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Abstract
This paper formulates five basic principles of develop-
mental robotics. These principles are formulated based
on some of the recurring themes in the developmen-
tal learning literature and in the author’s own research.
The five principles follow logically from the verifica-
tion principle (postulated by Richard Sutton) which is
assumed to be self-evident. This paper also gives an
example of how these principles can be applied to the
problem of autonomous tool use in robots.

Introduction
Developmental robotics is one of the newest branches of
robotics (Weng et al. 2001; Zlatev & Balkenius 2001). The
basic research assumption of this field is that “true intel-
ligence in natural and (possibly) artificial systems presup-
poses three crucial properties: embodiment of the system,
situatedness in a physical or social environment, and a pro-
longed epigenetic developmental process through which in-
creasingly more complex cognitive structures emerge in the
system as a result of interactions with the physical or social
environment” (Zlatev & Balkenius 2001).

Many fields of science are organized around a small set
of fundamental laws, e.g., physics has Newton’s laws and
thermodynamics has its fundamental laws as well. Progress
in a field without any fundamental laws tends to be slow
and incoherent. Once the fundamental laws are formulated,
however, the field can thrive by building upon them. This
progress continues until the laws are found to be insufficient
to explain the latest experimental evidence. At that point the
old laws must be rejected and new laws must be formulated
so the scientific progress can continue.

In some fields of science, however, it is not possible to
formulate fundamental laws because it would be impossible
to prove them, empirically or otherwise. Nevertheless, it is
still possible to get around this obstacle by formulating a set
of basic principles that are stated in the form of postulates
or axioms, i.e., statements that are presented without proof
because they are considered to be self-evident. The most
famous example of this approach, of course, is Euclid’s for-
mulation of the fundamental axioms of Geometry.

Developmental robotics is still in its infancy, however, and
it would be premature to try to come up with the fundamen-
tal laws or axioms of the field. There are some recurring

themes in the developmental learning literature and in the
author’s own research, however, that can be used to formu-
late some basic principles. These principles are neither laws
(as they cannot be proved at this point) nor axioms (as it
would be hard to argue at this point that they are self-evident
and/or form a consistent set). Nevertheless, these basic prin-
ciples can be used to guide future research until they are
found to be inadequate and it is time to modify or reject
them. Five basic principles are described below.

The Verification Principle
Developmental Robotics emerged as a field partly as a reac-
tion to the inability of traditional robot architectures to scale
up to tasks that require close to human levels of intelligence.
One of the primary reasons for scalability problems is that
the amount of programming and knowledge engineering that
the robot designers have to perform grows very rapidly with
the complexity of the robot’s tasks. There is mounting ev-
idence that pre-programming cannot be the solution to the
scalability problem. The environments in which the robots
are expected to operate are simply too complex and unpre-
dictable. It is naive to think that this complexity can be cap-
tured in code before the robot is allowed to experience the
world through its own sensors and effectors.

Consider the task of programming a household robot, for
example, with the ability to handle all possible objects that
it can encounter inside a home. It is simply not possible for
any robot designer to predict the number of objects that the
robot may encounter and the contexts in which they can be
used over the robot’s projected service time.

There is yet another fundamental problem that pre-
programming not only cannot address, but actually makes
worse. The problem is that programmers introduce too many
hidden assumptions in the robot’s code. If the assumptions
fail, and they almost always do, the robot begins to act
strange and the programmers are sent back to the drawing
board to try and fix what is wrong. The robot has no way of
testing and verifying these hidden assumptions because they
are not made explicit. Therefore, the robot is not capable
of autonomously adapting to situations that violate these as-
sumptions. The only way to overcome this problem is to put
the robot in charge of testing and verifying everything that it
learns.

After this introduction, the first basic principle can be



stated. It is the so-called verification principle that was first
postulated by Richard Sutton in a series of on-line essays
in 2001 (Sutton 2001a; 2001b). The principle is stated as
follows:

The Verification Principle: An AI system can create
and maintain knowledge only to the extent that it can
verify that knowledge itself. (Sutton 2001b)
According to Sutton, “the key to a successful AI is that it

can tell for itself whether or not it is working correctly”(Sut-
ton 2001b). The only reasonable way to achieve this goal
is to put the AI system in charge of its own learning using
the verification principle. If verification is not possible for
some concept then the AI system should not attempt to learn
that concept. In other words, all AI systems and AI learn-
ing algorithms should follow the motto: No verification, No
learning.

Sutton also points out that the verification principle even-
tually will be adopted by many AI practitioners because
it offers fundamental practical advantages over alternative
methods when it comes to scalability. Another way of saying
the same thing is: “Never program anything bigger than your
head”(Sutton 2001b). Thus, the verification principle stands
for autonomous testing and verification performed by the
robot and for the robot. As explained above, it would be un-
realistic to expect the robot programmers to fix their robots
every time when the robots encounter a problem due to a hid-
den assumption. In fact, it should be the robots telling their
programmers what is wrong with them and not the other way
around. This point is also mentioned by Dennett (Dennett
1989) who points out that any sufficiently complicated sys-
tem, almost by default, must be considered intelligent. Fur-
thermore, when something goes wrong with any sufficiently
complex system the people in charge of operating it have no
choice other than to accept the system’s own explanation for
what is wrong with it.

Sutton was the first researcher in AI to state the verifica-
tion principle explicitly. However, the origins of the veri-
fication principle go back to the ideas of the logical posi-
tivists philosophers of the 1930’s. The two most prominent
among them were Rudolf Carnap and Alfred Ayer. They
both argued that statements that cannot be either proved
or disproved by experience (i.e., metaphysical statements)
are meaningless. Ayer defined two types of verifiability,
“strong” and “weak”, which he formulated as follows:

“a proposition is said to be verifiable, in the strong
sense of the term, if and only if, its truth could be con-
clusively established in experience. But it is verifiable,
in the weak sense, if it is possible for experience to ren-
der it probable.” (Ayer 1952, p. 37)
Thus, in order to verify something in the “strong” sense

one would have to physically perform the verification se-
quence. On the other hand, to verify something in the
“weak” sense one does not have to perform the verification
sequence directly but one must have the prerequisite sensors,
effectors, and abilities to perform the verification sequence
if necessary.

For example, a blind person may be able to verify in the
“strong” sense the statement “this object is soft” by physi-

cally touching the object and testing its softness. He can also
verify this statement in the “weak” sense as he is physically
capable of performing the verification procedure if neces-
sary. However, the same blind person will not be able to
verify, neither in the “strong” nor in the “weak” sense, the
statement “this object is red” as he does not have the ability
to see and thus to perceive colors. In Ayer’s own words:

“But there remain a number of significant propositions,
concerning matters of fact, which we could not verify
even if we chose; simply because we lack the practical
means of placing ourselves in the situation where the
relevant observations could be made.”(Ayer 1952, p.
36)
The verification principle is easy to state. However, once

a commitment is made to follow this principle the implica-
tions are far-reaching. In fact, the principle is so different
from the practices of traditional autonomous robotics that it
changes almost everything. In particular, it forces the pro-
grammer to rethink the ways in which learnable quantities
are encoded in the robot architecture as anything that is po-
tentially learnable must also be autonomously verifiable.

The verification principle is so profound that the remain-
ing four principles can be considered as its corollaries. As
the connection may not be intuitively obvious, however, they
will be stated as principles.

The Principle of Embodiment
An important implication of the verification principle is that
the robot must have the ability to verify everything that it
learns. Because verification cannot be performed in the ab-
sence of actions the robot must have some means of affect-
ing the world, i.e., it must have a body.

The principle of embodiment has been defended many
times in the literature, e.g., (Varela, Thompson, & Rosch
1991; Brooks & Stein 1994; Brooks et al. 1999; Clark 1997;
Pfeifer & Scheier 1999; Gibbs 2006). It seems that at least
in robotics there is a consensus that this principle must be
followed. After all, there aren’t any robots without bodies.

Most of the arguments in favor of the embodiment princi-
ple that have been put forward by roboticists, however, are
about justifying this principle to its opponents (e.g., (Brooks
& Stein 1994) and (Brooks et al. 1999)). The reasons for
this are historical. The early AI systems (or as Brooks calls
them Good Old Fashioned AI - GOFAI) were disembodied
and consisted of learning algorithms that manipulated data
in the computer’s memory without the need to interact with
the external world. The creators of these early AI systems
believed that a body is not strictly required as the AI sys-
tem could consist of just pure code, which can still learn and
perform intelligently. This reasoning is flawed, however, for
the following reason: code cannot be executed in a vacuum.
The CPU, the memory bus, and the hard disk play the role
of the body. While the code does not make this assumption
it is implicitly made for it by the compiler which must know
how to translate the code into the machine language of the
target platform.

As a result of this historic debate most of the arguments
in favor of embodiment miss the main point. The debate



should not be about whether or not to embrace the princi-
ple of embodiment. Instead, the debate should be about the
different ways that can be used to program truly embodied
robots. Gibbs makes a similar observation about the current
state of the art in AI and robotics: “Despite embracing both
embodiment and situatedness in designing enactive robots,
most systems fail to capture the way bodily mechanisms are
truly embedded in their environments.”(Gibbs 2006, p. 73).

Some of the arguments used to justify the embodiment
principle can easily be explained from the point of view of
the verification principle. Nevertheless, the connection be-
tween the two has not been made explicit so far. Instead
of rehashing the debate in favor of embodiment – which has
been argued very eloquently by others, e.g., (Varela, Thomp-
son, & Rosch 1991; Gibbs 2006) – I am only going to focus
on a slightly different interpretation of embodiment in light
of the verification principle.

In my opinion, most arguments in favor of the embod-
iment principle make a distinction between the body and
the world and treat the body as something special. In other
words, they make the body/world boundary explicit. This
distinction, however, is artificial. The only reason why the
body may seem special is because the body is the most con-
sistent, the most predictable, and the most verifiable part of
the environment. Other that that, there should be no differ-
ence between the body and the external world. To the brain
the body may seem special but that is just because “the brain
is the body’s captive audience” (Demasio 1994, p. 160). In
other words, the body is always there and we can’t run away
from it.

According to the new interpretation of the embodiment
principle described here, the body is still required for the
sake of verification. However, the verification principle must
also be applicable to the properties of the body. That is to
say, the properties of the body must be autonomously veri-
fiable as well. Therefore, the learning and exploration prin-
ciples that the robot uses to explore the external world must
be the same as the ones that it uses to explore the properties
of its own body.

This interpretation reduces the special status of the body.
Instead of treating the body as something special, the new in-
terpretation treats the body as simply the most consistent, the
most predictable, and the most verifiable part of the environ-
ment. Because of that the body can be easily distinguished
from the environment. Furthermore, in any developmental
trajectory the body must be explored first.

In fact, distinguishing the body from the external world
should be relatively easy because there are certain events
that only the owner of the body can experience and no one
else. Rochat (Rochat 2003) calls these events self-specifying
and lists three such events: 1) efferent-afferent loops (e.g.,
moving ones hand and seeing it move); 2) double touch (e.g.,
touching one’s two index fingers together); 3) vocalization
behaviors followed by hearing their results (e.g., crying and
hearing oneself cry). These events are characterized by the
fact that they are multimodal, i.e., they involve more than
one sensory or motor modality. Also, these events are au-
tonomously verifiable because you can always repeat the ac-
tion and observe the same result.

Because the body is constructed from actual verifiable ex-
perience, in theory, it should be possible to change one’s
body representation. In fact, it turns out that this is sur-
prisingly easy to do. Some experiments have shown that
the body/world boundary is very pliable and can be altered
in a matter of seconds (Ramachandran & Blakeslee 1998;
Iriki, Tanaka, & Iwamura 1996). For example, it comes as a
total surprise for many people to realize that what they nor-
mally think of as their own body is just a phantom created by
their brains. There is a very simple experiment which can be
performed without any special equipment that exposes the
phantom body (Ramachandran & Blakeslee 1998). The ex-
periment goes like this: a subject places his arm under a
table. The person conducting the experiment sits right next
to the subject and uses both of his hands to deliver simul-
taneous taps and strokes to both the subject’s arm (which
is under the table) and the surface of the table. If the taps
and strokes are delivered synchronously then after about 2
minutes the subject will have the bizarre sensation that the
table is part of his body and that part of his skin is stretched
out to lie on the surface of the table. Similar extensions
and re-mappings of the body have been reported by others
(Botvinick & Cohen 1998; Iriki, Tanaka, & Iwamura 1996;
Ishibashi, Hihara, & Iriki 2000).

The conclusions from these studies may seem strange be-
cause typically one would assume that embodiment implies
that there is a solid representation of the body somewhere in
the brain. One possible reason for the phantom body is that
the body itself is not constant but changes over time. Our
bodies change with age. They change as we gain or lose
weight. They change when we suffer the results of injuries
or accidents. In short, our bodies are constantly changing.
Thus, it seems impossible that the brain should keep a fixed
representation for the body. If this representation is not flex-
ible then sooner or later it will become obsolete and useless.

Another possible reason for the phantom body is that it
may be impossible for the brain to predict all complicated
events that occur within the body. Therefore, the composi-
tion of the body must be constructed continuously from the
latest available information. This is eloquently stated by De-
masio:

”Moreover, the brain is not likely to predict how all the
commands - neural and chemical, but especially the
latter- will play out in the body, because the play-out
and the resulting states depend on local biochemical
contexts and on numerous variables within the body it-
self which are not fully represented neurally. What is
played out in the body is constructed anew, moment by
moment, and is not an exact replica of anything that
happened before. I suspect that the body states are not
algorithmically predictable by the brain, but rather that
the brain waits for the body to report what actually has
transpired.”(Demasio 1994, p. 158)
The author’s previous work (Stoytchev 2003) describes

a computational representation for a robot body schema
(RBS). This representation is learned by the robot from self-
observation data. The RBS representation meets the require-
ments of both the verification principle and the embodiment



principle as the robot builds a model for its own body from
self-observation data that is repeatably observable.

The Principle of Subjectivity
The principle of subjectivity also follows quite naturally
from the verification principle. If a robot is allowed to learn
and maintain only knowledge that it can autonomously ver-
ify for itself then it follows that what the robot learns must be
a function of what the robot has experienced through its own
sensors and effectors, i.e., its learning must be a function of
experience. As a consequence, two robots with the same
control architectures but with different histories of interac-
tions could have two totally different representations for the
same object. In other words, the two representations will be
subjective.

Ayer was probably the first one to recognize that the ver-
ification principle implies subjectivity. He observed that if
all knowledge must be verifiable through experience then
it follows that all knowledge is subjective as it has to be
formed through individual experiences (Ayer 1952, p. 125-
126). Thus, what is learned depends entirely on the capa-
bilities of the learner and the history of interactions between
the learner and the environment or between the learner and
its own body. Furthermore, if the learner does not have the
capacity to perform a specific verification procedure then the
learner would never be able to learn something that depends
on that procedure (as in the blind person example given
above). Thus, subjectivity may be for developmental learn-
ing what relativity is for physics – a fundamental limitation
that cannot be avoided or circumvented.

The subjectivity principle captures very well the subjec-
tive nature of object affordances. A similar notion was sug-
gested by Gibson who stated that a child learns “his scale of
sizes as commensurate with his body, not with a measuring
stick” (Gibson 1979, p. 235). Thus, an object affords dif-
ferent things to people with different body sizes; an object
might be graspable for an adult but may not be graspable
for a child. Noë has recently given a modern interpretation
of Gibson’s ideas and has stressed that affordances are also
skill relative:

“Affordances are animal-relative, depending, for ex-
ample, on the size and shape of the animal. It is worth
noting that they are also skill-relative. To give an ex-
ample, a good hitter in baseball is someone for whom a
thrown pitch affords certain possibilities for movement.
The excellence of a hitter does not consist primarily in
having excellent vision. But it may very well consist
in the mastery of sensorimotor skills, the possession of
which enables a situation to afford an opportunity for
action not otherwise available.” (Noë 2004, p. 106)
From what has been said so far one can infer that the

essence of the principle of subjectivity is that it imposes lim-
itations on what it potentially learnable by a specific agent.
In particular, there are two types of limitations: sensorimo-
tor and experiential. Each of them is discussed below along
with the adaptation mechanisms that have been adopted by
animals and humans to reduce the impact of these limita-
tions.

Sensorimotor Limitations
The first limitation imposed on the robot by the subjectivity
principle is that what is potentially learnable is determined
by the sensorimotor capabilities of the robot’s body. In other
words, the subjectivity principle implies that all learning is
pre-conditioned on what the body is capable of doing. For
example, a blind robot cannot learn what is the meaning of
the color red because it does not have the ability to perceive
colors.

While it may be impossible to learn something that is be-
yond the sensorimotor limitations of the body, it is certainly
possible to push these limits farther by building tools and
instruments. It seems that a common theme in the history
of human technological progress is the constant augmenta-
tion and extension of the existing capabilities of our bodies.
For example, Campbell outlines several technological mile-
stones which have essentially pushed one body limit after
another (Campbell 1985). The technological progression de-
scribed by Campbell starts with tools that augment our phys-
ical abilities (e.g., sticks, stone axes, and spears), then moves
to tools and instruments that augment our perceptual abili-
ties (e.g., telescopes and microscopes), and it is currently at
the stage of tools that augment our cognitive abilities (e.g.,
computers and PDAs).

Regardless of how complicated these tools and instru-
ments are, however, their capabilities will always be learned,
conceptualized, and understood relative to our own sensori-
motor capabilities. In other words, the tools and instruments
are nothing more than prosthetic devices that can only be
used if they are somehow tied to the pre-existing capabili-
ties of our bodies. Furthermore, this tool-body connection
can only be established through the verification principle.
The only way in which we can understand how a new tool
works is by expressing its functionality in terms of our own
sensorimotor repertoire. This is true even for tools and in-
struments that substitute one sensing modality for another.
For example, humans have no natural means of reading mag-
netic fields but we have invented the compass which allows
us to do that. The compass, however, does not convert the
direction of the magnetic field into a modality that we can’t
interpret, e.g., infrared light. Instead, it converts it to human
readable form with the help of a needle.

The exploration process involved in learning the func-
tional properties or affordances of a new tool is not always
straight forward. Typically this process involves active trial
and error. Probably the most interesting aspect of this explo-
ration, however, is that the functional properties of the new
tool are learned in relation to the existing behavioral reper-
toire of the learner.

The related work on animal object exploration indicates
that animals use stereotyped exploratory behaviors when
faced with a new object (Power 2000; Lorenz 1996). This
set of behaviors is species specific and may be genetically
predetermined. For some species of animals these tests in-
clude almost their entire behavioral repertoire: “A young
corvide bird, confronted with an object it has never seen,
runs through practically all of its behavioral patterns, except
social and sexual ones.”(Lorenz 1996, p. 44)

Unlike crows, adult humans rarely explore a new object



by subjecting it to all possible behaviors in their behavioral
repertoire. Human object exploration tends to be more fo-
cused although that is not always the case with human in-
fants (Power 2000). Nevertheless, an extensive exploration
process similar to the one displayed by crows can sometimes
be observed in adult humans as well. This process is easily
observed in the members of technologically “primitive” so-
cieties when they are exposed for the first time to an object
from a technologically advanced society (Diamond 1999, p.
246).

In a previous paper the author described a method
for autonomous learning of object affordances by a
robot(Stoytchev 2005a). The robot learns the affordances
of different tools in terms of the expected outcomes of spe-
cific exploratory behaviors. The affordance representation
is inherently subjective as it is expressed in terms of the
behavioral repertoire of the robot (i.e., it is skill relative).
The affordance representation is also subjective because the
affordances are expressed relative to the capabilities of the
robot’s body. For example, if an object is too thick to be
grasped by the robot the robot learns that the object is not
graspable even though it might be graspable for a different
robot with a larger gripper (Stoytchev 2005b).

Experiential Limitations
In addition to sensorimotor limitations the subjectivity prin-
ciple also imposes experiential limitations on the robot. Ex-
periential limitations restrict what is potentially learnable
simply because learning depends on the history of interac-
tions between the robot and the environment, i.e., it depends
on experience. Because, among other things, experience is
a function of time this limitation is essentially due to the fi-
nite amount of time that is available for any type of learning.
One interesting corollary of this is that: the more intelligent
the life form the longer it has to spend in the developmental
stage.

Time is a key factor in developmental learning. By de-
fault developmental learning requires interaction with the
external world. There is a limit on how fast this interaction
can occur which ultimately restricts the speed of learning.
While the limitation of time cannot be avoided it is possible
to speed up learning by relying on the experience of others.
The reason why this does not violate the subjectivity prin-
ciple is because verification can be performed in the “weak
sense” and not only in the “strong sense.” Humans, for ex-
ample, often exploit this shortcut. Ever since writing was
invented we have been able to experience places and events
through the words and pictures of others. These vicarious
experiences are essential for us.

Vicarious experiences, however, require some sort of ba-
sic overlap between our understanding of the world and that
of others. Thus, the following question arises: if everything
that is learned is subjective then how can two different peo-
ple have a common understanding about anything? Obvi-
ously this is not a big issue for humans because otherwise
our civilization will not be able to function normally. Nev-
ertheless, this is one of the fundamental questions that many
philosophers have grappled with.

To answer this question without violating the basic prin-
ciples that have been stated so far we must allow for the
fact that the representations that two agents have may be
functionally different but nevertheless they can be qualita-
tively the same. Furthermore, the verifications principle can
be used to establish the qualitative equivalence between the
representations of two different agents. This was well un-
derstood by Ayer who stated the following:

“For we define the qualitative identity and difference
of two people’s sense-experiences in terms of the sim-
ilarity and dissimilarity of their reactions to empirical
tests. To determine, for instance, whether two people
have the same colour sense we observe whether they
classify all the colour expanses with which they are
confronted in the same way; and when we say that a
man is color-blind, what we are asserting is that he
classifies certain colour expanses in a different way
from that in which they would be classified by the ma-
jority of people.”(Ayer 1952, p. 132)
Another reason why two humans can understand each

other even though they have totally different life experiences
is because they have very similar physical bodies. While
no two human bodies are exactly the same they still have
very similar structure. Furthermore, our bodies have lim-
its which determine how we can explore the world through
them (e.g., we can only move our hands so fast). On the
other hand, the world is also structured and imposes restric-
tions on how we can explore it through our actions (e.g., an
object that is too wide may not be graspable). Because we
have similar bodies and because we live in the same physical
world there is a significant overlap which allows us to have
a shared understanding. Similar ideas have been proposed
in psychology and have been gaining popularity in recent
years (Glenberg 1997; O’Regan & Noë 2001; Noë 2004;
Gibbs 2006).

Consequently, experience must constantly shape or
change all internal representations of the agent over time.
Whatever representations are used they must be flexible
enough to be able to change and adapt when new experience
becomes available. There is a good amount of experimen-
tal evidence to suggest that such adaptation takes place in
biological systems. For example, the representation of the
fingers in the somatosensory cortex of a monkey depends on
the pattern of their use (Wang et al. 1995). If two of the
fingers are used more often than other fingers then the num-
ber of neurons in the somatosensory cortex that are used to
encode these two fingers will increase (Wang et al. 1995).

The affordance representation described in (Stoytchev
2005a) is influenced by the actual history of interactions be-
tween the robot and the tools. The affordance representation
is pliable and can accommodate the latest empirical evidence
about the properties of the tool. For example, the representa-
tion can accommodate tools that can break – a drastic change
that significantly alters their affordances.

The Principle of Grounding
While the verification principle states that all things that the
robot learns must be verifiable, the grounding principle de-



scribes what constitutes a valid verification. Grounding is
very important because if the verification principle is left
unchecked it can easily go into an infinite recursion. At
some point there needs to be an indivisible entity which is
not brought under further scrutiny, i.e., an entity which does
not require additional verification. Thus, figuratively speak-
ing, grounding puts the breaks on verification.

Grounding is a familiar problem in AI. In fact, one of the
oldest open problems in AI is the so-called symbol ground-
ing problem (Harnad 1990). Grounding, however, is also a
very loaded term. Unfortunately, it is difficult to come up
with another term to replace it with. Therefore, for the pur-
poses of this document the term grounding is used only to
refer to the process or the outcome of the process which de-
termines what constitutes a successful verification.

Despite the challenges in defining what constitutes
grounding, if we follow the principles outlined so far we can
arrive at the basic components of grounding. The motivation
for stating the embodiment principle was that verification is
impossible without the ability to affect the world. This im-
plies that the first component that is necessary for successful
verification (i.e., grounding) is an action or a behavior.

The action by itself, however, is not very useful for the
purposes of successful verification (i.e., grounding) because
it does not provide any sort of feedback. In order to verify
anything the robot needs to be able to observe the outcomes
of its own actions. Thus, the second component of any veri-
fication procedure must be the outcome or outcomes that are
associated with the action that was performed.

This leads us to one of the main insights of this sec-
tion, namely, that grounding consists of ACT-OUCOME
(or BEHAVIOR-OBSERVATION) pairs. In other words,
grounding is achieved through the coupling of actions and
their observable outcomes. Piaget expressed this idea when
he said that “children are real explorers” and that “they per-
form experiments in order to see.” Similar ideas have been
proposed and defended by others, e.g., (Gibson 1979; 1969;
Varela, Thompson, & Rosch 1991; Noë 2004; O’Regan &
Noë 2001; Gibbs 2006).

Grounding of information based on a single act-outcome
pair is not sufficient, however, as the outcome may be due
to a lucky coincidence. Thus, before grounding can occur
the outcome must be replicated at least several times in the
same context. If the act-outcome pair can be replicated then
the robot can build up probabilistic confidence that what was
observed was not just due to pure coincidence but that there
is a real relationship that can be reliably reproduced in the
future.

Therefore, grounding requires that action-outcome pairs
be coupled with some sort of probabilistic estimates of re-
peatability. Confidence can be built up over time if multiple
executions of the same action lead to the same outcome un-
der similar conditions. In many situations the robot should
be able to repeat the action (or sequence of actions) that
were executed just prior to the detection of the outcome. If
the outcome can be replicated then the act-outcome pair it
is worth remembering as it is autonomously verifiable. An-
other way to achieve the same goal is to remember only long
sequences of (possibly different) act-outcome pairs which

are unlikely to occur in any other context due to the length
of the sequence. This latter method is closer to Gibson’s
ideas for representing affordances.

Stating that grounding is performed in terms of act-
outcome pairs coupled with a probabilistic estimate is a
good start but leaves the formulation of grounding somewhat
vague. Each action or behavior is itself a very complicated
process that involves multiple levels of detail. The same is
true for the outcomes or observations. Thus, what remains
to be addressed is how to identify the persistent features of a
verification sequence that are constant across different con-
texts. In other words, one needs to identify the sensorimotor
invariants. Because the invariants remain unchanged they
are worth remembering and thus can be used for grounding.

While there could be potentially infinite number of ways
to ground some information this section will focus on only
one of them. It is arguably the easiest one to pick out from
the sensorimotor flux and probably the first one to be dis-
covered developmentally. This mechanism for grounding is
based on detection of temporal contingency.

Temporal contingency is a very appealing method for
grounding because it abstracts away the nature and complex-
ity of the stimuli involved and reduces them to the relative
time of their co-occurrence. The signals could come from
different parts of the body and can have their origins in dif-
ferent sensors and actuators.

Temporal contingency is easy to calculate. The only re-
quirement is to have a mechanism for reliable detection of
the interval between two events. The events can be repre-
sented as binary and the detection can be performed only at
the times in which these signals change from 0 to 1 or from 1
to 0. Furthermore, once the delay between two signals is es-
timated it can be used to predict future events. Based on this
the robot can easily detect that something does not feel right
even if the cause for that is not immediately identifiable.

Timing contingency detection is used in (Stoytchev 2007)
to detect which perceptual features belong to the body of the
robot. In order to do that, the robot learns the characteris-
tic delay between its motor actions (efferent stimuli) and the
movements of perceptual features in the environment (af-
ferent stimuli). This delay can then be used to classify the
perceptual stimuli that the robot can detect into “self” and
“other”.

Detection of temporal contingency is very important for
the normal development of social skills as well. In fact, it
has often been suggested that contingency alone is a pow-
erful social signal that plays an important role in learning
to imitate (Jones 2006) and language acquisition (Goldstein,
King, & West 2003). Watson (Watson 1985) proposed that
the “contingency relation between a behavior and a subse-
quent stimulus may serve as a social signal beyond (possibly
even independent of) the signal value of the stimulus itself.”
This might be a fruitful area of future robotics research.

The Principle of Gradual Exploration
The principle of gradual exploration recognizes the fact that
it is impossible to learn everything at the same time. Before
we learn to walk we must learn how to crawl. Before we



learn to read we must learn to recognize individual letters.
There is no way around that. Similarly, there are certain
milestones or stages that must be achieved in developmental
learning before development can continue to the next stage.

Every major developmental theory either assumes or ex-
plicitly states that development proceeds in stages (Piaget
1952; Freud 1965; Bowlby 1969). These theories, however,
often disagree about what causes the stages and what trig-
gers the transitions between them. Variations in the timing
of these stages have also been observed between the mem-
bers of the same species. Therefore, the age limits set by Pi-
aget and others about what developmental milestone should
happen when must be treated as rough guidelines and not as
fixed rules. “Although the stages correspond roughly to age
levels (at least in the children studied [by Piaget]), their sig-
nificance is not that they offer behavior norms for specific
ages but that the sequence of the stages and the transition
from one stage to the next is invariant.”(Wolff 1960, p. 37)

E.J. Gibson (who was J.J. Gibson’s wife) also expressed
some doubts about the usefulness of formulating stages in
developmental learning: ”I want to look for trends in de-
velopment, but I am very dubious about stages. [...] To
repeat, trends do not imply stages in each of which a rad-
ically new process emerges, nor do they imply maturation in
which a new direction exclusive of learning is created.”(Gib-
son 1969, p. 450)

It seems that a more fruitful area of research these days
is to compare and contrast the developmental sequences
of different organisms. Comparative studies between pri-
mates and humans are useful precisely because they ex-
pose the major developmental differences between different
species that follow Piaget’s sequence in their development
(Tomasello & Call 1997; Power 2000). Regardless of what
causes the stages, one of the most important lessons that we
can draw from these studies is that the final outcome de-
pends not just on the stages but on their relative order and
duration.

For example, the time during which autonomous lo-
comotion emerges after birth in primates varies signifi-
cantly between different species (Tomasello & Call 1997;
Power 2000). In chimpanzees this is achieved fairly rapidly
and then they begin to move about the environment on their
own. In humans, on the other hand, independent locomotion
does not emerge until about a year after birth. An impor-
tant consequence of this is that human infants have a much
longer developmental period during which they can manu-
ally explore and manipulate objects. They tend to play with
objects, rotate them, chew them, throw them, relate them
to one another, and bring them to their eyes to take a closer
look. In contrast, chimpanzees are not as interested in sitting
down and manually exploring objects because they learn
to walk at a much younger age. To the extent that object
exploration occurs in chimpanzees it usually is performed
when the objects are on the ground (Tomasello & Call 1997;
Power 2000). Chimpanzees rarely pick up an object in order
to bring it to the eyes and explore it (Power 2000).

Another interesting result from comparative studies is that
object exploration (and exploration in general) seems to
be self-guided and does not require external reinforcement.

What is not yet clear, however, is what process initiates ex-
ploration and what process terminates it.

The principle of gradual exploration states that explo-
ration is self-regulated and always proceeds from the most
verifiable to the least verifiable parts of the environment. In
other words, the exploration is guided by an attention mech-
anism that is continually attracted to parts of the environ-
ment that exhibit medium levels of verifiability. Therefore,
the exploration process can chart a developmental trajectory
without external reinforcement because what is worth ex-
ploring next depends on what is being explored now.

The previous section described how temporal contingency
can be used for successful verifiability (i.e., grounding).
This section builds upon that example but also takes into ac-
count the level of contingency that is detected. At any point
in time the parts of the environment that are the most inter-
esting, and thus worth exploring, exhibit medium levels of
contingency. To see why this might be the case consider the
following example.

In his experiments with infants Watson (1985) observed
that the level of contingency that is detected by the infants
is very important. For example, he observed that 16-week-
old infants only paid attention to imperfect contingencies.
In his experiments the infants watched a TV monitor which
showed a woman’s face. The TV image was manipulated
such that the woman’s face would become animated for 2-
second intervals after the infant kicked with his legs. The
level of this contingency was varied by adjusting the tim-
ing delay between the infants’ kicking movements and the
animation. Somewhat surprisingly the infants in this study
paid more attention to faces that did not show the perfect
contingency (i.e., faces that did not move immediately af-
ter the infants’ kicking movements). This result led Watson
to conclude that the infant’s attentional mechanisms may be
modulated by an inverted U-shaped function based on the
contingency of the stimulus (Watson 1985).

An attention function that has these properties seems ideal
for an autonomous robot. If a stimulus exhibits perfect con-
tingency then it is not very interesting as the robot can al-
ready predict everything about that stimulus. On the other
hand, if the stimulus exhibits very low levels of contin-
gency then the robot cannot learn a predictive model of that
stimulus which makes that stimulus uninteresting as well.
Therefore, the really interesting stimuli are those that exhibit
medium levels of contingency.

E.J. Gibson reached conclusions similar to those of Wat-
son. She argued that perceptual systems are self-organized
in such a way that they always try to reduce uncertainty. Fur-
thermore, this search is self-regulated and does not require
external reinforcement:

”The search is directed by the task and by intrinsic cog-
nitive motives. The need to get information from the
environment is as strong as to get food from it, and ob-
viously useful for survival. The search is terminated not
by externally provided rewards and punishments, but by
internal reduction of uncertainty. The products of the
search have the property of reducing the information to
be processed. Perception is thus active, adaptive, and
self-regulated.”(Gibson 1969, p. 144)



Thus, the main message of this section is that roboticists
should try to identify attention functions for autonomous
robots that have properties similar to the ones described
above. This seems to be a promising area of future research.

An Example: Developmental Sequence for
Autonomous Tool Use

This section provides an example that uses the five princi-
ples described above in a developmental sequence. This se-
quence can be used by autonomous robots to acquire tool
using abilities. Following this sequence, a robot can explore
progressively larger chunks of the initially unknown envi-
ronment that surrounds it. Gradual exploration is achieved
by detecting regularities that can be explained and replicated
with the sensorimotor repertoire of the robot. This explo-
ration proceeds from the most predictable to the least pre-
dictable parts of the environment (see Figure 1).

The developmental sequence begins with learning a
model of the robot’s body since the body is the most consis-
tent and predictable part of the environment. Internal models
that reliably identify the sensorimotor contingencies associ-
ated with the robot’s body are learned from self-observation
data. For example, the robot can learn the characteristic
delay between its motor actions (efferent stimuli) and the
movements of perceptual features in the environment (affer-
ent stimuli). By selecting the most consistently observed
delay the robot can learn its own efferent-afferent delay.
Furthermore, this delay can be used to classify the percep-
tual stimuli that the robot can detect into “self” and “other”
(Stoytchev 2007).

Once the perceptual features associated with the robot’s
body are identified, the robot can begin to learn certain pat-
terns exhibited by the body itself. For example, the features
that belong to the body can be clustered into groups based
on their movement contingencies. These groups can then be
used to form frames of reference (or body frames) which in
turn can can be used to both control the movements of the
robot as well as to predict the locations of certain stimuli.

During the next stage, the robot uses its body as a well
defined reference frame from which the movements and po-
sitions of environmental objects can be observed. In particu-
lar, the robot can learn that certain behaviors (e.g., grasping)
can reliably cause an environmental object to move in the
same way as some part of the robot’s body (e.g., its wrist)
during subsequent robot behaviors. Thus, the robot can learn
that the grasping behavior is necessary in order to control
the position of the object reliably. This knowledge is used
for subsequent tool-using behaviors. One method for learn-
ing these first-order (or binding) affordances is described in
(Stoytchev 2005b).

Next the robot can use the previously explored proper-
ties of objects and relate them to other objects. In this way,
the robot can learn that certain actions with objects can af-
fect other objects, i.e., they can be used as tools. Using the
principles of verification and grounding the robot can learn
the affordances of tools. The robot can autonomously verify
and correct these affordances if the tool changes or breaks
(Stoytchev 2005a).

Body Objects Tools Environment

Figure 1: The figure shows the progressively larger sections
of the initially unknown environment that the robot must ex-
plore during its development. The properties of the robot’s
body are explored first because it is the most persistent and
predictable part of the environment. Once the robot can reli-
ably identify its own body it can explore the properties of en-
vironmental objects by relating them to the properties of its
own body. Finally, the robot can use previously explored ob-
jects to explore the properties of other objects, i.e., it learns
how objects can be used as a tools.

Summary
This paper proposed five basic principles of developmental
robotics. These principles were formulated based on some
of the recurring themes in the developmental learning liter-
ature and in the author’s own research. The five principles
follow logically from the verification principle (postulated
by Richard Sutton) which is assumed to be self-evident.

The paper also described an example of how these prin-
ciples can be applied to autonomous tool use in robots. The
author’s previous work describes the individual components
of this sequence in more details.
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