
Which Object Fits Best?
Solving Matrix Completion Tasks with a Humanoid Robot

Connor Schenck, Jivko Sinapov, David Johnston, and Alexander Stoytchev
Developmental Robotics Laboratory

Iowa State University
{cschenck, jsinapov, dwtj, alexs}@iastate.edu

Abstract—Matrix completion tasks commonly appear on
intelligence tests. Each task consists of a grid of objects, with
one missing, and a set of candidate objects. The job of the
test taker is to pick the candidate object that best fits in the
empty square in the matrix. In this paper we explore methods
for a robot to solve matrix completion tasks that are posed
using real objects instead of pictures of objects. Using several
different ways to measure distances between objects, the robot
detected patterns in each task and used them to select the best
candidate object. When using all the information gathered from
all sensory modalities and behaviors, and when using the best
method for measuring the perceptual distances between objects,
the robot was able to achieve 99.4% accuracy over the posed
tasks. This shows that the general framework described in this
paper is useful for solving matrix completion tasks.

I. INTRODUCTION

Intelligence tests have long been used to measure the
Intelligence Quotient (IQ) of humans. Matrix completion
tasks often appear on many intelligence tests. These problems
consist of a grid of objects, where one entry in the grid is
missing. The job of the test taker is to select an object from
a set of given candidates that best fits in the empty slot in
the grid. The most well-known intelligence test that employs
matrix completion tasks, the Raven’s Progressive Matrices
(RPM) test [1], has been shown to predict performance
on a large set of reasoning tasks [2], [3]. Other common
intelligence tests, such as the Wechsler Abbreviated Scale of
Intelligence (WASI) [4], also have sections that consist of
matrix completions tasks.

Matrix completion tasks emphasize the ability to reason
about the relationships between the objects in the matrix,
rather than merely recalling stored knowledge about the ob-
jects. In fact, John Raven developed the RPM test specifically
to remove biases that he saw in previous tests that made
it difficult to accurately compare the scores of participants
with and without extensive knowledge of concepts such as
language [5]. Currently there are no robotic systems that
are capable of building longitudinal knowledge bases or
understanding language to the same extent that humans can.
However, because matrix completion tasks do not require
extensive background knowledge to solve, it is feasible to
solve them with the current state of the art in robotics.

Matrix completion tasks appear not only on intelligence
tests, but also on many other tasks outside of these tests. For
example, the grid layout of the periodic table of the elements

?

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1: An example matrix completion task. The correct
answer is (c) because the large blue triangle is the same
shape as the other objects in the bottom row, it is increasing
in size over the previous object in its row, and it completes
the permutation over the colors in the bottom row. Looking
down the columns, it is also the same size and color as the
other objects in its column and it completes the permutation
over the shapes in the last column.

makes it easy to see the analogous relationships between
elements in the same relative positions (e.g., cadmium can
replace zinc in many vital enzymes, a relationship that is
made apparent by the arrangement of the periodic table)
[6]. In fact, when Mendeleev created the periodic table, due
to the underlying properties of its layout, he was able to
successfully predict the existence and properties of many
yet undiscovered elements [6]. This suggests that the con-
cepts underlying matrix completion tasks are very useful for
solving other, related tasks in real-world environments.

This paper formulates a framework for solving matrix

completion tasks by a robot. The robot first interacted with
a set of objects while recording from its auditory, visual,
and proprioceptive sensory modalities. Then we randomly
generated 500 matrix completion tasks using objects from the
set and posed them to the robot. The robot generated a set of
distance functions using four different methods: raw context
distances (unsupervised and supervised) and category-based
distances (unsupervised and supervised), which are described
in section V-E. It then used them to attempt to deduce
the patterns in the given matrix in order to select the best
candidate object for each task. Using the best of these four
distance methods, the robot was able to achieve 99.4%
accuracy on the tasks. To the best of our knowledge, this is
the first attempt at using a robot to solve matrix completion
tasks.

II. RELATED WORK

A. Psychology

The most well-known matrix completion test, the Raven’s
Progressive Matrices (RPM) test [1], is known to predict
performance on a wide range of reasoning tasks [3]. The
RPM is composed exclusively of matrix completion tasks
and more recent intelligence tests have begun to incorporate
such tasks into sections of their tests. For example, the third
version of the Wechsler Abbreviated Scale of Intelligence
(WASI) added a section on matrix reasoning [4]. A study
by Fuchs et al. [7] found that performance on the WASI’s
matrix reasoning section was predictive of third-graders’
problem solving abilities. Another study found a correlation
between performance on the WASI matrix reasoning section
and the Halstead Category Test, which measures “complex
spatial abstract reasoning and the use of conceptual rules in
reasoning with ratios and proportions” [8]. Both of these
suggest that performance on matrix completion tasks is
indicative of performance on other complex reasoning tasks.

Dugbartey et al. [8] found that “elementary visuoper-
ceptual abilities may be a necessary, but not sufficient,
requirement for success” on the matrix reasoning section of
the WASI test. This suggests that an ability to understand
the objects in the matrix is fundamental to being able to
solve the task. This was reinforced by a study by Richardson
[9], which found that children performed significantly better
on the RPM when problems were converted to use more
meaningful symbols while the underlying structure of the
problems remained the same. In particular, Richardson found
that children were better able to perceive patterns present
in the matrices after the problems were converted to use
contextually meaningful symbols (e.g., cars and people)
instead of abstract symbols (e.g., lines and circles) that were
difficult for the children to understand.

Our previous work has dealt extensively with improving
our robot’s ability to understand the physical properties of
objects [10], [11], [12], [13] and solving various tasks related
to intelligence testing [14], [15], [16]. In this paper, similar to
[9], we will utilize physical objects to pose matrix completion
tasks to the robot while maintaining the general structure that
underlies matrix reasoning problems.

TABLE I: The taxonomy of rules governing the variations
in the rows of the matrices on the RPM test as identified by
Carpenter et al. [17] and restated by Little et al. [18]. Similar
rules can be stated for the columns of the matrix as well.

Rule Description
constant the same value occurs throughout a row, but

changes down a column
increment a quantitative increment between adjacent entries in

an attribute such as size, position, or number
decrement a quantitative decrement between adjacent entries

in an attribute
permutation a permutation of different values across a row for

a categorical attribute such as figure type
logical AND the third object in a row is the logical AND of the

first two
logical OR the third object in a row is the logical OR of the

first two
logical XOR the third object in a row is the logical XOR of the

first two
distribution of 2 two objects in a row have an identical value and

the third object has a different (usually null) value

TABLE II: Rules for generating matrix completion tasks
identified by previous work and used in this paper.

Carpenter et al. 1990 Little et al. 2012 This paper

Constant in a row Constant Constant

Quantitative pairwise progression
Increment Increment
Decrement Decrement

Figure addition or subtraction
Logical AND

N/A
Logical OR

Distribution of 3 Permutation Permutation

Distribution of 2
Logical XOR

N/A
Distribution of 2

Carpenter et al. [17] proposed a taxonomy of rules that
governs the patterns in the matrices of the RPM. They
claimed that all problems on the Advanced Progressive
Matrices test (one variant of the RPM), with the exception
of two problems, could be stated as a combination of some
subset of these rules. The rules they proposed (as restated by
Little et al. [18]) are shown in Table I.

In the experiments presented in this paper, we will use
the rules constant, increment, decrement, and permutation
to generate matrix completion tasks for the robot to solve.
Table II shows the mapping of the rules from the taxonomy
that Carpenter et al. [17] derived, to the rules stated by Little
et al. [18], and to the rules that we are using in this paper. We
chose not to use any of the rules based on logical operators
and the distribution of 2 rule due to the constraints imposed
by utilizing physical objects rather than images as the entries
in each matrix completion task.

An example task that uses these rules is shown in Figure 1.
The matrix in this figure exhibits multiple instances of the
rules: constant in shape across the rows; increment in size
across the rows; permutation for color across the rows;
permutation for shape across the columns; constant in size
across the columns; and constant in color across the columns.
Given these constraints, the only object that can be placed in
the empty square, while maintaining consistency with these

rules in the matrix, is object (c).
While intelligence tests have been shown to measure use-

ful criteria of intelligence, the use of exploratory behaviors
has been shown to be a fundamentally important part of
intelligence in animals and humans. The use of exploratory
behaviors has been reported in the literature since the late
1800s [19], [20], [21], [22], [23]. Both animals [24], [25],
[26], [27], [28], [29], [30], [31] and humans [32], [33], [34]
have been shown to make extensive use of exploratory be-
haviors. In fact, many correlations have been found between
use of exploratory behaviors and performance on various
other tasks [30], [35], [36], [37], [38], [39]. Even robots have
been shown to benefit from the use of exploratory behaviors
[40], [41], [42], [43], [44], [45], [46], [47], [48], [49]. This
indicates that exploratory behaviors offer an effective way of
learning about objects and the environment. In this paper, as
in our previous work [15], [16], the robot will use multiple,
stereotyped exploratory behaviors in order to learn about the
objects.

B. AI and Robotics

In the AI literature there have been several attempts to
formulate computational solutions for the Raven’s Progres-
sive Matrices (RPM) test [17], [18], [50], [51], [52], [53].
Most of these, however, utilize hand-coded features, rather
than real data from sensors. The algorithm developed by
Kunda et al. [52] was the only one that did not utilize hand-
coded features. Instead, they relied on complex mathematical
transformations between images of the objects in the RPM
to solve the tasks. None of these computational solutions,
though, used a robot. To the best of our knowledge, this
paper is the first attempt at solving matrix completion tasks
using an embodied approach.

Although there has not been any previous work done in
robotics on matrix reasoning, there has been a significant
amount of work that utilizes the similarity of objects to
solve tasks. There have been numerous experiments that
demonstrate a robot’s ability to solve tasks using perceptual
and functional similarity (e.g., [54], [44], [55], [56], [57],
[58], [59], [60], [14]). The ability to measure the similarity
between objects is fundamental to being able to solve many
different tasks [14], [15], [16]. This paper tests the hypothesis
that this ability is also fundamentally important to solving
matrix completion tasks.

Our own previous work has used perceptual similarity
extensively to solve multi-object tasks. In [14], Sinapov and
Stoytchev used the similarity between pairs of objects to
solve the odd-one-out task. In [16], Schenck and Stoytchev
used the perceptual distance between objects to solve the
object pairing task. In [15], Schenck et al. used the perceptual
distance between objects to solve the order completion task.
In this paper we extend our previous work and methodologies
to solve matrix completion tasks.

Figure 3 shows the framework for solving multi-object
tasks that has been developed over the course of our previous
work [14], [15], [16]. The general structure of the framework
is as follows. First, the robot interacts with all objects

Fig. 2: The robot used in these experiments. It is shown
here with only its right arm as the left arm was temporar-
ily removed for maintenance when these experiments were
performed. The Microsoft Kinect camera is mounted on the
lower part of the robot’s torso.

by performing a set of stereotyped exploratory behaviors.
Second, the robot extracts features from the raw sensory data
that it recorded and then computes multiple similarity scores
between every pair of objects. Third, the robot combines
the similarity scores from multiple sensorimotor contexts.
Fourth, the robot uses these combined scores to compute the
value of a task-specific objective function. Finally, the robot
uses the result to pick the best candidate object that max-
imizes the task-specific objective function. This framework
will be used in this paper to solve matrix completion tasks.

III. EXPERIMENTAL PLATFORM

A. Robot and Sensors

All experiments described in this paper were performed
using the robot shown in Figure 2. The robot is equipped
with two 7-DOF Barrett Whole Arm Manipulators (WAMs),
each with an attached Barrett Hand. Each WAM can measure
its own joint angles and torques at a rate of 500 Hz. The
robot used only its right arm to perform the behaviors in
these experiments as its left arm was temporarily removed
for maintenance. The robot also has an Audio-Technica
U853AW cardioid microphone mounted in its head in order
to capture auditory feedback at the standard 16-bit/44.1kHz
over a single channel. During the experiments, the robot was
also equipped with a Microsoft Kinect camera, which can
capture both RGB video and depth information. The Kinect
camera was attached to the lower part of the robot’s torso,
slightly above the table and pointed down at it.

B. Objects

The objects used in this paper were designed specifically
to maintain the general structure of matrix completion tasks

Explore
Objects ⇒ Extract

Features ⇒ Combine
Contexts ⇒ Compute

Objective
Function

⇒ Pick the
Best Object

Fig. 3: The framework used by the robot to solve perceptual reasoning tasks that involve multiple objects. The steps are
as follows: 1) The robot explores the objects; 2) It extracts features from the raw sensory data it collected; 3) The robot
combines the information from each of the sensorimotor contexts; 4) It computes the value of a task-specific objective
function for each candidate solution; and 5) The robot selects the candidate object that maximizes the objective function.

(a) Color: green, red, and blue.

(b) Contents: glass, rice, beans, and screws.

(c) Weight: light, medium, and heavy.

Fig. 4: The properties by which the objects varied. Each
object is a jar that is one of three colors, filled with one of
four different types of contents, and weighing one of three
different weights for a total of 36 objects (see Figure 5).

Fig. 5: The 36 objects used in this paper, grouped by color.
Within each group, all objects of the same weight are in the
same row and all objects with the same type of contents are
in the same column.

as described in [17] while moving to the domain of physical
objects (as opposed to images on a piece of paper). Figure 4
shows the three properties that the objects varied by. Each
object is a cylindrical plastic jar that is 8.6 centimeters
tall and 9.4 centimeters in diameter. The jars are semi-
transparent, each being one of three colors: blue, green,
or red (see Figure 4a). Each jar is filled with one of four
different types of contents: glass beads, rice, beans, or screws
(shown in Figure 4b). Each jar was filled until it weighed
either 166g, 250g, or 337g (shown in Figure 4c). In all, there
are 3 colors × 4 contents types × 3 weights = 36 total jars
(one for each permutation of the values). Figure 5 shows all
36 objects.

C. Exploratory Behaviors

The robot performed ten stereotyped behaviors to explore
the objects: grasp, lift, hold, shake, rattle, drop, tap, poke,
push, and press. All of these behaviors are shown in Figure 6.
In addition to these behaviors, the robot also performed the
look behavior (not shown in Figure 6), during which it took
a visual snapshot of the object on the table in front of it with
the Kinect camera before performing the other behaviors on
it. These behaviors were used in our previous work [16] and
were not designed specifically for the objects in this paper. In
fact, this set of behaviors has been developed for use across
many different object sets for different tasks (see [61], [10],
[13], [16] for a progression of the behaviors as they evolved
over time). All behaviors in this paper were performed with
the robot’s right arm and encoded using Barrett’s API. The
trajectory of the joint positions for each of the behaviors was
executed using the default PID controller of the WAM. All
behaviors were performed identically on each object, with
only minor variations due to the initial placement of the
object.

D. Sensorimotor Contexts

The robot in this paper used 21 sensorimotor contexts.
A sensorimotor context is defined as a behavior combined
with a sensory modality, e.g., drop-audio. We will use the
notation behavior-modality to denote a context and the letter
C to denote the set of all contexts. Table III shows all
combinations of behaviors and modalities that the robot used.
The robot used all the behaviors except look in combination
with the modalities audio and proprioception. In addition to
this, the robot also used the context look-color. This resulted
in a total of |C| = 10× 2 + 1 = 21 sensorimotor contexts.

For each object Oi and each context c ∈ C, a set of
feature vectors X c

i was computed as described below in

⇒
(a) Grasp

⇒
(b) Lift

⇒
(c) Hold

⇒
(d) Shake

⇒
(e) Rattle

⇒
(f) Drop

⇒
(g) Tap

⇒
(h) Poke

⇒
(i) Push

⇒
(j) Press

Fig. 6: Before and after images for the ten exploratory
behaviors that the robot performed on all objects. From left
to right and top to bottom: grasp, lift, hold, shake, rattle,
drop, tap, poke, push, and press. The object was placed back
in the initial position by the experimenter after some of the
behaviors (e.g., drop).

TABLE III: The set of sensorimotor contexts used by the
robot. The X’s denote behavior-modality combinations that
the robot used to solve matrix completion tasks.

Behavior
Modality

proprioception audio color
look X
grasp X X
lift X X
hold X X
shake X X
rattle X X
drop X X
tap X X
poke X X
push X X
press X X

section IV. Each x ∈ X c
i is a feature vector computed from

one interaction in context c. Because each behavior was
performed 10 times on each object, there were 10 feature
vectors in each X c

i , i.e. |X c
i | = 10.

In our previous work ([15], [16]) we used only 2 sensory
modalities (audio and proprioception) and 10 behaviors for
a total of 20 contexts. In those papers, vision was not
required to solve the tasks. In this paper, however, color is an
important property of the objects, so the robot was required
to use vision to solve the tasks. Thus, we added the look-
color context for a total of 21 contexts (the same 20 from
our previous work plus look-color).

E. Software

The software used to control the robot was written in
C++ using the Barrett API. This software also used the
Barrett API to record the robot’s joint torques during each
behavior and the OpenAL library to record from the robot’s
microphones. RGBD images were captured from the robot’s
Kinect sensor using the Point Cloud Library [62]. The
data was analyzed offline by software written in Java. The
SPHINX4 toolbox [63] was used to process the audio data
and the publicly available code for the spectral clustering
algorithm [64] was used to perform clustering as described
in Section V-E2.

F. Data Collection

The robot interacted with the objects by performing each
of the behaviors on each object ten times. At the start of
this process the experimenter placed the first object at a
specified location on the table in front of the robot, and then
the robot performed one of its behaviors on the object. The
experimenter then placed the second object on the table in
the same spot, and the robot performed the same behavior on
it. This was repeated for all objects. The experimenter then
placed the first object in the same spot on the table and the
robot performed the next behavior on it, repeating this again
for all objects. This was done until the robot had performed
each behavior once on each object. This entire process was
then repeated nine more times (for a total of ten repetitions)
such that the robot had performed each behavior ten times
on each object. There were 36 objects, 10 behaviors, and
10 repetitions, resulting in a total of 36 × 10 × 10 = 3600
interactions with the objects.

IV. FEATURE EXTRACTION

A. Proprioceptive Feature Extraction

During each interaction, the robot recorded the joint
torques applied to its right arm. The robot sampled from all 7
joints at 500 Hz. This resulted in 7×m real numbers, where
m is the number of temporal samples during each interaction.
In other words, each interaction resulted in a matrix, where
each column contains the joint torque readings at one point in
time and each row contains the torque values applied to one
joint over the course of the interaction. This matrix was too
high-dimensional to be effective for the tasks in this paper, so

Time Step

Jo
in

t N
um

be
r

500 1000 1500 2000

1

2

3

4

5

6

7
 −2

 −1.5

 −1

 −0.5

 0

 0.5

Temporal Bins

Jo
in

t N
um

be
r

2 4 6 8 10

1

2

3

4

5

6

7

⇐

Fig. 7: An example sensory record of proprioceptive values.
The top image depicts the raw joint torques recorded from
the robot’s arm during the interaction where light values
denote positive torque values and dark values indicate neg-
ative torque values. The bottom image depicts the features
extracted from that by binning the values for each of the 7
joints into 10 temporal bins.

features were extracted from it by binning the real values for
each joint into 10 temporal bins. That is, the first m

10 columns
were summed together into one column, then the second m

10
were summed together, and so on. This resulted in a feature
vector x ∈ R7×10. Figure 7 illustrates this process.

B. Auditory Feature Extraction

During each interaction, auditory data was recorded by
the microphones in the robot’s head in the form of a .wav
file. Each .wav file was then converted into a spectrogram
using the log-normalized Discrete Fourier Transform (DFT)
with 25 + 1 = 33 frequency bins. The SPHINX4 natural
language processing library was used to compute the DFT
for each audio file [63]. The spectrogram for each audio
file was calculated by computing the DFT over the length
of the interaction. This resulted in a 33 × m dimensional
matrix, where m is the number of time samples. Like in the
proprioception case, this matrix was too high-dimensional to
be useful. To lower the dimensionality, a 10 × 10 spectro-
temporal histogram was computed for each of the audio
spectrograms. That is, each spectrogram was divided up into
10× 10 = 100 bins and then all the values in each bin were
summed. This resulted in a feature vector x ∈ R10×10. An
example of this process is shown in Figure 8. In addition
to the temporal binning done in the previous method, this
method also performed frequency binning.

Time Steps

F
re

q
u

en
ci

es

500 1000 1500 2000 2500 3000 3500 4000 4500

5

10

15

20

25

30

Temporal Bins

F
re

q
u

en
cy

 B
in

s

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

⇐

Fig. 8: An example sensory record of auditory values.
The top image depicts the audio spectrogram, which was
computed using a series of DFTs on the raw data that was
recorded during the interaction (red denotes higher activa-
tion, green and blue denote lower activation). The bottom
image depicts the features extracted from the spectrogram by
binning the values into 10 temporal bins and 10 frequency
bins.

⇒

Fig. 9: An example image recorded during the look behavior.
The left image shows the raw RGB data that the robot’s
camera recorded. The middle image is the segment of the
robot’s field of view where the object was always placed
on the table. The right image is the 8 × 8 grid that this
segment was binned into, where each location in the grid is
the average of the pixels that fall into that cell.

C. Visual Feature Extraction

Visual features were computed based on the color infor-
mation from the robot’s Kinect camera. For simplicity, color
features were only extracted during the behavior look (based
on the methodology described in [13]). During each look
behavior the robot recorded a short series of images of the

object sitting on the table in front of it. The object was always
placed in approximately the same spot on the table, so it was
segmented out of each recorded image using a pre-set region
of interest. For each image, the robot then divided this region
into r × r bins (where r = 8) and averaged the HSV values
in each bin, resulting in a vector xi ∈ Rr×r×3. This process
is shown in Figure 9.

For each image in a series of images from one look
behavior, the robot simply averaged the vectors together as
follows:

x =
1

k

k∑
i=1

xi

where k is the number of images captured during the look
behavior. This resulted in a feature vector x ∈ Rr×r×3 for
each look behavior.

V. EXPERIMENTAL METHODOLOGY

A. Problem Formulation

LetM denote a square matrix of objects with n rows and
n columns1 where Mij is the object in the i-th row and the
j-th column. Let Ri be the i-th row of M and Cj be the
j-th column ofM. Let Pr and Pc be sets of patterns defined
over the rows and columns, respectively. For all p ∈ Pr, let
f→p denote a binary function that takes as input a row ofM
and evaluates to true if pattern p is present in that row and
false otherwise. The binary function f↓p is similarly defined
for all p ∈ Pc.

Let present→ be a binary function defined over matrices
and row patterns. Given a pattern p ∈ Pr and a matrix M,
it is evaluated as follows:

present→(p,M) =

{
true, ∀(Ri∈M−{Rn}) f→p (Ri) = true

false, otherwise.

In other words, this function evaluates to true if and only
if p is present in all but the last row of M. The function
present↓ is similarly defined for all p ∈ Pc.

A matrix M is considered valid with respect to Pr and
Pc if and only if it satisfies the following conditions:

∀p∈Pr present→(p,M)⇒ f→p (Rn) = true,

∀p∈Pc present↓(p,M)⇒ f↓p (Cn) = true.

The first condition enforces that if the pattern p ∈ Pr exists
in the first n− 1 rows of the matrix, then it must also exist
in the last row. The second condition enforces the same
constraint, but on the columns. The idea behind this is that
the patterns detected in the first n−1 rows and columns can
be used to determine the candidate object that best fits in the
last spot in the matrix.

A matrix completion task is defined as the ordered pair
(M,G) whereM is a matrix that is missing the objectMn,n

(i.e., the object in the lower-right corner), and G denotes a
set of candidate objects such that exactly one object may be
placed in the empty space and causeM to be a valid matrix
as defined above. In other words, the task is to select the

1In this paper we used only square matrices, but it is easy to extend this
methodology to non-square matrices.

object from G that creates a valid matrix with respect to the
patterns in Pr and Pc.

B. Task Generation

To generate a set of matrix completion tasks to test the
robot on, we first had to generate two sets of patterns
Pr and Pc using the generation rules described in section
II-A. Once again, the rules used in this paper are: constant,
increment, decrement, and permutation. A pattern is defined
as an instantiated rule, i.e., a rule and a property that the
rule applies to. For example, the rule constant applied to
the property color would be denoted by constant:color and
would mean that the color of the entries in the row or column
is constant. In general, we will use the notation rule:property
to denote patterns in the matrix.

The objects in this paper vary by three properties: color,
contents, and weight. To determine the patterns to use, we
applied the rule constant to all three properties, the rules in-
crement/decrement to the ordered properties (weight), and the
rule permutation to the unordered properties (color and con-
tents). This resulted in seven patterns: constant:contents, con-
stant:color, constant:weight, permutation:contents, permu-
tation:color, increment:weight, and decrement:weight. The
same set of patterns were used for both the rows and the
columns.

The matrix completion tasks were generated as follows.
Two patterns, pr and pc, were randomly selected from the
set of patterns for rows, P r, and columns, P c, respectively.
A matrixM was randomly selected from the set of all valid
matrices such that pr was present in all the rows of M and
pc was present in all the columns. Seven objects were then
randomly selected from the set of objects not inM such that
none of them could replace the last object inM and create a
valid matrix. These objects comprised the set G. The object
in the lower-right corner ofM (i.e., the correct solution) was
then removed fromM and placed in G. The resulting matrix
completion task was the ordered pair (M,G).

It is worthwhile to mention that, because the number of
valid matrices is exponentially large, the above algorithm
is intractable. Therefore, we used a slightly different algo-
rithm that is functionally equivalent to that algorithm to
generate matrix completion tasks. We divided the set of
patterns into groups, one for each property. For example,
all the patterns over color in one group (constant:color,
permutation:color), all the patterns over contents in an-
other group (constant:contents, permutation:contents), etc.
For each group, we iterated over all possible permutations of
the values of length 3×3 = 9 of the associated property (that
is, one value for each position in the 3× 3 matrix), keeping
only the permutations that correspond to valid matrices with
respect to the group of patterns (that is, matrices that are
valid if only that one property is considered). While the
number of possible permutations for even a single property
is also exponentially large (e.g., because there are 3 values
for color, there are 39 = 19, 683 possible permutations), it
is tractable when the size of the matrix and the number of
values for the properties are relatively small (which in this

case, they are). We were then able to randomly select one
valid permutation from each of these sets and combine them
together. Doing so resulted in a complete matrix. That is,
since one permutation was selected for each of the properties,
the property values for each object in the matrix were
specified by combining these permutations together. This
uniquely specified the object that belonged in each location
in the matrix. This allowed us to randomly sample from the
set of all possible valid matrices. Given this, we could then
generate the tasks as described in the previous paragraph.

C. Selecting the Best Candidate to Complete a Matrix

Given a matrix reasoning task (M,G), the robot must
select the best candidate object from the set G to complete
the matrix M. In order to do this, the robot first generates a
set of distance functions D (described below in section V-E)
such that the value of D(Oi, Oj) ∈ [0, 1] is the distance
between object Oi and object Oj as measured by D ∈ D.

Next, the robot selects the best candidate object from G
by finding the object Ok ∈ G that minimizes the following
objective function:

q(Ok,M,D) =
∑
D∈D

AD

n−1∑
j=1

(
D(Mn,j, Ok)−E[D(Mn,j, M̂n,n)]

)2 , (1)

where M is an n× n matrix that is missing its lower-right
element, AD is the consistency of D across the rows of M
(explained below), and E[D(Mn,j, M̂n,n)] is the expected
distance between Mn,j and M̂n,n with respect to D. In
this formula M̂n,n represents the robot’s estimation of the
missing object, so the expected distance is computed, rather
than the actual distance, because the object is missing. The
intuition behind this function is that the robot computes
the difference between the object that should be in the
missing space and Ok. It does this by computing the squared
difference between what it expects D to evaluate to and what
it evaluates to when placing Ok in the missing spot, for all
D ∈ D.

In equation (1), AD denotes the consistency of the distance
function D. A consistent distance function is one in which
objects in the same relative positions, but in different rows,
vary in the same manner (e.g., the first and the second
object in each row are always the same distance apart for D,
regardless of the row). It is assumed that the more consistent
a distance function is (i.e., values closer to 1 for AD), the
more useful that function is for solving the task. Conversely,
the more inconsistent a distance function is (i.e., values closer
to 0 for AD), the less useful that function is for solving the
task. Thus, AD acts as a task-specific weight, allowing the
robot to identify the distance functions that vary in the most
consistent way in the matrix. It should be noted, though,
that the objective function q, as defined in equation (1), only
evaluates patterns across the rows and not down the columns.
In section V-D we will extend this function to also evaluate
patterns down the columns of M.

The expected value E[D(Mn,j, M̂n,n)] is computed as

follows:

E[D(Mn,j, M̂n,n)] =
1

n−1

[
n−1∑
i=1

D(Mi,j,Mi,n)

]
. (2)

Intuitively, this is simply the average distance computed
using D between pairs of objects in the same relative
positions in every row except the last one.

The consistency, AD, of a distance function D with respect
to a matrix M is measured as:

AD =
n−2∏
a=1

n−1∏
b=a+1

Aa,b
D . (3)

In equation (3) Aa,b
D is the consistency between rows a and

b, which is defined as:

Aa,b
D =

n−1∏
i=1

n∏
j=i+1

h(
∣∣D(Ma,i,Ma,j)−D(Mb,i,Mb,j)

∣∣), (4)

where h is the consistency function. Thus, AD measures how
often D agrees with itself for two pairs of objects in the
same relative positions but in different rows. The consistency
function h is defined as2:

h(x) = 1− log2(x+ 1).

To summarize, in order to solve the matrix completion
task, the robot selects the object Ok in G that minimizes the
squared difference between that object and the expectation
based on the consistency of the distance functions in D with
respect to the matrix M.

The asymptotic running time to compute this objective
function for a given matrix M and a given candidate object
Ok is: O

(
|D| × n4

)
, where |D| is the size of the set of

distance functions and n is the size of the matrix (that is,
a square matrix with n rows and n columns). The |D| term
is due to the first summation in equation (1) over the set of
distance functions. The term n4 is due to the computation
of AD. Computing each sub-term Aa,b

D takes O(n2) time
and there are O(n2) of them, thus it takes O(n4) time to
compute AD. It takes O(n2) to compute the inner summation
in equation (1), but the computation of AD dominates the
running time of the function. For relatively small n (in this
paper n = 3), the running time is fairly short.

D. Extending the Methodology to Columns

The methodology described so far only considers relation-
ships between objects in the same row. In most common
matrix completion tests, however, the relationships between
the objects down the columns are just as important for
solving the tasks. One way to alter the methodology to
work with column-wise relationships is to simply trans-
pose the matrix and use the same objective function, i.e.,
evaluate q(Ok,MT ,D). Since the transpose operator flips
the columns and the rows, the modified objective function

2The consistency function was empirically determined based on the
condition that its output should be maximized when given a minimal
disagreement value (i.e., x = 0) and its output should be minimized when
given a maximal disagreement value (i.e., x = 1).

evaluates the relationships between the objects down the
columns.

It is not enough, though, to just evaluate the relationships
down the columns or across the rows of a matrix inde-
pendently. Most matrix reasoning tests require that the test
taker be able to combine these two together in order to pick
the correct answer. In order to do this, we define the super
objective function Q to be equal to:

Q(Ok,M,D) = q(Ok,M,D) + q(Ok,MT ,D).

In other words, Q simply sums the values of the objective
function q evaluated for two different matrices,M andMT ,
using the same object Ok and the same set of distance
functions D. In this way, the best candidate object is defined
as the one that best approximates the relationships between
the objects in the matrix down the columns and across the
rows.

E. Measuring Object Similarity

Four different methods for generating the set of distance
functions were evaluated. The first was simply the Euclidean
distance between the features for each object in each sen-
sorimotor context. The second used spectral clustering to
group the objects into labeled categories and then measured
the distance between the objects based on their category
memberships. The third was an extension of the first; it added
supervision to the context distances in an attempt to improve
the performance. The fourth method was similar to the third;
it added supervision to the second method in an attempt to
improve performance.

1) Context Distance Measurements: One distance func-
tion Dc was computed for each sensorimotor context c ∈ C.
Given two objects, Oi and Oj , the output of Dc is defined
as:

Dc(Oi, Oj) = E
[
‖xa − xb‖|xa ∈ X c

i ,xb ∈ X c
j

]
,

where ‖xa − xb‖ is the L2-norm distance between xa and
xb and X c

i and X c
j are two sets of feature vectors for

context c for Oi and Oj respectively (recall that the robot
repeated the same behavior multiple times on each object).
This expectation is estimated by:

Dc(Oi, Oj) =
1

|X c
i | × |X c

j |
∑

xa∈X c
i

∑
xb∈X c

j

‖xa − xb‖.

To mitigate the effect of outliers, the output of each distance
function Dc was normalized to be between 0 and 1 using
the logistic function, 1

1+e−x , with the middle two quartiles of
the comparisons falling in the range [0.1, 0.9]. The resulting
set D contained exactly one distance function Dc for each
context c ∈ C.

This method for computing context distance measurements
is identical to the one used in our previous work. For more
details see [15].

2) Category Distance Measurements: As before, one dis-
tance function Dc was computed for each sensorimotor
context c ∈ C. For each context, the spectral clustering
algorithm [64] was used to recursively cluster the objects3

into a set of categories. Given a set of categories, the output
of Dc was computed as

Dc(Oi, Oj) = 1− I(labelc(Oi) ≡ labelc(Oj)),

where labelc(Oi) is the category label for Oi in context c
and I is the indicator function, which is 1 if its argument is
true and 0 otherwise. Intuitively, the output of the distance
function is 0 if the two objects belong to the same category
in a specific sensorimotor context and 1 if they don’t.

3) Context Distance Measurements with Supervision: In
this and the next method, we added supervision by giving
the robot a set of training examples. In our previous work
([15], [16]), the robot learned by weighting each context
(analogous to the distance functions used here) based on the
individual performance of each context on a training set of
tasks. In both of those papers we found that certain individual
contexts performed near perfectly on certain types of tasks
on their own because the objects in them largely varied by
a single property. In this paper, however, the objects vary by
multiple properties, and as a result we empirically determined
that similar weighting schemes would not work because no
individual distance function performed even moderately well
by itself on the training set of tasks. Thus, we developed a
new algorithm as a solution to this problem.

This method builds on the context distances method.
Given the set of distance functions D computed using that
method and a set L = {(M1,G1), ..., (Mn,Gn)} of training
matrix completion tasks, for which the correct answers are
known, the robot attempted to find the set D′ ⊆ D that
maximized performance on the training set. Since there are
an exponential number of subsets, finding the best one in
the general case is intractable. To approximate the correct
solution, the robot, starting with D′0 = D, attempted to
prune D′0 down to only the most useful distance functions. To
do this, the robot iteratively removed the worst performing
distance function. That is, at iteration n, the robot computed
D′n+1 as

D′n+1 = D′n −

{
argmin
D∈D′n

performance(D′n − {D} ,L)

}
where the performance function measures how well the given
set of distance functions perform on the given training tasks.
This process was repeated until |D′n| = 0. The robot then
selected the subset that performed the best on the training
tasks, i.e., D′ = D′k where k = max

n
performance(D′n,L).

This algorithm is shown in more detail in Figure 10.
This algorithm relies on the assumption that some of the

computed distance functions are not useful for solving matrix

3The spectral clustering algorithm requires a distance function between
the data points in order to cluster them. Since the robot created a separate
clustering for each sensorimotor context, it computed the distance between
each pair of objects in each context in the same way as described in section
V-E1.

function PRUNE(D, L)
D′[]← emptyArray
count← 0
D′[count]← D
while |D′[count]| > 1 do

bestPerformance← 0
bestSet← null
for all D ∈ D′[count] do

set← D′[count]− {D}
p← evaluatePerformance(set,L)
if p > bestPerformance then

bestPerformance← p
bestSet← set

end if
end for
D′[count+ 1]← bestSet
count← count+ 1

end while
bestPerformance← 0
bestSet← null
for i← 0 to length(D′)− 1 do

p← evaluatePerformance(D′[i],L)
if p > bestPerformance then

bestPerformance← p
bestSet← D′[i]

end if
end for
return bestSet

end function

Fig. 10: The algorithm that prunes the set of distance
functions. It takes as input an initial set of distance functions
D and a set of training tasks L for which the correct answers
are known. The method evaluatePerformance returns the
accuracy of the given set of distance functions on the given
training tasks.

completion tasks. Unlike the variable AD in the objective
function (equation (1)), which weights each distance function
based on its consistency for an individual task, this algorithm
attempts to globally prune distance functions. That is, it
considers all the training tasks at once and removes distance
functions that underperform across all of them, rather than
on an individual task level.

4) Category Distance Measurements with Supervision:
This method is similar to the previous method except that
it builds on the category distances method rather than the
context distances method. The robot first uses the spectral
clustering algorithm to cluster the set of objects into a set of
categories, one set for each context. Next, given the set of
distance functions D computed from these sets of categories
(as described in Section V-E2) and a set of matrix completion
tasks for training L = {(M1,G1), ..., (Mn,Gn)}, for which
the correct answers are known, the robot again attempted to
prune the set of distance functions down to only the most
useful. Similar to the last method, it did this by iteratively
removing the worst performing distance function from the

set until it found the best subset of functions. It used the
same algorithm as before, which is described in Figure 10.

F. Evaluation

The robot was evaluated on the set of objects described
in section III-B, which vary by color, contents, and weight.
The values for color are red, blue, and green. The values for
contents are glass, screws, beans, and rice. The values for
weight are light, medium, and heavy. It should be noted that
the robot was never given these values during the evaluation.

We randomly generated 500 matrix completion tasks us-
ing the methodology described in section V-B. The robot
then generated each of the four sets of distance functions
described in section V-E. Each set of distance functions was
evaluated independently. Because some distance functions re-
quired training, we performed 10-fold cross-validation across
the matrix completion tasks. That is, we split the 500 tasks
into 10 equally sized groups, trained the robot on 9 of the
10 groups, and tested it on the remaining one. This process
was repeated for each group. It is worthwhile to note that
the robot was never given a priori knowledge of the patterns
used to generate the matrix completion tasks. Rather, the only
supervision it was given was in the form of example matrix
reasoning tasks.

Performance is reported as accuracy or kappa. The accu-
racy is computed as

%Accuracy =
#correct answers

#total tasks
× 100.

We also wanted to know how the robot performs when vary-
ing the number of candidate objects to choose from. Since
chance accuracy depends on the number of candidate objects
in the task, the kappa score was computed to compensate for
varying degrees of chance. Cohen’s kappa statistic [65] was
computed as follows:

kappa =
P (a)− P (e)

1− P (e)
,

where P (a) is the performance of the robot’s model and
P (e) is chance accuracy. This allows the direct comparison
of results where chance accuracy may differ.

The evaluation was performed off-line after the robot
interacted with all 36 objects.

VI. RESULTS

A. Performance on a Single Task

Figure 11 illustrates one of the 500 matrix completion
tasks that the robot solved. The objective function values
for each of the 8 candidate objects are shown for both the
context and category distance functions with and without
supervision. The matrix in the figure exhibits the patterns
constant:color and decrement:weight across its rows and
permutation:color and constant:weight down its columns.
Given this, it can be deduced that the missing object must
be light and red. The only candidate object that has both of
these property values is (g), which is the correct answer. In
this case, the property contents was irrelevant to the task.

(heavy, red, rice) (medium, red, glass)

?
(heavy, blue, rice) (medium, blue, rice) (light, blue, rice)

(heavy, green, rice) (medium, green, beans) (light, green, beans)

(a) medium, blue, glass

(b) heavy, red, beans

(c) light, green, rice

(d) light, blue, beans

(e) light, green, glass

(f) heavy, red, screws

(g) light, red, glass

(h) heavy, green, screws

Context Distances
Category Distances
Context Distances + Supervision
Category Distances + Supervision

Fig. 11: An example matrix reasoning task solved by the
robot as part of this experiment. The words below each
object in the matrix represent the values for each of the three
properties for that object. The bars next to each candidate
object represent the normalized objective function values for
each of the four distance methods.

5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

Number of Contexts

%
 A

cc
u

ra
cy

Context Distances
Category Distances
Context Distances + Supervision
Category Distances + Supervision

Fig. 12: Accuracy versus number of contexts used to solve
the tasks. As expected, the accuracy improves as the robot is
allowed to use information from more sensorimotor contexts.
Each line represents a different distance function method.
The two category distance methods perform better than the
two context distance methods. As expected, the category
method with supervision performs the best.

The objective function values were computed using all 21
contexts. The context distance method ranked three candidate
objects ((d), (e), and (a)) higher than the correct answer (g).
The category distance method performed about the same,
ranking (c), (d), and (e) higher than the correct answer. Thus,
both of the unsupervised methods failed to pick the correct
answer.

The two supervised4 methods, however, performed better.
The supervised context distances method ranked the correct
object, (g), in second place after (d). The supervised cat-
egory distance method picked the correct answer, ranking
(g) higher than any other candidate. It selected the dis-
tance functions computed from the contexts lift-audio, hold-
audio, rattle-audio, push-audio, rattle-proprioception, and
look-color. This indicates, as expected, that not all contexts
are useful for solving this type of matrix completion task.
This suggests that methods that use supervision to prune the
contexts to the most useful ones could perform better. The
next section expands on this by looking at performance over
all 500 tasks.

B. Performance Across All Tasks

Figure 12 compares the accuracy of all four methods of
measuring distances. It shows that the robot’s accuracy on
matrix completion tasks improves when it is given access
to more information in the form of sensorimotor contexts.
It is interesting to note that both of the category distances
methods (with and without supervision) perform the best.
This suggests that features derived from category labels are

4For the example task, both of the supervised methods were trained on
450 randomly selected tasks from the set of 500 generated for this paper.
In other words, they were trained on 9 of the 10 folds. The example task
shown in Figure 11 was not included in that training set.

5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

Number of Contexts

%
 A

cc
u

ra
cy

No Color
Overall

Fig. 13: Accuracy versus number of contexts for the subset of
tasks that don’t require color information and for all tasks.
The line labeled “Overall” is the same as the line labeled
“Category Distances + Supervision” in Figure 12. The other
line was computed in the exact same way as the overall line,
except the 500 tasks were reduced to just the 173 that did not
require perception of color to solve. The standard deviation
for each data point is also plotted using dashed lines.

more useful for this kind of task. Additionally, for both
category and context distances, the method with supervision
always outperforms its unsupervised counterpart. The best
performing method was the category method with supervi-
sion. When given access to all 21 contexts, it was able to
achieve 99.4% accuracy on the testing set of matrices. That
is, using all available information and the best performing
method, the robot was able to determine the correct answer
to all but 3 of the 500 problems that were presented to it.

As described in section III-D, there was only one context,
look-color, that had access to visual data collected from the
robot’s camera. Because color is so important to solving
the tasks, we wanted to know how this affected the robot’s
performance. Figure 13 shows the robot’s performance on
only the matrix completion tasks that did not require the
perception of color to solve (173 out of 500) as compared
to the robot’s performance on all 500 tasks. On average
the robot performs better when the task does not involve
color, especially in the middle part of the graph (5 to 15
contexts). It is also worth mentioning that the upper limit of
the standard deviation converges to 100% accuracy sooner
for tasks not involving color than for all tasks. Just as we
expected, because there are no redundant contexts in which
color can be perceived (as opposed to weight and contents),
the robot has a harder time identifying color as a relevant
property, and thus tasks that require it are harder to solve.

C. Performance Compared to Difficulty of the Task

Figure 14 shows six figures that compare the robot’s
performance for different types of task difficulty. Figure 14a
shows the robot’s performance as a function of the number
of candidate objects that it can choose from to complete

the matrix. It is interesting to note that, even though the
scores are reported as the kappa value to compensate for
different chance accuracies, the robot still performs better
when given fewer options to pick from than when given
more. Conversely, Figure 14b shows that when the number
of patterns present in the matrix increases, the robot gets
better at solving the task. Interestingly, even though Fig-
ure 14b was computed using the context distances method
without supervision (as opposed to the category distances
method with supervision as in all the other figures5), it was
still possible to achieve 100% accuracy on matrices with
6 patterns. Intuitively this makes sense because the more
patterns present in a matrix, the more constrained the possible
candidate objects are, and thus the easier the task is to solve.

Figure 14c shows the robot’s performance when the ob-
jective function was computed only across the rows of the
matrix in each task, down the columns, or both. As expected,
the robot is able to perform better when using an objective
function that takes into account the information across the
rows and down the columns. Also, as expected, the robot’s
performance when only using rows or only using columns
is approximately the same because the task generation algo-
rithm isn’t biased towards rows or columns.

Figures 14d, 14e, and 14f show the robot’s performance
on different subsets of the matrix completion tasks. Figure
14d shows the performance on tasks that include at least
one instance of each of the different rules; Figure 14e
shows the robot’s performance on tasks that contain each
of the different patterns; and Figure 14f shows the robot’s
performance on tasks including at least one pattern over each
of the three different properties of the objects.

Figure 14e shows that the robot performed better on tasks
in which the matrix had at least one pattern that was over
the property weight. This is confirmed by Figure 14f, which
shows the line for weight to be higher than the other two.
Figure 14d also shows that the robot performs better when
the rules increment and decrement are included, which, as
stated in section V-B, are applied exclusively to weight. This
indicates that, overall, the robot performed better on tasks
that required it to perceive the weight of the objects. Intu-
itively, this makes sense because for many of the behaviors
the robot was supporting or moving the full weight of the
object, meaning the data collected from the proprioceptive
modality often contained information about the weight of
the object. Conversely, only a few of the behaviors caused
the contents of the objects to shift and register a sound that
the robot could detect with its microphones, and only one
behavior (look) was used to extract color features. Thus, as
the number of contexts available to the robot is increased,
it is more likely that a context that can reliably perceive
weight will be selected, which would improve the robot’s
performance on tasks that involve weight.

Additionally, the results shown in Figure 14 suggest that
the robot tends to perform better when the task is more

5This was done because in the version of this graph that used the category
distances method with supervision there was no significant difference
between the five lines, which reached near 100% accuracy when given access
to all contexts.

5 10 15 20
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

11

Number of Contexts

K
ap

p
a

2 3 4 5 6 7 8 9 10

(a) Each line represents the performance when
a different number of candidate objects were
given to the robot to choose from. Each data-
point was computed using the category dis-
tances method with supervision. The vertical
axis, unlike in the rest of the figures in this
paper, represents the kappa value rather than
accuracy in order to compensate for the change
in chance accuracy for each line.

5 10 15 20
0

10
20
30
40
50
60
70
80
90

100

Number of Contexts

%
 A

cc
u

ra
cy

2 Patterns
3 Patterns
4 Patterns
5 Patterns
6 Patterns

(b) Accuracy improves as the number of pat-
terns present in each matrix increases from
2 to 6. Each line was computed using the
context distances method without supervision
over only the matrix reasoning tasks with that
number of patterns. Figure 15a shows the
overall number of matrix reasoning tasks with
different number of patterns.

5 10 15 20
0

10
20
30
40
50
60
70
80
90

100

Number of Contexts

%
 A

cc
u

ra
cy

Rows only
Columns only
Both

(c) Each of the three lines was computed using
the category distances method with supervision
by only allowing the robot to compute the
objective function over the rows of the matrix,
over only the columns of the matrix, or both.

5 10 15 20
0

10
20
30
40
50
60
70
80
90

100

Number of Contexts

%
 A

cc
u

ra
cy

Constant
Increment
Decrement
Permutation

(d) Each line was computed using the category
distances method with supervision over only
the tasks that had at least one instance of
the corresponding rule (e.g., the red line was
computed using only tasks that contained the
rule constant). See also Figure 15b.

5 10 15 20
0

10
20
30
40
50
60
70
80
90

100

Number of Contexts

%
 A

cc
u

ra
cy

Constant:color
Constant:contents
Constant:weight
Increment:weight
Decrement:weight
Permutation:color
Permutation:contents

(e) Each line was computed using the category
distances method with supervision over only
the tasks that had the corresponding pattern
present (e.g., the increment:weight line was
computed only over tasks that contained the
pattern increment:weight).

5 10 15 20
0

10
20
30
40
50
60
70
80
90

100

Number of Contexts

%
 A

cc
u

ra
cy

Color
Contents
Weight

(f) Each line was computed using the category
distances method with supervision over only
the tasks that had at least one pattern over
the corresponding property (e.g., the color line
was computed only over tasks that contained at
least one pattern over color). See also Figure
15c.

Fig. 14: Six figures that compare the performance as a function of the difficulty of the matrix completion tasks.

2 3 4 5 6
0

50

100

150

200

250

300

350

400

450

500

Number of Patterns

N
um

be
r

of
 M

at
ric

es

(a) The number of tasks that have 2 to 6 patterns.

Constant Increment Decrement Permutation
0

50

100

150

200

250

300

350

400

450

500

Rule Type

N
um

be
r

of
 M

at
ric

es

(b) The number of tasks that have at least one
instance of each of the four rules.

Contents Color Weight
0

50

100

150

200

250

300

350

400

450

500

Property Inclusion

N
um

be
r

of
 M

at
ric

es

(c) The number of tasks that include at least one
pattern over each object property.

Fig. 15: Three figures that show the number of matrix completion tasks for different task difficulty types.

constrained (either in the form of fewer candidate objects to
choose from or more patterns present in the matrix). While
this was not entirely unexpected, it was surprising to find
that even the worst performing distance function method
(context distances without supervision) was able to achieve
100% accuracy on tasks with 6 patterns when given enough
contexts (see Figure 14b).

Figure 15 shows the number of matrix completion tasks for
three different types of difficulty. There are many interdepen-
dencies between the patterns. This is illustrated in Figure 15a,
which shows that, despite the fact that the task generation
algorithm only generates tasks with 2 patterns, most tasks
have more than 2 patterns. Also, Figure 15b shows that the
constant and permutation rules tend to appear in tasks much
more frequently than the increment and decrement rules.
These interdependencies often mean that matrix completion
tasks have redundant information. This is not the case for the
properties of the objects, though, as Figure 15c shows that
the distribution over tasks that include at least one pattern
for each property is approximately uniform.

It is worthwhile to note that in Figure 15b the counts for
the different rule types are far from uniformly distributed,
and even in Figure 15a the counts are not uniform. This is
due to the interdependencies between patterns. For example,
the only way for a 3×3 matrix to have the increment:weight
pattern present across the rows is for the first object in each
row to be light, the second to be medium, and the third
to be heavy. Since every row must have those values in
order for increment:weight to be present across the rows,
then that necessarily implies that all the weights are constant
down each column, i.e., the pattern constant:weight is always
present in the columns when increment:weight is present in
the rows.

VII. CONCLUSION AND FUTURE WORK

In this paper we proposed a framework for solving matrix
completion tasks. The robot was tested on matrices composed
of objects that varied by contents, color, and weight. It was
able to gather information about the objects by interacting
with them while simultaneously recording from multiple
sensory modalities. We then generated a set of 500 matrix
completion tasks using those objects and posed them to
the robot. Using all 21 sensorimotor contexts and the best
distance method, it was able to achieve 99.4% accuracy on
the set of tasks. That is, it was able to pick the correct answer
for all but 3 of the 500 tasks.

The tasks posed in this paper utilized objects that varied
by multiple, independent properties. Because of this, the
robot was required to synthesize information from multiple
sensorimotor contexts in order to solve the tasks. In our
previous work [15], [16] we found that when the tasks
utilized objects that vary largely by a single property, a
single, well-picked context is sufficient to solve the tasks
with a high degree of accuracy. In this paper we extended
the framework developed in [14], [15], [16] (see Figure 3)
and showed that it can be used to solve complex tasks that
require the perception of multiple properties.

The primary difference between our previous work [15],
[16] and this paper is that in this paper the robot was required
to perceive multiple patterns simultaneously using different
sensory modalities and to integrate that information in order
to solve each task. In contrast, the tasks in our previous
work varied mostly by a single feature and along a single
pattern. In other words, this paper showed that the general
framework outlined in Figure 3 scales to even more complex
and multivariate problems.

Overall, the robot was able to successfully solve a variety
of matrix completion tasks using grounded, sensorimotor
information. In previous work, it has been shown that robots
can use exploratory behaviors to solve tasks such as object
recognition [10], odd-one-out [14], object pairing [16], order
completion [15], and now matrix completion. This shows
that robots that use exploratory behaviors and ground their
knowledge in their own sensorimotor contexts can not only
perceive useful information about objects, but also can use
that information to solve a variety of tasks.

One interesting avenue for future work would be to extend
the robot’s ability to learn more about the objects involved in
the tasks. For example, a robot could be trained to recognize
different categories of objects and then use that information
to bootstrap its ability to solve matrix completion tasks. This
could be done using current supervised category recognition
methods. It could also be done in an unsupervised manner
that is augmented by environmental cues, such as verbal cues
provided by a human, in order to help direct the robot to
better align its categories with human provided ones.

ACKNOWLEDGEMENT

The research presented in this paper was partially sup-
ported by the National Science Foundation Graduate Re-
search Fellowship (NSF Grant No. DGE1247194).

REFERENCES

[1] J. C. Raven, Progressive matrices. Éditions scientifiques et psy-
chotechniques, 1938.

[2] J. Raven, “The Raven’s progressive matrices: Change and stability
over culture and time,” Cognitive psychology, vol. 41, no. 1, pp. 1–48,
2000.

[3] V. Prabhakaran, J. Smith, J. Desmond, G. Glover, and J. Gabrieli,
“Neural substrates of fluid reasoning: an FMRI study of neocortical
activation during performance of the Raven’s progressive matrices
test,” Cognitive psychology, vol. 33, pp. 43–63, 1997.

[4] D. Wechsler, Wechsler Adult Intelligence Scale third edition: Ad-
ministration and scoring manual. San Antonio, TX: Psychological
Corporation, 1997.

[5] D. Watt, “Lionel Penrose, FRS (1898–1972) and eugenics: Part one,”
Notes and Records of the Royal Society of London, vol. 52, no. 1, pp.
137–151, 1998.

[6] E. Scerri, The Periodic Table: A Very Short Introduction. Oxford:
Oxford University Press, 2011.

[7] L. Fuchs, D. Fuchs, K. Stuebing, J. Fletcher, C. Hamlett, and W. Lam-
bert, “Problem solving and computational skill: Are they shared or
distinct aspects of mathematical cognition?” Journal of educational
psychology, vol. 100, no. 1, p. 30, 2008.

[8] A. Dugbartey, P. Sanchez, J. Rosenbaum, R. Mahurin, J. Davis, and
B. Townes, “WAIS-III matrix reasoning test performance in a mixed
clinical sample,” The Clinical Neuropsychologist, vol. 13, no. 4, pp.
396–404, 1999.

[9] K. Richardson, “Reasoning with Raven-In and out of context,” British
Journal of Educational Psychology, vol. 61, no. 2, pp. 129–138, 1991.

[10] J. Sinapov, T. Bergquist, C. Schenck, U. Ohiri, S. Griffith, and
A. Stoytchev, “Interactive object recognition using proprioceptive and
auditory feedback,” The Intl. J. of Robotics Research, vol. 30, no. 10,
pp. 1250–1262, 2011.

[11] J. Sinapov and A. Stoytchev, “Object category recognition by a
humanoid robot using behavior-grounded relational learning,” in Pro-
ceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2011, pp. 184–190.

[12] ——, “The boosting effect of exploratory behaviors,” in Proc. of the
24th National Conference on Artificial Intelligence (AAAI), 2010, pp.
1613–1618.

[13] J. Sinapov, C. Schenck, K. Staley, V. Sukhoy, and A. Stoytchev,
“Grounding semantic categories in behavioral interactions: Exper-
iments with 100 objects,” Robotics and Autonomous Systems (to
appear).

[14] J. Sinapov and A. Stoytchev, “The odd one out task: Toward an intel-
ligence test for robots,” in Proceedings of the 9th IEEE International
Conference on Development and Learning (ICDL), 2010, pp. 126–131.

[15] C. Schenck, J. Sinapov, and A. Stoytchev, “Which object comes
next? Grounded order completion by a humanoid robot,” Journal of
Cybernetics and Information Technologies, vol. 12, no. 3, pp. 5–16,
2012.

[16] C. Schenck and A. Stoytchev, “The object pairing and matching
task: Toward Montessori tests for robots,” in Proceedings of the
2012 Humanoids Workshop on Developmental Robotics, Osaka, Japan,
2012.

[17] P. Carpenter, M. Just, and P. Shell, “What one intelligence test
measures: a theoretical account of the processing in the Raven’s
progressive matrices test.” Psychological review, vol. 97, no. 3, pp.
404–431, 1990.

[18] D. Little, S. Lewandowsky, and T. Griffiths, “A Bayesian model of
rule induction in Raven’s progressive matrices,” in Proceedings of the
34th Annual Conference of the Cognitive Science Society, 2012, pp.
1918–1923.

[19] C. Darwin, The Descent of Man and Selection in Relation to Sex.
New York: A.L. Burt, 1871.

[20] A. Kinnaman, “Mental life of two macacus rhesus monkeys in
captivity,” The American Journal of Psychology, vol. 13, no. 1, pp.
98–148, 1902.

[21] G. J. Romanes, Animal intelligence. London, Great Britain: Kegan
Paul, Trench & Co, 1882.

[22] J. R. Slonaker, “The normal activity of the albino rat from birth to
natural death, its rate of growth and the duration of life,” J. anim.
Behav, vol. 2, pp. 20–42, 1912.

[23] W. S. Small, “Notes on the psychic development of the young white
rat,” The American Journal of Psychology, vol. 11, no. 1, pp. 80–100,
1899.

[24] K. Lorenz, “Innate bases of learning,” in Learning as Self-
Organization, K. H. Pribram and J. King, Eds. Mahwah, NJ:
Lawrence Erlbaum Pub., 1996.

[25] T. Power, Play And Exploration in Children And Animals. Mahwah,
NJ: Lawrence Erlbaum Associates, Publishers, 2000.

[26] S. E. Glickman and R. W. Sroges, “Curiosity in zoo animals,”
Behaviour, pp. 151–188, 1966.

[27] G. C. Westergaard, “Object manipulation and the use of tools by
infant baboons (papio cynocephalus anubis),” Journal of Comparative
Psychology, vol. 106, no. 4, pp. 398–403, 1992.

[28] ——, “Development of combinatorial manipulation in infant baboons
(papio cynocephalus anubis),” Journal of comparative psychology, vol.
107, no. 1, pp. 34–38, 1993.

[29] I. Inglis and D. Shepherd, “Rats work for food they then reject: Support
for the information-primacy approach to learned industriousness,”
Ethology, vol. 98, no. 2, pp. 154–164, 1994.

[30] M. E. Verbeek, P. J. Drent, and P. R. Wiepkema, “Consistent individual
differences in early exploratory behaviour of male great tits.” Animal
Behaviour, vol. 48, no. 5, pp. 1113–1121, November 1994.

[31] A. Weisler and R. B. McCall, “Exploration and play: Resume and
redirection,” American Psychologist, vol. 31, pp. 492–508, 1976.

[32] J. Piaget, The Origins of Intelligence in Children. New York:
International Universities Press, 1952.

[33] E. J. Gibson, “Exploratory behavior in the development of perceiving,
acting, and the acquiring of knowledge,” Annual review of psychology,
vol. 39, no. 1, pp. 1–42, 1988.

[34] J. Vauclair and K. A. Bard, “Development of manipulations with
objects in ape and human infants,” Journal of Human Evolution,
vol. 12, no. 7, pp. 631–645, 1983.

[35] L. J. Yarrow, S. McQuiston, R. H. MacTurk, M. E. McCarthy, R. P.
Klein, and P. M. Vietze, “Assessment of mastery motivation during
the first year of life: Contemporaneous and cross-age relationships.”
Developmental Psychology, vol. 19, no. 2, p. 159, 1983.

[36] D. J. Messer, M. E. McCarthy, S. McQuiston, R. H. MacTurk, L. J.
Yarrow, and P. M. Vietze, “Relation between mastery behavior in in-
fancy and competence in early childhood,” Developmental Psychology,
vol. 22, no. 3, pp. 366–372, 1986.

[37] D. J. Messer, D. Rachford, M. McCarthy, and L. Yarrow, “Assessment
of mastery behavior at 30 months: Analysis of task-directed activities.”
Developmental Psychology, vol. 23, no. 6, p. 771, 1987.

[38] H. A. Ruff and K. Dubiner, “Stability of individual differences
in infants’manipulation and exploration of objects,” Perceptual and
Motor Skills, vol. 64, no. 3c, pp. 1095–1101, 1987.

[39] D. A. Caruso, “Dimensions of quality in infants’ exploratory behavior:
Relationships to problem-solving ability,” Infant Behavior and Devel-
opment, vol. 16, no. 4, pp. 441–454, 1993.

[40] P. Fitzpatrick, G. Metta, L. Natale, S. Rao, and G. Sandini, “Learning
about objects through action-initial steps towards artificial cognition,”
in Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), vol. 3, 2003, pp. 3140–3145.

[41] R. Brooks, C. Breazeal, R. Irie, C. C. Kemp, M. Marjanovic, B. Scas-
sellati, and M. Williamson, “Alternate essences of intelligence,” in
15-th National Conference on Artificial Intelligence (AAAI-98), 1998,
pp. 961–968.

[42] E. Krotkov, R. Klatzky, and N. Zumel, “Robotic perception of material:
Experiments with shape-invariant acoustic measures of material type,”
in Experimental Robotics IV. Springer, 1997, pp. 204–211.

[43] E. Torres-Jara, L. Natale, and P. Fitzpatrick, “Tapping into touch,”
in Proceedings of the Fifth International Workshop on Epigenetic
Robotics, Osaka, Japan, 2005.

[44] L. Natale, G. Metta, and G. Sandini, “Learning haptic representation
of objects,” in Proc. of the Intl. Conf. on Intelligent Manipulation and
Grasping, 2004.

[45] A. Stoytchev, “Some basic principles of developmental robotics,” IEEE
Transactions on Autonomous Mental Development, vol. 1, no. 2, pp.
122–130, 2009.

[46] S. Griffith, Sinapov, V. J., Sukhoy, and A. Stoytchev, “A behavior-
grounded approach to forming object categories: Separating containers
from non-containers,” IEEE Transactions on Autonomous Mental
Development, vol. 4, no. 1, pp. 54–69, 2012.

[47] V. Chu, I. McMahon, L. Riano, C. McDonald, Q. He, J. Perez-Tejada,
M. Arrigo, N. Fitter, J. Nappo, T. Darrell, and K. Kuchenbecker,
“Using robotic exploratory procedures to learn the meaning of haptic
adjectives,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2013.

[48] D. Xu, G. Loeb, and J. Fishel, “Tactile identification of objects
using bayesian exploration,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2013.

[49] M. Asada, K. Hosoda, Y. Kuniyoshi, H. Ishiguro, T. Inui,
Y. Yoshikawa, M. Ogino, and C. Yoshida, “Cognitive developmen-
tal robotics: A survey,” IEEE Transactions on Autonomous Mental
Development, vol. 1, no. 1, pp. 12–34, 2009.

[50] A. Lovett, K. Forbus, and J. Usher, “A structure-mapping model of
Raven’s progressive matrices,” in Proc. 32nd Annual Meeting of the
Cognitive Science Society, vol. 10, 2010, pp. 2761–2766.

[51] D. Rasmussen and C. Eliasmith, “A neural model of rule generation
in inductive reasoning,” Topics in Cognitive Science, vol. 3, no. 1, pp.
140–153, 2011.

[52] M. Kunda, K. McGreggor, and A. Goel, “Taking a look (literally!) at
the Raven’s intelligence test: Two visual solution strategies,” in Proc.
32nd Annual Meeting of the Cognitive Science Society, 2010.

[53] S. Cirillo, “An anthropomorphic solver for Raven’s progressive matri-
ces,” Master’s thesis, Chalmers University of Technology, Göteborg,
Sweden, 2010.

[54] S. Nolfi and D. Marocco, “Active perception: A sensorimotor account
of object categorization,” in From Animals to Animats: 7, 2002, pp.
266–271.

[55] N. Mavridis and D. Roy, “Grounded situation models for robots:
Bridging language, perception, and action,” in AAAI Workshop on
Modular Construction of Human-Like Intelligence, 2005, pp. 32–39.

[56] T. Nakamura, T. Nagai, and N. Iwahashi, “Multimodal object catego-
rization by a robot,” in Proceedings of the IEEE/RSJ IROS, 2007, pp.
2415–2420.

[57] S. Takamuku, K. Hosoda, and M. Asada, “Object category acquisition
by dynamic touch,” Advanced Robotics, vol. 22, no. 10, pp. 1143–
1154, 2008.

[58] J. Sun, J. Moore, A. Bobick, and J. Rehg, “Learning visual object
categories for robot affordance prediction,” The Intl. J. of Robotics
Research, vol. 29, no. 2-3, p. 174, 2010.

[59] J. Sinapov and A. Stoytchev, “Detecting the functional similarities
between tools using a hierarchical representation of outcomes,” in
Proceedings of the 7th IEEE International Conference on Development
and Learning (ICDL), 2008, pp. 91–96.

[60] P. Forssén, D. Meger, K. Lai, S. Helmer, J. Little, and D. Lowe,
“Informed visual search: Combining attention and object recognition,”
in Proc. of the IEEE International Conference on Robotics and
Automation (ICRA), 2008, pp. 935–942.

[61] J. Sinapov, M. Wiemer, and A. Stoytchev, “Interactive learning of the
acoustic properties of household objects,” in In Proc. of the IEEE
International Conference on Robotics and Automation (ICRA), 2009,
pp. 2518–2524.

[62] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in
IEEE International Conference on Robotics and Automation (ICRA),
2011, pp. 1–4.

[63] K. Lee, H. Hon, and R. Reddy, “An overview of the SPHINX speech
recognition system,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 38, no. 1, pp. 35–45, 1990.

[64] A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis
and an algorithm,” Advances in neural information processing systems,
vol. 2, pp. 849–856, 2002.

[65] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and Psychological Measurement, vol. 20, no. 1, pp. 37–46, 1960.

Connor Schenck (S09) received the M.S.
degree in computer science and human-computer
interaction in 2013 from Iowa State University,
Ames. He is currently working towards a Ph.D.
degree in computer science and engineering
at the University of Washington, Seattle. His
research interests include artificial intelligence,
machine learning, robotics, and developmental
robotics.

Jivko Sinapov (S’09) received the Ph.D. degree in
computer science and human-computer interaction
in 2013 from Iowa State University, Ames. He is
currently a Postdoctoral Researcher and Instructor
affiliated with ISU’s Human-Computer Interaction
program. His current research interests include
developmental robotics, robotic perception, au-
tonomous manipulation, and machine learning.

David Johnston is currently pursuing under-
graduate degrees in Software Engineering and
Mathematics at Iowa State University, Ames. His
research interests are in the areas of Data Analy-
sis, Bayesian Statistics, Developmental Robotics,
Functional Programming, and Programmable User
Interface Design.

Alexander Stoytchev (S’00-M’07) received the
M.S. and Ph.D. degrees in computer science from
the Georgia Institute of Technology, Atlanta in
2001 and 2007, respectively.

He is currently an Assistant Professor of Electri-
cal and Computer Engineering and Director of the
Developmental Robotics Laboratory at Iowa State
University, Ames. His research is in the areas of
Developmental Robotics, Autonomous Robotics,
Computational Perception, and Machine Learning.

