta-
tions, each one having the same number of induced breaks as the algorithm produced. These random
trials are aggregated and provide a baseline from which to evaluate the algorithm.

We used two metrics to evaluate the induced segmentation of each experiment. The first is the
accuracy of the induced breaks. If t is the number of true breaks induced by the algorithm, and n
is the total number of breaks it induces, then the accuracy is given by a = t/n. This tells us how
likely it is than an induced break is correct. The complimentary metric is the hit-rate. If m is the
total number of true breaks in the stimulus stream and s is the number of true breaks that were also
induced by the algorithm, then the hit rate is given by h = s/m. For each experiment we compute
the accuracy and hit-rate of the induced segmentation over all breaks, including word breaks. Then
we also compute the accuracy and hit-rate of the segmentation when considering only the word
breaks. That is, we report what the accuracy and hit-rate would be if the answer key contained only
the word breaks. Finding word breaks is, in some sense, more important than finding phonemic
boundaries, and this is why we perform this additional evaluation. We also report the total number
of true breaks and the total number of induced breaks for each experiment.

7 Experimental Results

We have outlined a general, unsupervised algorithm for the segmentation of an audio stream. First,
use an FFT to obtain the power spectrum of the audio stream. Then train a GGSOM on that data to
cluster the time slices of the spectrogram into discrete tokens. Generate a new sequence of discrete
tokens corresponding to the labels of the SOM nodes closest to each time slice in the spectrogram.
Remove repeated labels. Run VE on the tokenized sequence and determine the timestamps of the
induced breaks.

This algorithm constitutes a very basic application of the VE model to a real audio stream. The first
question is whether this can induce an accurate segmentation. The second question is whether we
can use this system to model the human segmentation mechanism. The following experiments were
designed to answer both of these questions.

5



Experiment 1: We ran the basic segmentation process described above on both stimulus streams to
obtain the induced breaks. We then compared the induced breaks to the true breaks for each stimulus
stream. The results are shown in Table 1.

Table 1: Results for Experiment 1.

Key Dataset True Breaks Induced Breaks Accuracy (Random) Hit Rate (Random)

All Stream A 265 205 0.546 (0.120) 0.411 (0.085)
Breaks Stream B 271 247 0.441 (0.131) 0.387 (0.107)

Word Stream A 89 205 0.341 (0.082) 0.764 (0.166)
Breaks Stream B 91 247 0.308 (0.091) 0.791 (0.214)

The segmentation induced on both audio streams was significantly more accurate than chance. In
particular, the algorithm found the vast majority of the word breaks in both cases. Note that the
accuracy does not drop significantly when evaluating on all breaks versus evaluating over just the
word breaks. This means that most of the correctly induced breaks were at word boundaries. For
example, stimulus stream A contains 265 true breaks, 89 of those being word breaks. The algorithm
induced 205 breaks on the stream. Of those 205 breaks, 112 of them were correct. Of those 112, 70
of them were at word boundaries, and only 42 were at phoneme boundaries.

This is somewhat surprising, since there are twice as many breaks between phonemes as breaks
between words in the sequence. However, as discussed earlier, the placement of the phoneme breaks
in the answer key is much more subjective than the placement of the word breaks. Additionally, the
information theoretic markers used by VE may be more consistently expressed at the word breaks. In
any case, it is clear that this algorithm is adept at finding word boundaries in these stimulus streams.

Recall that these models were trained on only one minute of audio, containing roughly 90 spoken
words. Even though the audio is simple and regular, this is still a very promising result, and definite
proof that this model has the potential to segment streams of speech.

Experiment 2: The point of this experiment is to demonstrate that an SOM trained on stimulus
stream A can still capture the information in stimulus stream B. The two streams are composed of
the same set of syllables. The only difference is the order in which the syllables are heard, which
may produce some interaction effects that the SOM cannot capture. However, most of the sounds
are the same, so the tokenization of stream B based on an SOM trained on stream A should still be
useful for inducing a tokenization on B.

To do this, we trained an SOM on the spectrogram data of each stimulus stream to obtain SOMA and
SOMB . Then we used SOMA to tokenize the spectrogram data from stimulus stream B and vice
versa. Then we trained a VE model on each of the token sequences and induced a segmentation.
Once again we used the manually labeled true breaks to evaluate the induced segmentation. The
results are shown in Table 2.

Table 2: Results for Experiment 2.

Key Dataset True Breaks Induced Breaks Accuracy (Random) Hit Rate (Random)

All Stream A 265 303 0.290 (0.126) 0.306 (0.127)
Breaks Stream B 271 244 0.279 (0.129) 0.244 (0.105)

Word Stream A 89 303 0.195 (0.086) 0.596 (0.250)
Breaks Stream B 91 244 0.184 (0.088) 0.473 (0.209)

There is a slight drop in both the accuracy and hit rate of each segmentation in this experiment.
However, in each case the algorithm still performed much better than chance. Also, roughly half of
the word breaks are still identified in both cases. While an SOM trained on stimulus stream A might
not capture all of the sound information in stream B, it certainly captures enough to induce a decent
segmentation.

Experiment 3: This experiment is intended to replicate Saffran’s experiment on infants. The algo-
rithm learned an audio and language model based on stimulus stream A. Then it was asked to use
that model to segment stimulus stream B. This is analogous to an infant learning to segment stimulus
stream A by listening to it, and then being played stream B.

6



We trained an SOM on the spectrogram data of each stimulus stream to obtain SOMA and SOMB .
Then we used SOMA to tokenize the spectrogram data from stimulus stream A and from stimulus
stream B. We trained a VE model using the tokens from stimulus stream A. Finally we used that
model to induce a segmentation on the tokens from stimulus stream B. The induced breaks were
checked against the true breaks of stream B. We then repeated this experiment by training the audio
and language models on stream B, and using them to segment stream A.

Table 3: Results for Experiment 3.

Key Dataset True Breaks Induced Breaks Accuracy (Random) Hit Rate (Random)

All Stream A 265 18 0.167 (0.127) 0.011 (0.009)
Breaks Stream B 271 6 0.167 (0.163) 0.004 (0.004)

Word Stream A 89 18 0.000 (0.087) 0.000 (0.018)
Breaks Stream B 91 6 0.167 (0.123) 0.011 (0.008)

The algorithm is almost completely unable to induce a segmentation. In no case did it perform
significantly better than chance. And, in fact, in some cases it performed worse. From the results of
experiment 2 we can conclude that the poor performance is not the fault of the audio model. Instead,
the language model trained on one language is insufficient to induce a segmentation in another. This
is, of course, exactly as we would expect.

The most interesting result was the number of breaks induced by the algorithm. Only 18 breaks were
induced on stream A, and 6 on stream B. The reason for this lack of breaks is best illustrated by the
votes cast by each expert. The following shows the number of votes at the first 50 vote locations
used to segment stimulus stream A in both experiment 1 and experiment 3.

Votes A Exp 1: 0 2 0 3 1 3 2 0 0 0 4 0 7 0 5 1 1 1 1 1 7 0 1 0 1 0 7 0 0 6 0 4 2 1 1 6 0 0 6 2 1 0 3 0 4 7 1 0 0 0

Votes A Exp 3: 0 1 0 1 0 0 3 3 1 1 2 4 2 1 2 1 2 1 2 2 2 2 4 2 2 1 4 1 2 1 1 5 2 1 1 2 6 1 0 1 3 1 1 1 2 3 2 2 4 2

Notice that the votes from experiment 1 contain many zeros, and also many locations with a large
number of votes. This means that the experts agreed on many vote locations, and voted for the same
ones consistently. However, the votes from experiment 3 display exactly the opposite characteristic.
The votes are evenly spaced, with few distinguishable “peaks” or “valleys”. The model is “confused”
by the data it is trying to segment. It lacks statistical information about the sound sequences and
is therefore unable to distinguish between common and uncommon audio chunks. It has little basis
from which to calculate the internal or boundary entropy of subsequences. Therefore, the votes are
spread more evenly among the break locations, they rarely break the threshold Vt, and almost no
breaks are induced. If Vt is lowered then more breaks are induced, however they are extremely
inaccurate and do not improve the performance. Those results are omitted for lack of space.

This corresponds precisely with the situation of the 8-month-old who listens to stimulus stream A,
and then hears a novel word. The child has learned the sounds present in the stream, and has learned
a statistical model that characterizes it. Then, suddenly, that model is violated. The child is initially
unable to use the old model to “understand” the novel word, and therefore becomes confused.

8 Conclusions and Future Work

We have described an unsupervised technique for transforming spoken audio into a discrete se-
quence of tokens suitable for segmentation by the Voting Experts algorithm. We have shown that
the VE model is capable of inducing an accurate segmentation on an audio stimulus stream with
very limited training data. Finally, we have shown that the behavior of this model mimics the be-
havior of 8-month-old infants. This should be counted as a small victory for both the hypothesis of
statistical learning and the VE model. It is possible to use statistical information theoretic metrics to
automatically induce word boundaries in an audio stream. Specifically, the low internal entropy and
high boundary entropy of chunks provide sufficient markers to do so.

The segmentation induced by our algorithm was clearly imperfect. However, there is significant
potential for improvement. The method of tokenization is currently fairly simple. Using a GGSOM
to cluster instances of a power spectrum produces a very coarse representation of the data. More
sophisticated methods of feature extraction exist, and could certainly be put to good use to tokenize
the audio stream.

7



However, this seems to be the wrong way to go. Audio is an intrinsically continuous and real-
valued domain. It seems more promising to replace the Voting Experts algorithm with one that uses
the same information theoretic markers to directly split the continuous stream. This would require
defining the notions of internal and boundary entropy for the continuous domain, which is definitely
possible. This certainly seems more appropriate than forcing the data to conform to metrics designed
to work on entirely different data.

It is unclear how far these methods can be pushed. Additional research suggests that humans use
a lot more than statistical information to learn how to segment spoken language [2]. This includes
pauses between words as well as intonation and other prosodic cues. The VE model may be able to
recognize some of these cues as well, but that is simply speculative. The only solution is to improve
the application of the model, and see how well it can perform. Perhaps these ideas can even be
combined with more traditional language processing techniques to further improve performance.
Either way, it is certainly worthwhile to attempt to discover the principles behind the human audio
segmentation behavior. This kind of development is precisely what’s needed to produce human-level
speech processing software.

Acknowledgments

We would like to thank Peter Wong for developing a system to visualize induced breaks in an audio
sequence. We would also like to thank Richard Aslin from the University of Rochester for providing
us with the stimulus streams used in the original Saffran et al. experiments. Finally, we would like
to thank Paul Cohen from the University of Arizona for generously providing the source code for
the original Voting Experts algorithm.

References

[1] Jenny R. Saffran, Richard N. Aslin, and Elissa L. Newport. Statistical learning by 8-month-old infants.
Science, 274(5294):1926–1928, December 1996.

[2] Jenny R. Saffran, Elizabeth K. Johnson, Richard N. Aslin, and Elissa L. Newport. Statistical learning of
tone sequences by human infants and adults. Cognition, 1999.

[3] Paul Cohen, Niall Adams, and Brent Heeringa. Voting experts: An unsupervised algorithm for segmenting
sequences. Journal of Intelligent Data Analysis, 2007.

[4] Matthew Miller and Alexander Stoytchev. Hierarchical voting experts: An unsupervised algorithm for
hierarchical sequence segmentation. In Proceedings of the 7th IEEE International Conference on Devel-
opment and Learning (ICDL), 2008.

[5] Jenny R. Saffran, Elissa L. Newport, Richard N. Aslin, and Rachel A. Tunick. Incidental language learn-
ing: Listening (and learning) out of the corner of your ear. Psychological Science, 1997.

[6] David M. Magerman and Mitchell P. Marcus. Parsing a natural language using mutual information statis-
tics. In National Conference on Artificial Intelligence, pages 984–989, 1990.

[7] A. Kempe. Experiments in unsupervised entropy-based corpus segmentation, 1999.

[8] Margaret A. Hafer and Stephen F. Weiss. Word segmentation by letter successor varieties. Information
Storage and Retrieval, 10(11-12):371–385, 1974.

[9] Carl de Marcken. The unsupervised acquisition of a lexicon from continuous speech. Technical Report
AIM-1558, 1995.

[10] Mathias Creutz. Unsupervised segmentation of words using prior distributions of morph length and
frequency. In ACL ’03: Proceedings of the 41st Annual Meeting on Association for Computational
Linguistics, pages 280–287, 2003.

[11] Michael R. Brent. An efficient, probabilistically sound algorithm for segmentation and word discovery.
Machine Learning, 1999.

[12] Claude Shannon. Prediction and the entropy of printed english. Technical report, Bell System Technical
Journal, 1951.

[13] Lamere P. Kwok P. Raj B. Gingh R. Gouvea E. et al. Walker, W. Sphinx-1: A flexible open source
framework for speech recognition. Technical Report TR-2004-139, Nov 2004.

[14] Teuvo Kohonen. Self-organized formation of topologically correct feature maps. pages 509–521, 1988.

[15] B. Fritzke. Growing grid - a self-organizing network with constant neighborhood range and adaptation
strength. Neural Processing Letters, 2(5):9–13, 1995.

[16] M. Dittenbach, D. Merkl, and A. Rauber. The growing hierarchical self-organizing map. Proceedings of
the IEEE-INNS-ENNS IJCNN 2000, 6:15–19, 2000.

8


