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Abstract— This paper explores whether auditory and propri-
oceptive information can be used to bootstrap learning about
how objects interact with water. Our results demonstrate that
a robot can categorize objects into “containers” and “non-
containers” based on how the objects sound like and feel like
when water is flowing onto them. Using a behavior–grounded
approach, the robot performed five different exploratory behav-
iors on the objects and captured auditory and proprioceptive
data as the behaviors changed the spatial configuration between
the objects and the water stream. Using this data, the robot first
learned perceptual outcome classes for each behavior–modality
combination. Functionally meaningful object categories were
then formed based on the frequency with which different
outcome classes occurred with each object.

I. INTRODUCTION

Humanoid robots and water don’t play well together.
The last place researchers in this field expect to see their
expensive equipment is in the sink when the water is running.
Yet, water manipulation is an important domain for robots
operating in human environments. Water is used for many
universal activities, including cooking, cleaning, and garden-
ing. Therefore, serious consideration is needed to addressthe
fundamental questions associated with water manipulation.

Water manipulation tasks almost always involve the use
of a container. It is not easy, however, to determine what
properties of an object make it a container. Part of the
difficulty stems from the fact that there are literally thousands
of objects that can act as cups under the right circumstances.
Another difficulty is the fact that visual information aloneis
not sufficient to identify all cups. For some objects, e.g., a
colander, one has to pour water into them to find out.

In the context of robotics, this paper addresses this ques-
tion in terms of the multimodal sensorimotor properties
of the objects as the robot actively changes their spatial
configuration relative to a stream of running water. This
allows the robot to learn embodied representations that are
extracted from the robot’s own experience with water. For
example, pouring water changes the weight of the object,
which the robot can sense through proprioception. The robot
can also detect how the pitch of the sound changes as the
cup is filled up with water or as the water begins to overflow
and hit the sink basin.
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Recent research in robotics that focuses on interactively
learning about objects indicates that, in addition to video, au-
dio and proprioception are major sources of information [1].
The different shapes, sizes, and materials of objects all affect
how an object sounds and feels to a robot, which can be
used for recognition [1] and categorization tasks [2]. It is
unclear, however, whether these modalities would also be
useful during tasks that involve water.

This is one of the first papers that tests the hypothesis
that a robot can learn meaningful object categories using
audio and proprioception when the interaction tasks involve
water. A humanoid robot performed five different exploratory
behaviors on 15 different objects in a sink with running wa-
ter. The robot’s observations for a given behavior–modality
combination were first clustered to form outcome classes.
The frequency with which each outcome class occurred with
each object was used to form object categories. Because
an object category was learned for each behavior–modality
combination, the resulting categories were unified to form
a single one. The results showed that sound captured size
differences, proprioception captured weight differences, and
when combined the unified categorization captured func-
tional differences (e.g., container or non-container).

II. RELATED WORK
Recent research has addressed interactive object catego-

rization, but few studies have tried to categorize objects
during interactions with water. Aksoyet al. [3] presented
an activity recognition framework that could also be used
for object categorization. Activities were represented using a
sequence of spatial–temporal features extracted from videos.
Objects were categorized by the type of activities a human
performed with them. During one of the activities a human
poured dark–colored tea from one cup into another one. Cups
were distinguished from other objects because they were the
only objects used during pouring behaviors.

Several studies have addressed interactive object catego-
rization using sensory modalities other than vision. Sinapov
et al. [4] showed that a robot could identify the different
shape, size, and material categories of objects using acoustic
object recognition models. In the work of Nakamuraet
al. [5], a robot learned a multi-modal object categoriza-
tion using perceptual features extracted from the specific
behavior–modality combinationsrotate–vision, shake–audio,
andsqueeze–tactile. Vision and audio were used in the multi-
modal object categorization framework [2], in which a robot
learned from the functional properties of objects extracted
using many different exploratory behaviors.



Object manipulation is an important area of research in
the area of underwater robotics [6][7]. Many aspects of op-
erating a robotic manipulator change when it is under water,
including control algorithms and communication problems.
Applying the correct amount of force to an object during
underwater manipulation tasks is also challenging. Lianget
al. [8] built a fingertip force sensor to address this problem.
A manipulator using their sensor can receive feedback about
the amount of force it applies to an object during underwater
manipulation tasks.

Transporting an open container without sloshing the liquid
inside it is a particularly hard control problem that remains
an active area of research. This problem is usually solved by
formulating complex control algorithms [9][10][11]. Many
of these algorithms, however, are designed using the precise
size and shape of the container that is being controlled. As
a result, they have to be redesigned when the setup changes.

As far as we know, computational modeling of water
is not easy. It is difficult to avoid ad hoc methods for
water detection when only vision is used (see, for example,
[12][13][14][15]). Furthermore, it is hard to identify new
ways to perceive water when plumbing for water is not
installed in most research labs. Thus, most interaction tasks
with water have been limited to pouring water from one
container into another container or otherwise are imitations
of that activity (see, for example, [16][17][18][19][20]), with
little regard for the perception of water. Research has yet to
identify a good source of information that can be used for
tasks that involve interacting with water.

This paper shows that audio and proprioception can be
used for learning object categories while a robot interacts
with objects in a sink.

III. EXPERIMENTAL SETUP
A. Robot

The experiments described in this paper were performed
using an upper-torso humanoid robot. The robot’s arms
are two Whole Arm Manipulators (WAMs) from Barrett
Technology. Each arm is equipped with a Barrett Hand as
its end effector. A microphone in the robot’s head was used
to capture sound at 44.1 KHz over a 16-bit mono channel.

The body of the robot was covered to protect it from
water. The left hand and forearm were protected with a clear
Waterguard Cast and Skin Protector[21], which is typically
used by people with broken arms to protect their cast when
they take a shower. The rest of the body, except the head,
was protected with transparent rain ponchos that were held
in place with clear tape.
B. Sink

Figure 1 shows the standard utility sink that was used in
the experiments. The sink was assembled from theForemost
“All in One Box Laundry Tub” sink kit, which was purchased
from Lowe’s (a home improvement store). The sink fixture
contains a combination faucet.

Because there were no water lines in the laboratory that
hosts the robot, a five–gallon bucket was used as a water
supply. ASmartPondwater pump was used to recirculate the
water between the bucket and the faucet. The pump’s flow
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Fig. 1. The self–contained sink that was used in the robotic experiments.
(Left) A five–gallon bucket held a reservoir of water that was pumpedup
to the faucet. The water was collected back into the bucket when it flowed
down the drain. A plastic drip pan underneath the bucket collected excess
drops of water.(Top Right) View of the 13-inch-deep sink from the top.
(Bottom Right) Close–up of the water pump and the plumbing inside the
bucket. Blue arrows indicate the direction of the water flow.The light was
not necessary, but it could not be detached from the pump.

was directed through half-inch inner diameter vinyl tubing
to both inputs simultaneously by splitting the water line with
a plastic T-junction. The diverter valve for the sprayer inside
the base of the faucet was removed in order to achieve the
maximum amount of flow from the pump, which can move
up to 300 gallons of water per hour and has a maximum
vertical lift of 6.6 ft. In other words, the plumbing for the
sink was entirely self-contained.

C. Objects
The robot interacted with the 15 objects shown in Fig. 2.

The objects could hold water in one orientation, but became
non-containers when flipped over. The objects (cups and
mugs) varied by their size (small, medium, and large) and
their material type (plastic, metal, paper, ceramic, and glass).
Because the plastic glove that covered the robot’s hand
reduced the grasp friction, objects were chosen only after
we determined that the robot could securely grasp them.

D. Exploratory Behaviors
The experiments were divided into trials. Before the start

of a trial, the robot moved its left hand to a location near the
edge of the sink, where an experimenter placed one of the
15 objects in its hand. During each trial, the robot performed
a sequence of behavioral interactions with each object in the
sink while the water was flowing. The five behaviors were:
hold, flip, up and down, shake, and in and out(see Fig. 3).
Each behavior was performed twice, with aflip between
each execution, before moving on to the next behavior in
the sequence. In other words, the object was in the container
orientation during the first execution of the behavior and in
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Fig. 2. The objects used in the experiments. The set includedobjects
from five different material types, three different sizes, and various weights.
The objects could hold water in one orientation, but became non-containers
when flipped over.

the non-container orientation during the second executionof
the behavior. Altering the object pose from container to non-
container and back ensured that the outcomes that occurred
during one behavior were independent from the outcomes
that occurred during previous behaviors, because the water
was poured out between behaviors. The individual behaviors
are described in detail below.

Hold: At the start of this behavior the robot moved its hand
directly under the water stream while holding the object. It
remained in that configuration for approximately 10 seconds.
This duration was sufficient to fill up halfway the largest
plastic cup (i.e., the large blue cup in Fig. 2).

Flip: The robot rotated its wrist by 180 degrees, flipping
the orientation of the object. Although this behavior was
performed several times during the interaction sequence, only
the flip following the hold behavior was used for learning.
During this execution of theflip behavior, many of the
containers were full with water due to the duration and
the nature of thehold behavior. Theflip behavior lasted
approximately 2 seconds.

Up and Down: The robot moved the object up and down
under the water stream during this behavior. The object
started near the bottom of the sink and ended just below the
tip of the faucet. This movement was repeated four times,
ending at the starting position. The entire behavior lasted
roughly 8 seconds.

Shake: This behavior was performed by shaking the object
back and forth under the water. The back and forth motion
was repeated three times during this behavior. The whole
behavior took about 10 seconds to perform.

In and Out: This behavior consisted of moving the object
in and out of the water flow four times. It lasted 10 seconds.

IV. METHODOLOGY
A. Data Collection

Multiple sequences of audio and proprioception data were
collected during each trial. The robot collected one data
sequence per modality for each of the five exploratory
behaviors (Hold, Flip, Up and Down, Shake, In and Out).
The robot performed the 5 behaviors 10 times on each of the
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Fig. 3. The five behaviors performed by the robot with their resulting
audio spectrograms and sequences of joint torque readings.

15 objects when they were in each of the 2 object poses. In
other words, a total of5 × 10 × 15 × 2 = 1500 behavioral
interactions were performed. The outcome sequences varied
in length according to the duration of each behavior as
described in the previous section. It took 6 hours to collect
this data. The plastic glove protecting the robot’s hand was
replaced halfway through the data collection process because
a few micro-holes developed in the plastic, which allowed a
very small amount of water to get through.

During theith behavioral interaction, the robot acquired a
data point of the form(Bi, Oi,Wi, Ti), whereBi ∈ B was
one of the five exploratory behaviors,Oi ∈ O was one of the
30 objects (15 objects× 2 orientations),Wi was the audio
waveform, andTi was the sequence of joint torque readings.
The audio sequence,W i, was sampled at 16-bit/44.1 KHz in
mono and stored as a wave file. The sequence of joint torque
readings,T i, consisted of joint torque readings for each of
the seven joints of the robot’s left arm, recorded at 500 Hz
and stored as a text file. Another way to look at this data
set is as a collection of 300 wave files and 300 joint torque
sequences for each behavior.

B. Auditory Feature Extraction

We used the auditory feature extraction pipeline and the
publicly available source code that are described in [1].
They are briefly summarized below. The three stage process
includes: 1) Transforming each 44.1 KHz, 16-bit single
channel wave file into a spectrogramSi = si1s

i
2, . . . s

i
li

,
wheresij ∈ R

33, using the Discrete Fourier Transform (with
a window length of 25.625 ms and an overlap of 10 ms);
2) Training a 6 × 6 SOM using a subset of the column
vectors,sij , from all of the spectrograms for the behavior.



In this case, 5% of the total number of column vectors
were used during the training procedure; 3) Converting each
spectrogramSi = si1s

i
2, . . . , s

i
li

into a state sequenceAi =
ai1a

i
2, . . . a

i
li

by mapping the column vector,sij , to the most
highly activated node,aij , in the SOM. Audio was converted
into state sequences using a separate SOM for each behavior.
C. Extracting Proprioceptive Features

The proprioception feature extraction process is similar
to the one used for audio. A sequence of joint torques is
represented as a state sequence of the most highly acti-
vated nodes in a Self–Organizing Map (SOM). During this
conversion, the proprioception data is reduced from seven–
dimensional numeric column vectors to two–dimensional
nominal states. Because the proprioception values are already
in a column vector format, the feature extraction process
has only two stages in this case: 1) Training a6 × 6 SOM
using 5% of the collected column vectors that have the
form tij ∈ R

7; 2) Mapping column vectors to the most
highly activated node of the trained SOM to extract a state
sequence,Pi = pi1p

i
2, . . . , p

i
ni , from the joint torque sequence

Ti = ti1t
i
2, . . . , t

i
ni . One SOM was trained per behavior.

D. Outcome Class Learning
Object properties are indirectly captured in the outcome

state sequences, which can be clustered to form meaningful
outcome classes. For example, information about the shape,
the height, and the material of the small metal container
is detectable in the audio recording of the robot holding
the object under the faucet. Water falling on metal makes
a unique sound. The sound of water filling up a container
and then spilling over the top can also be heard. Similarly,
information about the weight of the same object is present
in the proprioception sequences in which the robot flipped it
over. The joint torques change as water is poured out because
the small metal object is fairly light to begin with.

Clearly, a robot may observe many different types of
outcomes as it interacts with the objects. Presumably, it
can directly identify the different types of outcomes that it
observes by clustering them into outcome classes. In other
words, given acoustic state sequences{Ai}

300
i=1 or proprio-

ception state sequences{Pi}
300
i=1 for a given behavior, the

task of the robot is to identify outcome classesC1, . . . , Ck.
For this task we use the Spectral Clustering hierarchical
clustering algorithmm [22]. The algorithm takes as input a
similarity matrix, determines the correct number of clusters
k, and outputs the outcome classesC1, . . . , Ck that it finds.
The similarity matrix is created by measuring the similarity
between all pairs of state sequences using the Needleman–
Wunsch Global String Alignment Algorithm [23], one of
several ways to compute the similarity between two strings.
In this case, the penalty for mismatched tokens during
the string alignment process is specified by the Euclidean
distance between their corresponding nodes in the SOM.

The spectral clustering algorithm recursively bi-partitions
the similarity matrix using the Shi–Malik Normalized Cut
objective function [24]. The recursion stops when a termina-
tion criterion is reached. The leaf nodes of the tree formed
by the algorithm are the outcome classesC1, . . . , Ck.

E. Object Categorization
Some outcome classes occur more often with certain

object categories compared to others, and this difference is
used to form object categories. For example, the sound of
pouring can be heard more often during theflip behavior
when holding a cup than when holding a non-container.
Similarly, the change in weight can be detected more often
during this behavior with a cup compared to a non-container.
In other words, the distribution of outcome classes that occur
with a cup is probably different from those that occur with
a non-container. The robot uses these differences in the
outcome class distribution of objects in order to cluster the
objects into object categories.

Given a set of outcome classes,C1, . . . , Ck, the robot
acquired feature vectorsZ1, . . . , Z30, where eachZi =
zi1, . . . , z

i
k andzij is the frequency with which outcome class

Cj occurred with objectOi. Thus, the feature vectorZi esti-
mates a probability distribution of how likely each outcome
class is to occur with objectOi. A negligible amount of
noise ǫ was added tozij in cases when it was polarized
to 0 or 1. The feature vectorsZ1, . . . , Z30 were passed to
the X-means [25] unsupervised clustering algorithm (with
the desired number of clusters,k, varying from 2 to 10)
in order to form object categories. X-means extends the K-
means clustering algorithm by automatically estimating the
correct number of clusters. The result of this process is an
object category labelingλ(u) = l1, . . . , l30 of the objects for
the uth behavior–modality combination.

F. Unified Categorization
Because different behaviors and sensory modalities cap-

ture very different information about the objects, the catego-
rizations formed using them can be very different as well.
Some of the resulting categorizations are more meaningful
than others. Presumably, however, there is a consensus
among the individual categorizations about a good way
to categorize the objects. The unified categorization step
identifies this consensus clustering.

The overall goal is to identify a unified categorization,λ̂,
that is representative of the multiple input categorizations
λ(1), . . . , λ(m). The best unified clustering of the input clus-
terings maximizes the Normalized Mutual Information, i.e.,
argmax

λ̂

∑m

u=1 ø
NMI(λ̂, λ(u)) [26]. Solving this system for

the best unified clustering is NP-Hard. It is possible, however,
to search for a good approximation of the best clustering.
The Strehl and Ghosh Ensemble Clustering Algorithm [26]
was used for this task. The algorithm takes as input the
object categorizationsλ(1), . . . , λ(m) and a desired number
of clustersk (which was varied between 2 and 10), and then
returns the best found ensemble clustering,λ̂.

V. RESULTS
The individual categorizations formed by the robot varied

in quality based on the behavior and the sensory modality
used to produce them. Overall, sound captured differences
primarily in size and then function. An example of the
categorization formed for theIn and Outbehavior for audio
is shown in Fig. 4. In this specific case, most of the small
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Fig. 4. The object categorization produced using the sound captured during
the In and Out behavior. The categorization captured differences in the
size (i.e., cluster 1 has mostly small objects) and the function (i.e., cluster
2 consists of the remaining containers while clusters 3-5 have only non-
containers) of the objects.

objects belong to the same category. The other categories
merged the medium and the large–sized objects, but captured
the secondary differences in the function of the objects. Thus,
sound was most suitable for discriminating between objects
with different sizes.

Similarly, proprioception captured differences primarily in
weight and then function. For example, the categorization
formed for theIn and Outbehavior placed the heavy objects
(ceramic mugs and glass cups) in their own category. The
secondary differences in the functions of the objects were
only captured in two other object categories.

The fact that sound captured differences in size and that
proprioception captured differences in weight is observable
in most of the individual categorizations that were used to
form the unified clustering. Fig. 5 shows that the unified
clustering also distinguished between objects of different
sizes and weights. However, the functional difference be-
tween containers and non-containers is observed just as
strongly. In fact, when the number of clusters was forced
to two, the unified categorization perfectly separated the
containers from the non-containers (i.e., the first two clusters
in Fig. 5 were merged into the “cups” cluster and clusters
3 and 4 were merged into the “non cups” cluster). Thus,
the unified clustering was most suitable for discriminating
between objects with different functions.

To test the robustness of the unified object categorization,
the framework described above was also evaluated using ten
different permutations of the data collected by the robot. This
procedure produced ten different unified categorizations.
The information gain of each unified categorization was
computed with respect to a human labeling of the objects
along four different dimensions (function, size, weight, and
material). For comparison with a baseline value, the average
random information gain was also computed along those
dimensions. The category labels from the human labeling
were shuffled and then the information gain was computed
with respect to the original human labeling. This procedure
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Fig. 5. The unified categorization produced using the ten individual
categorizations formed by the robot. Clusters 1 and 2 represent containers.
Clusters 3 and 4 represent non-containers. The categorization also captured
differences in the function (all four clusters), the size (clusters 1 and 2),
and the weight (clusters 3 and 4) of the objects.

was performed 100 times for each of the four dimensions.
Figure 6 shows the results of the procedure. The learning

framework captured a significant amount of information
about the objects in terms of their function, size, and
weight. The unified object categorization was most affected
by differences in the container property, followed by dif-
ferences in weight and then size. The size dimension had
less information gain because the medium and the large–
sized objects were usually categorized together. They did
not overflow with water, but the small objects did. The
framework captured little information about the material
properties of the objects, which is why the information
gain for that dimension is similar to the average random
information gain.

The non-zero error bars in Fig. 6 indicate that the unified
clusterings changed when the data was shuffled. In other
words, the order–dependent clustering algorithms produced
a distribution of different categorizations. The ten different
unified categorizations ranged from having three categories
to six categories. However, the graph clearly shows that the
unified clusterings still pick up meaningful results in terms
of the functional properties of the objects. The information
gained with respect to the functional properties of the objects
is resilient to fluctuations in the ordering of the data. In fact,
when forced to output only two clusters the unified clustering
perfectly separates the containers from the non-containers in
9 out of 10 cases (an object was misclassified as a non-
container in 1 case).

VI. CONCLUSION AND FUTURE WORK
This paper showed that sound and proprioception are

important sources of information during water manipulation
tasks. Sound consistently captured information about the size
and the function of the objects. Proprioception consistently
captured information about the weight and the function of
the objects. Furthermore, when the information from the two
modalities was combined it was possible to form even more
accurate object categories. The unified object categorization
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Fig. 6. The average category information gain of the unified object
categorizations with respect to four different object properties (function,
size, weight, and material). The information gain values were computed
using a human labeling for each of the four dimensions. The average
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unified object categorizations from 10 different executions of this learning
framework. The random category information gain is shown for comparison.

was meaningful with respect to the function, the size, and
the weight of the objects.

The results begin to answer the question: “What is a cup?”
For our robot, and for the current experimental setup, a cup
is an object that sounds and feels in a specific way as the
water flows into it. Objects that are not cups sound and feel
differently. Thus, using this unsupervised approach, the robot
has the ability to autonomously extract and attach symbolic
labels to the clusters of objects that a human would call
‘containers’ or ‘non-containers’.

Another key contribution of this paper is the idea that
learning about water can be bootstrapped using auditory
and proprioceptive data in the absence of visual and tactile
information. Obviously, our robot does not know that the
water feels “wet,” as it does not have tactile or any sort
of skin sensors the way humans do. Nevertheless, the robot
“knows” how the objects from the “cups” cluster sound
and feel when they are placed under the water stream in
the sink. The robot also “knows” how these auditory and
proprioceptive properties change as the robot actively varies
the position of the object using its own behaviors. This
embodied sensorimotor representation can be particularly
advantageous when addressing water manipulation problems.

Future work should continue to explore interaction with
liquids. Learning how objects and water interact with one
another is essential for manipulating liquids more effectively.
However, there are many more hurdles to overcome before
robots can fully take advantage of water during object
manipulation tasks. The message of this paper is that sound
and proprioception might be able to bootstrap this research.
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