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Abstract. This paper introduces a behavior-grounded approach to rep-
resenting and learning the affordances of tools by a robot. The affordance
representation is learned during a behavioral babbling stage in which the
robot randomly chooses different exploratory behaviors, applies them to
the tool, and observes their effects on environmental objects. As a re-
sult of this exploratory procedure, the tool representation is grounded in
the behavioral and perceptual repertoire of the robot. Furthermore, the
representation is autonomously testable and verifiable by the robot as
it is expressed in concrete terms (i.e., behaviors) that are directly avail-
able to the robot’s controller. The tool representation described here can
also be used to solve tool-using tasks by dynamically sequencing the ex-
ploratory behaviors which were used to explore the tool based on their
expected outcomes. The quality of the learned representation was tested
on extension-of-reach tasks with rigid tools.

1 Introduction

The ability to use tools is one of the hallmarks of intelligence. Tool use is fun-
damental to human life and has been for at least the last two million years.
We use tools to extend our reach, to amplify our physical strength, to transfer
objects and liquids, and to achieve many other everyday tasks. A large number
of animals have also been observed to use tools [1]. Some birds, for example, use
twigs or cactus pines to probe for larvae in crevices which they cannot reach with
their beaks. Sea otters use stones to open hard-shelled mussels. Chimpanzees use
stones to crack nuts open and sticks to reach food, dig holes, or attack predators.
Orangutans fish for termites with twigs and grass blades. Horses and elephants
use sticks to scratch their bodies. These examples suggest that the ability to
use tools is an adaptation mechanism used by many organisms to overcome the
limitations imposed on them by their anatomy.

Despite the widespread use of tools in the animal world, however, studies
of autonomous robotic tool use are still rare. There are industrial robots that
use tools for tasks such as welding, cutting, and painting, but these operations
are carefully scripted by a human programmer. Robot hardware capabilities,
however, continue to increase at a remarkable rate. Humanoid robots such as
Honda’s Asimo, Sony’s Qrio, and NASA’s Robonaut feature motor capabilities



similar to those of humans. In the near future similar robots will be working
side by side with humans in homes, offices, hospitals, and in outer space. It is
difficult to imagine how these robots that will look like us, act like us, and live in
the same physical environment like us, will be very useful if they are not capable
of something so innate to human culture as the ability to use tools. Because of
their humanoid “anatomy” these robots undoubtedly will have to use external
objects in a variety of tasks, for instance, to improve their reach or to increase
their physical strength. These important problems, however, have not been well
addressed by the robotics community.

Another motivation for studying robot tool behaviors is the hope that robotics
can play a major role in answering some of the fundamental questions about
tool-using abilities of animals and humans. After ninety years of tool-using ex-
periments with animals (see next section) there is still no comprehensive theory
attempting to explain the origins, development, and learning of tool behaviors
in living organisms.

Progress along these two lines of research, however, is unlikely without ini-
tial experimental work which can be used as the foundation for a computational
theory of tool use. Therefore, the purpose of this paper is to empirically eval-
uate one specific way of representing and learning the functional properties or
affordances [2] of tools.

The tool representation described here uses a behavior-based approach [3]
to ground the tool affordances in the existing behavioral repertoire of the robot.
The representation is learned during a behavioral babbling stage in which the
robot randomly chooses different exploratory behaviors, applies them to the tool,
and observes their effects on environmental objects. The quality of the learned
representation is tested on extension-of-reach tool tasks. The experiments were
conducted using a mobile robot manipulator. As far as we know, this is one of
the first studies of this kind in the Robotics and AI literature.

2 Related Work

2.1 Affordances and Exploratory Behaviors

A simple object like a stick can be used in numerous tasks that are quite different
from one another. For example, a stick can be used to strike, poke, prop, scratch,
pry, dig, etc. It is still a mystery how animals and humans learn these affordances
[2] and what are the cognitive structures used to represent them.

James Gibson defined affordances as “perceptual invariants” that are directly
perceived by an organism and enable it to perform tasks [2]. Gibson is not
specific about the way in which affordances are learned but he suggests that
some affordances are learned in infancy when the child experiments with objects.
For example, an object affords throwing if it can be grasped and moved away
from one’s body with a swift action of the hand and then letting it go. The
perceptual invariant in this case is the shrinking of the visual angle of the object



as it is flying through the air. This highly interesting “zoom” effect will draw
the attention of the child [2, p. 235].

Gibson defines tools as detached objects that are graspable, portable, ma-
nipulable, and usually rigid [2, p. 40]. A hammer, for example, is an elongated
object that is graspable at one end, weighted at the other end, and affords hitting
or hammering. A knife, on the other hand, is a graspable object with a sharp
blade that affords cutting. A writing tool like a pencil leaves traces when applied
to surfaces and thus affords trace-making [2, p. 134].

The related work on animal object exploration indicates that animals use
stereotyped exploratory behaviors when faced with a new object [4, 5]. This set
of behaviors is species specific and may be genetically predetermined. For some
species of animals these tests include almost their entire behavioral repertoire:
“A young corvide bird, confronted with an object it has never seen, runs through
practically all of its behavioral patterns, except social and sexual ones.” [5, p.
44].

Recent studies with human subjects also suggest that the internal represen-
tation for a new tool used by the brain might be encoded in terms of specific past
experiences [6]. Furthermore, these past experiences consist of brief feedforward
movement segments used in the initial exploration of the tool [6]. A tool task is
later solved by dynamically combining these sequences [6].

Thus, the properties of a tool that an animal is likely to learn are directly re-
lated to the behavioral and perceptual repertoire of the animal. Furthermore, the
learning of these properties should be relatively easy since the only requirement
is to perform a (small) set of exploratory behaviors and observe their effects.
Based on the results of these “experiments” the animal builds an internal rep-
resentation for the tool and the actions that it affords. Solving tool tasks in the
future is based on dynamically combining the exploratory behaviors based on
their expected results.

Section 3 formulates a behavior-grounded computational model of tool affor-
dances based on these principles.

2.2 Experiments with Primates

According to Beck [1], whose taxonomy is widely adopted today, most animals
use tools for four different functions: 1) to extend their reach; 2) to amplify
the mechanical force that they can exert on the environment; 3) to enhance
the effectiveness of antagonistic display behaviors; and 4) to control the flow of
liquids. This paper focuses only on the extension of reach mode of tool use.

Extension of reach experiments have been used for the last 90 years to test
the intelligence and tool-using abilities of primates [7–9]. In these experiments
the animal is prevented from getting close to an incentive and thus it must use
one of the available tools to bring the incentive within its sphere of reach.

Wolfgang Köhler was the first to systematically study the tool behaviors of
chimpanzees. He performed a large number of experiments from 1913 to 1917.
The experimental designs were quite elaborate and required use of a variety of
tools: straight sticks, L-sticks, T-sticks, ladders, boxes, rocks, ribbons, ropes,



and coils of wire. The incentive for the animal was a banana or a piece of apple
which could not be reached without using one or more of the available tools.
The experimental methodology was to let the animals freely experiment with
the available tools for a limited time period. If the problem was not solved
during that time, the experiment was terminated and repeated at some later
time.

In more recent experimental work, Povinelli et al. [8] replicated many of the
experiments performed by Köhler and used statistical techniques to analyze the
results. The main conclusion was that chimpanzees solve these tasks using simple
rules extracted from experience like “contact between objects is necessary and
sufficient to establish covariation in movement” [8, p. 305]. Furthermore, it was
concluded that chimpanzees do not reason about their own actions and tool
tasks in terms of abstract unobservable phenomena such as force and gravity.
Even the notion of contact that they have is that of “visual contact” and not
“physical contact” or “support” [8, p. 260]. Similar results have been reported
by Visalberghi and Trinca [9].

The conclusions of these studies were used to guide the design of the robot’s
perceptual routines (see Section 4).

2.3 Related Work in Robotics and AI

Krotkov [10] notes that relatively little robotics research has been geared towards
discovering external objects’ properties other than shape and position. Some of
the exploration methods employed by the robot in Krotkov’s work use tools
coupled with sensory routines to discover object properties. For example, the
“whack and watch” method uses a wooden pendulum to strike an object in
order to estimate its mass and coefficient of sliding friction. The “hit and listen”
method uses a blind person’s cane to determine the acoustic properties of objects.
Fitzpatrick et al. [11] used a similar approach to program a robot to poke objects
with its arm (without using a tool) and learn the rolling properties of the objects
from the resulting displacements.

Bogoni and Bajcsy describe a system that evaluates the applicability of differ-
ently shaped pointed objects for cutting and piercing operations [12, 13]. A robot
manipulator is used to move the tool into contact with various materials (e.g.,
wood, sponge, plasticine) while a computer vision system tracks the outline of
the tool and measures its penetration into the material. The outlines of the tools
are modeled by superquadratics and clustering algorithms are used to identify
interesting properties of successful tools. This work is one of the few examples
in the robotics literature that has attempted to study object functionality with
the intention of using the object as a tool by a robot.

Several computer vision projects have focused on the task of recognizing
objects based on their functionality [14, 15]. Hand tools are probably the most
popular object category used to test these systems. One problem with these
systems, however, is that they try to reason about the functionalities of objects
without actively interacting with the objects.



3 Behavior-Grounded Tool Representation

3.1 Robots, Tools, and Tasks

Several definitions for tool use have been given in the literature. Arguably, the
most comprehensive definition is the one given by Beck [1, p. 10]:

“Tool use is the external employment of an unattached environmental

object to alter more efficiently the form, position, or condition of another

object, another organism, or the user itself when the user holds or carries

the tool during or just prior to use and is responsible for the proper and

effective orientation of the tool.”

The notion of robotic tool use brings to mind four things: 1) a robot; 2) an
environmental object which is labeled a tool; 3) another environmental object
to which the tool is applied (labeled an attractor); and 4) a tool task. For tool
use to occur all four components need to be present. In fact, it is meaningless
to talk about one without taking into account the other three. What might be
a tool for one robot may not be a tool for another because of differences in the
robots’ capabilities. Alternatively, a tool might be suitable for one task (and/or
object) but completely useless for another. And finally, some tasks may not be
within the range of capabilities of a robot even if the robot is otherwise capable
of using tools. Thus, the four components of tool use must always be taken into
consideration together.

This is compatible with Gibson’s claim that objects afford different things
to people with different body sizes. For example, an object might be graspable
for an adult but may not be graspable for a child. Therefore, Gibson suggests
that a child learns “his scale of sizes as commensurate with his body, not with
a measuring stick” [2, p. 235]. For example, an object is graspable if it has
opposable surfaces the distance between which is less than the span of the hand
[2, p. 133].

Because of these arguments, any tool representation should take into account
the robot that is using the tool. In other words, the representation should be
grounded in the behavioral and perceptual repertoire of the robot. The main
advantage of this approach is that the tool’s affordances are expressed in concrete
terms (i.e., behaviors) that are available to the robot’s controller. Note that this
is in sharp contrast with other theories of intelligent systems reasoning about
objects in the physical world [16, 14]. They make the assumption that object
properties can be expressed in abstract form (by a human) without taking into
account the robot that will be using them.

Another advantage of the behavior-grounded approach is that it can handle
changes in the tool’s properties over time. For example, if a familiar tool becomes
deformed (or a piece of it breaks off) it is no longer the same tool. However, the
robot can directly test the accuracy of its representation by executing the same
set of exploratory behaviors that was used in the past. If any inconsistencies
are detected in the resulting observations they can be used to update the tool’s
representation. Thus, the accuracy of the representation can be directly tested
by the robot.



3.2 Theoretical Formulation

The previous sections presented a justification for the behavior-grounded repre-
sentation. This section formulates these ideas using the following notation.

Let βe1
, βe2

, . . . , βek
be the set of exploratory behaviors available to the

robot. Each behavior, has one or more parameters that modify its outcome.
Let the parameters for behavior βei

be given as a parameter vector Ei =
[ei

1, e
i
2, . . . e

i
p(i)], where p(i) is the number of parameters for this behavior. The

behaviors, and their parameters, could be learned by imitation, programmed
manually, or learned autonomously by the robot. In this paper, however, the
issue of how these behaviors are selected and/or learned will be ignored.

In a similar fashion, let βb1 , βb2 , . . . , βbm
be the set of binding behaviors

available to the robot. These behaviors allow the robot to attach tools to its
body. The most common binding behavior is grasping. However, there are many
examples in which a tool can be controlled even if it is not grasped. Therefore,
the term binding will be used. The parameters for binding behavior βbi

are given
as a parameter vector Bi = [bi

1, b
i
2, . . . b

i
q(i)].

Furthermore, let the robot’s perceptual routines provide a stream of obser-
vations in the form of an observation vector O = [o1, o2, . . . , on]. It is assumed
that the set of observations is rich enough to capture the essential features of
the tasks to which the tool will be applied.

A change detection function, T (O(t′), O(t′′)) → {0, 1}, that takes two ob-
servation vectors as parameters is also defined. This function determines if an
“interesting” observation was detected in the time interval [t′, t′′]. In the current
set of experiments T = 1 if the attractor object was moving during the execution
of the last exploratory behavior. The function T is defined as binary because
movement is either detected or it is not.

With this notation in mind, the functionality of a tool can be represented
with an Affordance Table of the form:

Binding Binding Exploratory Exploratory Os Oe
Times Times

Behavior Params Behavior Params Used Succ

In each row of the table, the first two entries represent the binding behavior
that was used. The second two entries represent the exploratory behavior and its
parameters. The next two entries store the observation vector at the start and
at the end of the exploratory behavior. The last two entries are integer counters
used to estimate the probability of success of this sequence of behaviors.

Binding Binding Exploratory Exploratory Os Oe
Times Times

Behavior Params Behavior Params Used Succ

βb1
b̃1

1 βe3
ẽ3

1, ẽ
3

2 Õ(t′) Õ(t′′) 4 3

The meanings of these entries are best explained with an example. Consider
the following sample row in which the binding behavior βb1 which has one pa-
rameter was performed to grasp the tool. The specific value of the parameter for



this behavior was b̃1
1 (a˜ sign is used to represent a specific fixed value). Next,

the exploratory behavior βe3
was performed with specific values ẽ3

1 and ẽ3
2 for

its two parameters. The value of the observation vector prior to the start of
βe3

was Õ(t′) and it value after βe3
has completed was Õ(t′′). This sequence of

behaviors was performed 4 times. It resulted in observations similar to the first
time this row of the affordance table was created in 3 of these instances, i.e., its
probability of success is 75%. Section 6 and Figure 5 provide more information
about the organization of the affordance table.

Initially the affordance table is blank. When the robot is presented with a
tool it performs a behavioral babbling routine which picks binding and exploratory
behaviors at random, applies them to the tools and objects, observes their effects,
and updates the table. New rows are added to the table only if T was on while
the exploratory behavior was performed. During learning, the integer counters
of all rows are set to 1. They are updated during testing trials.

4 Experimental Setup

All experiments were performed using the CRS+ A251 mobile manipulator
shown in Figure 1. Five tools were used in the experiments: stick, L-stick, L-
hook, T-stick, and T-hook (see Figure 1). The tools were built from pine wood
and painted with spray paint. The choice of tools was motivated by the similar
tools that Köhler’s used in his experiments with chimpanzees [7]. An orange
hockey puck was used as an attractor object. The experimental setup is shown
in Figure 2 and is described in more detail below.

A Sony EVI-D30 camera was mounted on a tripod overlooking the robot’s
working area (see Figure 2). The robot’s wrist, the tools, and the attractor were
color coded so that their positions can be uniquely identified and tracked using

Fig. 1. The figure shows the CRS+ A251 mobile manipulator, the five tools, and the
hockey puck that were used in the experiments.



Fig. 2. Experimental setup.

Fig. 3. The image shows the field of view of the robot through the Sony EVI-D30
camera. The robot’s wrist, the attractor object, the tools, and the goal region were
color coded and their positions were tracked using color segmentation (see Figure 4).



Fig. 4. Color segmentation results for the image frame shown in Figure 3. The positions
of the color coded objects were calculated after calibrating the camera using Roger
Tsai’s method [17, 18]. Although the shape of the tool can be extracted form this
image it is not required and used by the behavior-grounded approach.

computer vision (see Figures 3 and 4). The computer vision code was run at
15Hz in 640x480 resolution mode.

To ensure consistent tracking results between multiple robot experiments the
camera was calibrated every time it was powered up. A 6 × 6 calibration pattern
was used. The pattern consists of small color markers placed on a cardboard, 5
inches apart, so that they form a square pattern. The pixel coordinates of the
36 uniformly colored markers were identified automatically using color segmen-
tation. The centroid positions of the 36 color markers were used to calculate a
mapping function which assigns to each (x,y) in camera coordinates a (X,Y,Z)
location in world coordinates. This calculation is possible because the markers
are coplanar and the equation of the plane in which they lie is known (e.g., Z=0
is the plane of the table). The mapping function was calculated using Roger
Tsai’s method [17, 18] and the code given in [19].

5 Exploratory Behaviors

All behaviors used here were encoded manually from a library of motor schemas

and perceptual schemas [3] developed for this specific robot. The behaviors result
in different arm movement patterns as described below.

The first four behaviors move the arm in the indicated direction while keeping
the wrist perpendicular to the table on which the tool slides. These behaviors
have a single parameter which determines how far the arm will travel relative
to its current position. Two different values for this parameter were used (2



Exploratory Behaviors Parameters

Extend arm offset distance
Contract arm offset distance
Slide arm left offset distance
Slide arm right offset distance
Position wrist x,y

and 5 inches). The position wrist behavior moves the manipulator such that the
centroid of the attractor is at offset (x, y) relative to the wrist.

5.1 Grasping Behavior

There are multiple ways in which a tool can be grasped. These represent a
set of affordances which we will call first order (or binding affordances), i.e.,
the different ways in which the robot can attach the tool to its body. These
affordances are different from the second order (or output affordances) of the
tool, i.e., the different ways in which the tool can act on other objects. This paper
focuses only on output affordances, so the binding affordances were specified with
only one grasping behavior. The behavior takes as a parameter the location of
a single grasp point located at the lower part of the tool’s handle.

5.2 Observation Vector

The observation vector has 12 real-value components. In groups of three, they
represent the position of the attractor object in camera-centric coordinates, the
position of the object relative to the wrist of the robot, the color of the object,
and the color of the tool.

Observation Meaning

o1, o2, o3 X,Y,Z positions of the object (camera-centric)
o4, o5, o6 X,Y,Z positions of the object (wrist-centric)
o7, o8, o9 R,G,B color components of the object
o10, o11, o12 R,G,B color components of the tool

The change detection function T was defined with the first three components,
o1, o2, o3. To determine if the attractor is moving, T calculates the Euclidean
distance and thresholds it with an empirically determined value (0.5 inches).
The times-successful counter is incremented if the observed attractor movement
is within 40 degrees of the expected movement stored in the affordance table.

6 Learning Trials

During the learning trials the robot was allowed to freely explore the properties of
the tools. The exploration consisted of trying different behaviors, observing their



results, and filling up the affordance table. The initial positions of the attractor
and the tool were random. If the attractor was pushed out of tool reach by the
robot then the learning trial was temporarily suspended while the attractor was
manually placed in a new random position. The learning trials were limited to
one hour of run time for every tool.

6.1 What Is Learned

Figure 5 illustrates what the robot can learn about the properties of the T-hook
tool based on a single exploratory behavior. In this example, the exploratory
behavior is “Contract Arm” and its parameter is “5 inches.” The two observation
vectors are stylized for the purposes of this example. The information that the
robot retains is not the images of the tool and the puck but only the coordinates
of their positions as explained above. If a different exploratory behavior was
selected by the robot it is possible that no movement of the puck will be detected.
In this case the robot will not store any information (row) in the affordance table.

Fig. 5. Contents of a sample row of the affordance table for the T-hook tool.

When the robot performs multiple exploratory behaviors a more compact
way to represent this information is required. A good way to visualize what
the robot learns is with graphs like the ones shown in Figure 6. The figures
show the observed outcomes of the exploratory behaviors when the T-hook tool
was applied randomly to the hockey puck. Each of the eight graphs shows the
observed movements of the attractor object when a specific exploratory behavior
was performed. The movements of the attractor object are shown as arrows. The
start of each arrow corresponds to the initial position of the attractor relative
to the wrist of the robot (and thus relative to the grasp point) just prior to the
start of the exploratory behavior. The arrow represents the observed distance
and direction of movement of the attractor in camera coordinates at the end of
the exploratory behavior. In other words, each of the arrows shown in Figure 6



Extend Arm

(2 inches)

Extend Arm

(5 inches)

Slide Left

(2 inches)

Slide Left

(5 inches)

Slide Right

(2 inches)

Slide Right

(5 inches)

Contract Arm

(2 inches)

Contract Arm

(5 inches)

Fig. 6. Visualizing the affordance table for the T-hook tool. Each of the eight graphs
show the observed movements of the attractor object after a specific exploratory behav-
ior was performed multiple times. The start of each arrow corresponds to the position
of the attractor in wrist-centered coordinates (i.e., relative to the tool’s grasp point)
just prior to the start of the exploratory behavior. The arrow represents the total dis-
tance and direction of movement of the attractor in camera coordinates at the end of
the exploratory behavior.

represents one observed movement of the puck similar to the “detected move-
ment” arrow show in Figure 5. The arrows in Figure 6 are superimposed on the
initial configuration of the tool and not on its final configuration as in Figure 5.

This affordance representation can also be interpreted as a predictive model
of the results of the exploratory behaviors. In other words, the affordances are
represented as the expected outcomes of specific behaviors. This interpretation
of affordances is consistent with the idea that biological brains are organized as
predictive machines that anticipate the consequences of actions – their own and
those of others [20, p. 1]. It is also consistent with some recent findings about the
internal representation of the functional properties of novel objects and tools in
humans. For example, “if the brain can predict the effect of pushing or pulling an
object this is effectively an internal model of the object that can be used during
manipulation”[6]. A recent result in the theoretical AI literature also shows that
the state of a dynamic system can be represented by the outcomes of a set of
tests [21, 22]. The tests consist of action-observation sequences. It was shown
that the state of the system is fully specified if the outcomes of a basis set of
test called core tests are known in advance [22].

6.2 Querying the Affordance Table

After the affordance table is populated with values it can be queried to dynam-
ically create behavioral sequences that solve a specific tool task. The behaviors
in these sequences are the same behaviors that were used to fill the table. This
subsection describes the search heuristic used to select the best affordance for



Fig. 7. Flowchart diagram for the procedure used by the robot to solve tool-using tasks
with the help of the behavior-grounded affordance representation.



the current task configuration. This heuristic is used by the procedure for solving
tool-using tasks shown in Figure 7

During testing trials, the best affordance for a specific step in a tool task was
selected using a greedy heuristic search. The query method that was adopted
uses empirically derived heuristics to perform multiple nested linear searches
through the affordance table. Each successive search is performed only on the
rows that were not eliminated by the previous searches. Four nested searches
were performed in the order shown below:

1) Select all rows that have observation vectors consistent with the colors of
the current tool and object.

2) From the remaining rows select those with probability of success greater
than 50%. In other words, select only those rows that have a replication proba-
bility (times successful/times used) greater than 1

2 (the reasons for choosing this
threshold value are described below).

3) Sort the remaining rows (in increasing order) based on the expected dis-
tance between the attractor object and the goal region if the behavior associated
with this row were to be performed.

4) From the top 20% of the sorted rows choose one row which minimizes the
re-positioning of the tool relative to its current location.

As it was mentioned above the greedy one-step-lookahead heuristic was de-
rived empirically. The performance of the heuristic was fine tuned for speed of
adaptation in the presence of uncertainty which is important when multiple robot
trials have to be performed. For example, the threshold value of 50% used in step
2 above was chosen in order to speed up the elimination of outdated affordances
when the geometry of the tool suddenly changes (see the experiment described
in Section 7.2). With this threshold value it takes only one unsuccessful behav-
ioral execution in order to eliminate an affordance from further consideration.
Future work should attempt to formulate a more principled approach to this
affordance-space planning problem, preferably using performance data derived
from tool-using experiments with animals and humans (e.g., [6]).

7 Testing Trials

Two types of experiments were performed to test the behavior-grounded ap-
proach. They measured the quality of the learned representation and its adap-
tation abilities when the tool is deformed, respectively.

7.1 Extension of Reach

In the first experiment the robot was required to pull the attractor over a color
coded goal region. Four different goal positions were defined. The first goal po-
sition is shown in Figure 1 (the dark square in front of the robot). The second
goal position was located farther away from the robot (see Figure 2). To achieve
it the robot had to push the attractor away from its body. Goals 3 and 4 were
placed along the mid-line of the table as shown in Figure 8.



Fig. 8. The figure shows the positions of the four goal regions (G1, G2, G3, and G4)
and the four initial attractor positions used in the extension of reach experiments. The
two dashed lines indicate the boundaries of the robot’s sphere of reach when it is not
holding any tool.

In addition to that there were 4 initial attractor positions per goal. The initial
positions are located along the mid-line of the table, 6 inches apart as shown in
Figure 8. The tool was always placed in the center of the table. A total of 80
trials were performed (4 goals × 4 attractor positions × 5 tools). The table below
summarizes the results. The values represent the number of successful solutions
per goal, per tool. Four is the maximum possible value as there are only four
initial starting positions for the attractor object.

Tool Goal 1 Goal 2 Goal 3 Goal 4

Stick 0 2 4 4
L-stick 4 2 4 4
L-hook 4 3 4 4
T-stick 3 3 4 4
T-hook 4 4 4 4

As can be seen from the table, the robot was able to solve this task in the
majority of the test cases. The most common failure condition was due to pushing



Fig. 9. A T-hook missing its right hook is equivalent to an L-hook.

the attractor out of tool’s reach. This failure was caused by the greedy one-
step-lookahead heuristic used for selecting the next tool movement. If the robot
plans the possible movements of the puck for 2 or 3 moves ahead these failures
will be eliminated. A notable exception is the Stick tool, which could not be
used to pull the object back to the near goal (G1). The robot lacks the required
exploratory behavior (turn-the-wrist-at-an-angle-and-then-pull) that is required
to detect this affordance of the stick. Adding the capability of learning new
exploratory behaviors can resolve this problem.

7.2 Adaptation After a Tool Breaks

The second experiment was designed to test the flexibility of the behavior-
grounded representation in the presence of uncertainties. The uncertainly in
this case was a tool that can break. For example, Figure 9 shows the tool trans-
formation which occurs when a T-hook tool loses one of its hooks. The result is
a L-hook tool. This section describes the results of an experiment in which the
robot was exposed to such tool transformation after it had already learned the
affordances of the T-hook tool.

To simulate a broken tool, the robot was presented with a tool that has
the same color ID as another tool with a different shape. More specifically, the
learning was performed with a T-hook which was then replaced with an L-hook.
Because color is the only feature used to recognize tools the robot believes that
it is still using the old tool.

The two tools differ in their upper right sections as shown in Figure 9. When-
ever the robot tried to use affordances associated with the missing parts of the
tool they did not produce the expected attractor movements. Figure 10 shows
frames from a sequence in which the robot tried in vain to use the upper right
part of the tool to move the attractor towards the goal. After several trials the
replication probability of the affordances associated with that part of the tool
was reduced and they were excluded from further consideration. Figure 11 shows
frames from the rest of this sequence in which the robot was able to complete
the task with the intact left hook of the tool.



Fig. 10. Using a broken tool (Part I: Adaptation) - Initially the robot tries to
move the attractor towards the goal using the missing right hook. Because the puck fails
to move as expected the robot reduces the replication probability of the affordances
associated with this part of the tool.

Fig. 11. Using a broken tool (Part II: Solving the task) - After adapting to the
modified affordances of the tool, the robot completes the task with the intact left hook

A total of 16 trials similar to the one shown in Figure 10 were performed (i.e.,
4 goal regions × 4 initial attractor positions). In each of these experiments the
robot started the testing trial with the original representation for the T-hook
tool and modified it based on actual experience. The robot was successful in all
16 experiments, i.e., the robot was able to place the attractor over the target
goal region with the “broken” tool in all 16 experiments.



8 Conclusions and Future Work

This paper introduced a novel approach to representing and learning tool af-
fordances by a robot. The affordance representation is grounded in the behav-
ioral and perceptual repertoire of the robot. More specifically, the affordances
of different tools are represented in terms of a set of exploratory behaviors and
their resulting effects. It was shown how this representation can be used to solve
tool-using tasks by dynamically sequencing exploratory behaviors based on their
expected outcomes.

The behavior-grounded approach represents the tool’s affordances in concrete
terms (i.e., behaviors) that are available to the robot’s controller. Therefore, the
robot can directly test the accuracy of its tool representation by executing the
same set of exploratory behaviors that was used in the past. If any inconsistencies
are detected in the resulting observations they can be used to update the tool’s
representation. Thus, the accuracy of the representation can be directly tested
by the robot. It was demonstrated how the robot can use this approach to adapt
to changes in the tool’s properties over time, e.g., tools that can break.

A shortcoming of the behavior-grounded approach is that there are tool affor-
dances that are unlikely to be discovered since the required exploratory behavior
is not available to the robot. This problem has also been observed in animals,
e.g., macaque monkeys have significant difficulties learning to push an object
with a tool away from their bodies because this movement is never performed in
their normal daily routines [23]. This problem can be resolved, however, if the
ability to learn new exploratory behaviors is added.

There are some obvious extensions to this work that are left for future work.
First, the current implementation starts the exploration of a new tool from
scratch even though it may be similar to an already explored tool. Adding the
ability to rapidly infer the affordances of a new tool from its shape similarity to
previous tools would be a nice extension.

Second, the current implementation uses a purely random behavioral bab-
bling exploration procedure. Different strategies that become less random and
more focused as information is structured by the robot during the exploration
could be used to speed up the learning process.

Third, the behavior-grounded approach should be compared experimentally
with planners for pushing objects (e.g., [24]). We expect that the behavior-
grounded method would approach asymptotically the accuracy of these planners
as the number and diversity of the exploratory behaviors is increased. We also
expect, however, that our approach would excel in situations that cannot be
predicted by the planners, e.g., tools that can break or objects whose center of
mass can shift between trials.

References

1. Beck, B.B.: Animal Tool behavior: The use and manufacture of tools by animals.
Garland STMP Press, New York (1980)

2. Gibson, J.J.: The ecological approach to visual perception. Houghton Mifflin,
Boston (1979)



3. Arkin, R.: Behavior-based robotics. MIT Press (1998)
4. Power, T.G.: Play and Exploration in Children and Animals. Lawrence Erlbaum

Associates, Publishers, Mahwah, NJ (2000)
5. Lorenz, K.: Innate bases of learning. In Pribram, K.H., King, J., eds.: Learning as

Self-Organization. Lawrence Erlbaum Associates, Publishers, Mahwah, NJ (1996)
6. Mah, C.D., Mussa-Ivaldi, F.A.: Evidence for a specific internal representation

of motion-force relationships during object manipulation. Biological Cybernetics
88(1) (2003) 60–72

7. Köhler, W.: The mentality of apes. Harcourt, Brace, and Co. (1931)
8. Povinelli, D., Reaux, J., Theall, L., Giambrone, S.: Folk Physics for Apes: The

Chimpanzee’s theory of how the world works. Oxford Univ. Press, Oxford (2000)
9. Visalberghi, E., Trinca, L.: Tool use in capuchin monkeys: distinguishing between

performing and understanding. Primates 30 (1989) 511–21
10. Krotkov, E.: Perception of material properties by robotic probing: Preliminary

investigations. In: Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), Montreal (August 1995) 88–94

11. Fitzpatrick, P., Metta, G., Natale, L., Rao, S., Sandini, G.: Learning about objects
through action - initial steps towards artificial cognition. In: Proceedings of IEEE
International Conference on Robotics and Automation (ICRA), Taipei, Taiwan
(May 12-17, 2003)

12. Bogoni, L., Bajcsy, R.: Interactive recognition and representation of functionality.
Computer Vision and Image Understanding 62(2) (1995) 194–214

13. Bogoni, L.: Identification of functional features through observations and interac-
tions. PhD thesis, University of Pennsylvania (1995)

14. Stark, L., Bowyer, K.: Generic Object Recognition using Form and Function.
Volume 10 of Machine Perception and AI. World Scientific, Singapore (1996)

15. Rivlin, E., Dickinson, S.J., Rosenfeld, A.: Recognition by functional parts. Com-
puter Vision and Image Understanding 62(2) (1995) 164–176

16. Hayes, P.J.: The second naive physics manifesto. In: Formal Theories of the
Commonsense World. Ablex (1985)

17. Tsai, R.Y.: An efficient and accurate camera calibration technique for 3D machine
vision. In: Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Miami Beach, FL (1986) 364–374

18. Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3D ma-
chine vision metrology using off-the-shelf TV cameras and lenses. IEEE Journal
of Robotics and Automation RA-3(4) (August 1987) 323–344

19. Willson, R.: Tsai Camera Calibration Software. (1995) (the source code can be
downloaded from http://www-2.cs.cmu.edu/~rgw/TsaiCode.html).

20. Berthoz, A.: The brain’s sense of movement. Harvard University Press (2000)
21. Singh, S., Littmn, M., Sutton, R., Stone, P.: Learning predictive state representa-

tions. Paper Draft (unpublished) (2002)
22. Littman, M.L., Sutton, R.S., Singh, S.: Predictive representation of state. In:

Advances in Neural Information Processing Systems. Volume 14. (2002)
23. Ishibashi, H., Hihara, S., Iriki, A.: Acquisition and development of monkey tool-use:

behavioral and kinematic analyses. Canadian Journal of Physiology and Pharma-
cology 78 (2000) 958–966

24. Mason, M.T.: Mechanics of Robotic Manipulation. MIT Press (2001)


