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Abstract— This paper describes a set of experiments in which
an upper-torso humanoid robot learned to slide a card through
a card reader. The small size and the flexibility of the card
presented a number of manipulation challenges for the robot.
First, because most of the card is occluded by the card reader
and the robot’s hand during the sliding process, visual feedback
is useless for this task. Second, because the card bends easily,
it is difficult to distinguish between bending and hitting an
obstacle in order to correct the sliding trajectory. To solve
these manipulation challenges this paper proposes a method
for constraint detection that uses only proprioceptive data. The
method uses dynamic joint torque thresholds that are calibrated
using the robot’s movements in free space. The experimental
results show that using this method, the robot can detect when
the movement of the card is constrained and modify the sliding
trajectory in real time, which makes solving this task possible.

I. INTRODUCTION

Magnetic cards are widely used in human environments.
They are small, thin, and light, which makes it possible
for us to carry many of them in our wallets. In recent
years they have become the preferred method of controlling
door access in office buildings and hotel rooms. They are
also used as the preferred method of payment at grocery
stores, shopping malls, gas stations, parking lots, and vending
machines. In some cases they are used to gain access to
computer terminals and instrument panels.

Magnetic cards present a number of manipulation chal-
lenges. They are small, which makes them hard to grasp.
They are flexible, which increases the difficulty of insertion
and sliding tasks. They are symmetrical in shape, but they are
not symmetrical in function, which often requires reorienting
and re-grasping them. In other words, some of the same
reasons why plastic cards are so popular are also the reasons
why they are difficult to manipulate, especially for robots.

Card readers present a number of manipulation challenges
as well. The location where the card must be inserted is
usually not much thicker than the card itself. Once the card
is inserted it must stay within the gap and must remain
flush with the bottom of the card reader. It must travel
a certain distance so that the entire magnetic strip passes
over the reading head. Furthermore, it must be moved at
a certain speed that is neither too slow nor too fast and
without stopping before the entire movement is completed.
The bending of the card should be minimized, otherwise it
may not be read properly or it may pop out of the card reader.
Finally, the card must be oriented properly with respect to

Fig. 1. The upper-torso humanoid robot that was used in the experiments,
shown here sliding a card through a card reader.

the card reader as it can be read only if it is inserted in a
certain orientation.

There are multiple reasons why robots should be able to
use magnetic cards. The most pressing one is that there is
currently a big push in the robotics community to design
robots that can co-exist with humans in human environments.
By default, the widespread use of magnetic cards in our
society will dictate the need to train robots to use them as
well. While it may be possible to design alternative cardless
solutions for robots, this would not be feasible for all tasks as
it would require a massive investment to change the existing
infrastructure that relies on cards and card readers. A better
approach would be to teach the robots how to use plastic
cards in order to accomplish many practical tasks.

In our approach, we use proprioceptive feedback to detect
when the movements of the robot become constrained.
Because magnetic cards are flexible, the mechanism for de-
tecting constrained movement must be sufficiently sensitive
to prevent bending the card too much. Achieving this level
of sensitivity using static joint torque thresholds can be very
difficult. Instead, we implemented a learning approach that
employs dynamic joint torque thresholds that the robot learns
from its own experience. To the best of our knowledge, this
is the first study that tackles the problem of autonomous
sliding of a magnetic card by a robot.



II. RELATED WORK

The ability to manipulate objects in constrained spaces is
crucial for solving insertion tasks, which are often called
“peg-in-the-hole” tasks [1, Chapter 26]. Existing approaches
for solving these tasks can be grouped into three categories:
1) visual servoing, 2) topological contact modeling, and 3)
controllers based on proprioceptive feedback.

The approaches in the first category focus on detecting
the holes using computer vision [2] [3] [4] [5] [6] [7]. In
many cases the proposed application is plugging into a wall
socket autonomously [3] [4] [5] [6] [7]. One characteristic
feature of these approaches is that the manipulation task
of actually inserting the peg into a hole is considered easy
if the hole can be sufficiently well localized in the image.
One of the approaches for autonomous plugging required
installing a separate camera in the robot’s wrist and putting a
checkerboard pattern on the plug to improve the performance
of the visual algorithms [3]. In other cases, trial and error
learning may be required to compensate for possible tracking
inaccuracies [8]. Some approaches even propose to use
new task-specific modalities to localize the holes better. For
instance, an electromagnetic radiation sensor was proposed
to detect the location of the electric socket [4].

Bruyninckx et al. [9] demonstrated that insertion tasks
can be solved using two different types of approaches: 1)
approaches based on kinematic models of the goal location
and constraints; and 2) approaches based on geometrically
precise alignment of the peg with respect to the hole.

This paper builds on our previous work [10] that showed
that robots can use exploratory behaviors and proprioceptive
feedback to solve insertion tasks. In particular, it was shown
how the robot can solve a shape-sorter puzzle with three
different blocks and holes [10]. It was also shown that joint
torques recorded before and after insertions were signifi-
cantly different [10]. The ability to detect these differences
autonomously was left for future work.

This paper shows that differences in joint torques can be
used not only to detect constrained movement of a peg in a
hole, but also to detect other types of constrained movement,
e.g., rubbing of a plastic card against the wall of a card
reader. This paper shows that constrained movement can
be detected in real time. This sets it apart from our prior
work in which the difference in joint torques was detected
offline [10].

Suarez et al. [11] proposed an approach for performing
insertion tasks without the use of geometric models, as those
are not always available in an accurate form. To do this, they
modeled the many uncertainties in the robot’s environment
and used force feedback information to guide the robot’s fine
movements through several task states and eventually into the
goal state. Paetsch and his colleagues [12] circumvented the
problem of uncertainties by programming into their robot
a number of strategies modeled after human strategies for
inserting a peg into a hole. Their robot used the readings
from the force feedback sensors to decide which strategies
to use. Paetsch’s results showed that these strategies, when

(a) Card (front) (b) Card (back) (c) Card Reader

Fig. 2. The card and the card reader used in the experiments: (a) front of the
card; (b) back of the card; (c) the card reader mounted on the experimental
fixture. A strip of Velcro was attached to both sides of the card to increase
the friction between the card and the robot’s fingers.

used in tandem with each other, increased the success rate
of the task.

Infants have the ability to consistently insert objects into
holes at approximately 22 months of age [13]. Infant chim-
panzees, which mirror the developmental cycle of humans,
exhibit the insertion behaviors even earlier at 10 months [14].
These skills develop slowly over time and go through several
stages before they can be fully useful. At 15 months, human
infants are able to perform insertion tasks, but they perform
at chance level [15]. This shows that as motor skills develop
and cognitive faculties mature, insertion tasks become easier
due to increased spatial reasoning and coordination.

III. EXPERIMENTAL SETUP

A. Robot

All experiments were performed using the upper-torso
humanoid robot shown in Fig. 1. The robot’s arms are
two Barrett Whole Arm Manipulators (WAMs), which are
controlled at 500Hz from a real time Linux PC. Only the
left WAM was used in the experiments, which has a three-
finger Barrett Hand (model BH8-262) as its end effector.

B. Card and Card Reader

Figure 2 shows the card that was used in the experiments.
The physical characteristics of the card are defined by the
ISO 7810 standard, which fixes the dimensions of credit
cards to 85.60 mm × 53.98 mm [16]. The thickness of
the card, which is defined by the ISO 7813 standard, is
0.76 mm [16].

A commercially available card reader (a generic 3 track
USB MSR Magnetic Stripe Credit/Smart Card Swipe POS
Programmable Mini Reader) was used in the experiments.
It was purchased from amazon.com. The dimensions of the
reader are 90 mm × 26 mm × 27 mm. The reader supports
bi-directional reading, but the magnetic strip can be read in
only one orientation.

The card reader was mounted on a fixture in front of
the robot, with the card slot in a vertical orientation (see
Figure 2(c)). The card reader was connected to a computer
through a USB cable so that successful slides of the card
could be recorded. A slide was considered successful only if
the entire message encoded on the magnetic strip was read.

C. Grasping the Card

The card is quite small relative to the robot’s fingers, which
are twice as thick as human fingers. It slips out of grasp easily



(a) Movement in mid-air (b) Joint Torques (c) PCA-based Representation
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Fig. 3. Illustration of the process of building the background model for detecting constrained movement: (a) the card reader is moved away when the
robot performs card swiping behaviors in mid-air; (b) joint torques recorded during these movements in free space; (c) a representation of these joint
torques in the space spanned by the first two principal components; and (d) the amount of variance covered by different principal components.

because the fingers are made of brushed aluminum and are
not well suited for this task. Furthermore, the morphology of
the hand allows for only one viable grasp configuration as
shown in Fig. 1. In addition to occluding most of the card,
this configuration tends to bend the card into an U-shape,
which makes it impossible to slide it through the card reader.
To resolve these difficulties, while still focusing on the main
goal of this paper (i.e., detecting movement constraints in
constrained spaces while holding flexible objects) we added
a layer of Velcro to each side of the card and to the fingertips
of the robot (see Fig. 2(a) and Fig. 2(b)). This allowed the
robot to hold the card firmly for long periods of time without
bending it too much. All experiments started with the robot
already grasping the card.

IV. DETECTING CONSTRAINTS

The key challenge in the card reading task is to avoid
bending the card too much as it is swiped through the card
reader. If the robot cannot correct the swiping movement
to prevent excessive bending, then it can force the card out
of the card reader or even permanently deform the card. To
solve these problems the robot can try to detect when its
movements are constrained. If the robot has this ability, then
it can stop moving as soon as it detects the constraint. Fur-
thermore, if the robot can detect which movement trajectories
are constrained, then it can use this information to improve
its future attempts at solving this task.

In this work, the robot detected constraints using the
assumption that they make the proprioceptive sensations
in the arm differ from the sensations of moving in free
space. In other words, if the currently observed joint torques
deviate from a background model of moving the arm in mid-
air, then the current movement must be constrained. This
allowed the robot to detect constraints exclusively through
proprioceptive feedback.

There are multiple other ways in which constraint de-
tection can be accomplished. We believe that our approach
is more reliable than methods based on visual movement
detectors. In this particular task, the card and the card reader
are very small. The resolution of the cameras may not
be sufficient to reliably detect the movements of the card.
Furthermore, the bottom part of the card that has to be inside

the reader is not visible during sliding, so a decision would
have to be made as to what to track. Some options include
tracking the robot’s fingers and the top part of the card, if
that part is not occluded by the hand. These options, however,
may not be reliable due to the flexible nature of the card.
As the card flexes, the part of the card inside the card reader
can be fixed, but the part of the card grasped by the robot
can be moving along with the robot’s hand perpendicularly
to the sliding direction.

A. Building a Background Calibration Model

The background calibration model is the model of joint
torques recorded during movements in free space. The model
uses principal component analysis to reduce the dimension-
ality of the raw data. The joint torques are discretized in
the space spanned by the first two principal components and
the resulting point cloud is used to represent the distribution
of the joint torques during unconstrained movement. When
the robot is interacting with the card reader, it detects
constrained movement if the new joint torques fall outside
of this distribution.

To build the background model the robot performs a
number of sliding movements in mid-air with the card in
its hand. The movements are performed in the same spatial
region where the card reader is placed, but the card reader is
removed when the robot learns the model. The background
model is built using joint torques recorded during these
movements. The model includes: 1) a vector M ∈ R7 where
each element is the mean torque for one of the seven WAM
joints; 2) two vectors P (1) ∈ R7 and P (2) ∈ R7 with the
coefficients for the first two principal components of the joint
torques; and 3) a set of integer pairs S that represent observed
joint torque values in the space spanned by the first two
principal components.

More specifically, the background model is built from
a matrix of joint torques T ∈ Rn×7, where n is the
number of joint torque vectors recorded while the robot was
moving the card in mid-air (in the experiment n = 37790,
which corresponds to 37790 WAM heartbeats/500 Hz =
75.58 seconds). Thus, Tij is the torque recorded during the
ith timestep for the jth joint. The vector M contains the mean



torque for each joint, i.e.,

Mj =
n∑

i=1

Tij
n
, j = 1, . . . , 7. (1)

The vectors P (1) ∈ R7 and P (2) ∈ R7, which contain co-
efficients for the first two principal components of T , can be
calculated using singular value decomposition (SVD) [17]:

cov(T ) = UΣUT , (i.e., SVD of cov(T )), (2)

P (1) = [U11, U21, U31, U41, U51, U61, U71]
T
, (3)

P (2) = [U12, U22, U32, U42, U52, U62, U72]
T
, (4)

where cov(T ) ∈ R7×7 is the covariance matrix of T .
Fig. 3(d) shows that the first two components account for
88.6% of the variance in the experiment, which justifies
using only these two principal components to make the
representation more compact.

A discretization of the point cloud formed by T in the
space spanned by P (1) and P (2) can be represented by a set
of integer pairs S. More formally,

S = {(Xi, Yi)} , i = 1, . . . , n, (5)

where the integers Xi ∈ Z and Yi ∈ Z are defined as shown
below:

Xi = round

δ 7∑
j=1

(Tij −Mj) · P (1)
j

 , (6)

Yi = round

δ 7∑
j=1

(Tij −Mj) · P (2)
j

 , (7)

for i = 1, . . . , n. The parameter δ, which controls the
sensitivity of the discretization, was set to the empirically
derived value of 1/4. Figure 3(c) shows the point cloud and
the discretization for one of the experiments in which the
robot had to insert the card into the top end of the card
reader slot and slide it down (see Section VI-B for more
information about the results of this experiment).

Computational speed was one of the main reasons for
choosing a model based on discretization in PCA space.
Using this model, the calculations for constrained movement
detection can be performed in real time. As the robot receives
each new joint torque measurement it only needs to perform
a few arithmetic and memory access operations to represent
this measurement in PCA space. The robot also has to check
if a similar set of joint torques were encountered during
movements in mid-air. The total number of operations for
completing both goals can be bounded by a constant.

B. Real-Time Detection of Constrained Movement

As the robot attempts to swipe the card, it can detect
constrained movement for each joint torque vector τ ∈ R7

that it gets from the torque sensors in the WAM. A pair of
integers (x(τ), y(τ)) can be computed for the vector τ like in
formulas (6) and (7) that were used to build the background
model. If the pair (x(τ), y(τ)) is not in S, then the robot

(a) Movement (b) Representation

Fig. 4. Example of constrained movement detection: (a) picture taken
during a movement performed by the robot when it became constrained,
and (b) the state of the representation when the constraint was detected.
One of the joint torque measurements fell into a region (red rectangle) that
was not visited during movement in mid-air, which caused the detector to
fire. See text for more details.

was constrained when τ was recorded. Otherwise, the robot
was not constrained at that moment.

More formally, the integers x(τ) and y(τ) are computed
as shown below:

x(τ) = round

δ 7∑
j=1

(τj −Mj) · P (1)
j

 , (8)

y(τ) = round

δ 7∑
j=1

(τj −Mj) · P (2)
j

 . (9)

The constrained movement detector is formally specified
using the following expression:

MoveConstrained(τ) =

{
Yes, if (x(τ), y(τ)) 6∈ S;
No, if (x(τ), y(τ)) ∈ S.

(10)

An example of constrained movement detection during card
swiping is shown in Fig. 4. When the background model
was built, only joint torques with coordinates in PCA space
between -6 and 6 were observed. Because the discretization
sensitivity δ was set to 1/4, all integer pairs (Xi, Yi) lie in
the set S = {−1, 0, 1} × {−1, 0, 1}. When the robot was
later performing the card swiping behavior, it recorded one
joint torque vector τ with coordinates in PCA space equal to
(0.83,−6.3). Thus, x(τ) = round(0.83/4) = 0 and y(τ) =
round(−6.3/4) = −2. Constrained movement was detected
because (x(τ), y(τ)) 6∈ S.

V. METHODOLOGY

This section describes how the robot performed the card
swiping behavioral sequences. Each sequence had three
phases: 1) move to a starting position near the card reader,
2) insert the card into the gap of the card reader, and 3) slide
the card through the gap. For each of the three manipulation
phases the WAM performed one movement. The destination
for each of these movements was sampled from an area
defined by a set of four points in joint space. The first phase
used four points for which the card was about 10–15 cm



Fig. 5. The three sets of four anchor points that were used to sample
the destination positions of the robot’s movements during a card sliding
sequence. A human experimenter backdrove the robot’s arm until the middle
of the bottom part of the card coincided with each point. The twelve vectors
of joint angles recorded from the WAM in these locations were stored and
used to generate candidate movements. See text for more details.

away from the board and formed a rectangle of roughly
the same size as the card reader. The two remaining phases
used two sets of four points for which the card was about 1
cm away from the four corners of the two opposite sides
of the card reader. These locations were used to specify
roughly where each movement in a manipulation sequence
should finish, but the robot still had to select the exact
destinations for each of the three movements in a sequence.
The approximate locations of the twelve anchor points are
shown in Fig. 5.

To avoid moving the card into obstacles, the constrained
movement detection procedure described in Section IV was
used. Because the constraint detector can be updated in
real time, it was able to stop those movements immediately
if formula (10) indicated a constraint. Because the robot
records joint torques at 500 Hz, the reaction time of this
approach is sufficient to prevent bending the card.

In order to achieve high success rates in this task, it is
also necessary to use the feedback from the card reader.
Even if the robot completes each of the three manipulation
phases without being constrained, the entire sequence can
fail because the card was inserted outside of the card reader,
or because the magnetic strip did not traverse the reading
head at a relatively constant speed, or because the magnetic
strip disconnected from the reading head at some point. In
other words, a card swiping sequence succeeds if and only
if the robot receives the information stored on the magnetic
strip of the card from the reader.

It can be very inefficient to restart the whole sequence
from scratch if movement is constrained during the latter
phases. For instance, if the card is constrained when the robot
attempts to move it through the gap, then it can be more
efficient to return to the point where the card was inserted
into the gap and try to swipe it again in a slightly different
direction rather than to remove the card from the reader and
start the whole manipulation sequence from scratch.

To learn to swipe the card better, each of the three
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Fig. 6. Examples of behavioral sequences performed by the robot. Each
sequence consists of three behaviors: start, insert, and slide. A behavior
completes successfully only if the robot is not constrained during the
corresponding movement (X symbol). When a behavior fails (× symbol),
the robot backtracks to the position from which it started the movement and
tries to complete the phase again (diagonal arrows). A sequence succeeds if
and only if the card was read during the execution of its “slide” behavior.

manipulation phases uses a predictive model of its outcome.
The predictive model uses the joint space coordinates of
the movement destination as features. Each phase can have
only two outcomes: success or failure. A phase succeeds if
and only if the robot was not constrained and the whole
sequence triggers a successful card read. More specifically,
a behavioral phase fails in each of the following cases:
1) constrained movement is detected during this phase, 2)
constrained movement is detected 10 times in a row for
the next phase in a sequence (this ensures that the robot
does not get stuck in an infinite loop if it cannot find a
way to execute the next phases of the sequence without
ever being constrained at the current phase), 3) the whole
sequence completes but the card is not read. If a phase fails,
then the robot returns to the point in joint space where the
phase started and tries to perform the movement again. Thus,
each phase can be attempted many times during a sequence.
Whenever success or failure is recorded for a behavioral
phase, the robot updates the predictive model of its outcome.
The transitions between failed and successful phases for three
sample sequences are shown in Fig. 6.

To implement the predictive model, a k-NN classifier



Fig. 7. Example of a failure that was recorded when the robot bent the
card and forced it out of the gap. See text for more details.

with k = 3 was used. To select where to move, the robot
generates 1000 candidate movement destinations using the
four anchors points. The classifier predicts the probability of
success for the candidates. The robot moves to the candidate
destination with the highest probability of success.

VI. RESULTS

A. Card Swiping Behaviors Starting in the Gap

The goal of the first experiment was to quantify the utility
of the constrained movement detector for successful card
swiping. The behaviors started with the card already inserted
into the top part of the card reader’s gap. In other words, the
starting phase and the insertion phase of the card swiping
sequence shown in Figure 6 were skipped and the robot only
had to perform the final sliding phase.

Four experimental conditions were evaluated, which cor-
responded to the possible combinations of the following two
binary variables: 1) learning using the card reader feedback
was enabled or not, and 2) the constrained movement detec-
tor was enabled or not. For each of the four conditions the
robot performed 100 card sliding behaviors. Figure 8 shows
the number of successful card reads for each condition.

If learning from the card reader feedback was off and
the constrained movement detector was also off, then the
robot failed to swipe the card and forced it out of the gap
despite its resistance. The resistance of the plastic card was
insufficient to trigger the static torque limits of the WAM.
For some other tasks these torque limits can help detect when
the robot runs into constraints (e.g., static torque limits can
detect when the WAM hits a wooden board as it tries to
press a doorbell button [18]), but for the card reader task
they were not sufficient. To prevent deformation of the card
due to repeated bending, the human experimenter interrupted
the robot and recorded a failure if the card was bent too
much. This condition was attempted three times and each
time the robot eventually bent and forced the card out of the
gap. Figure 7 shows a typical example for the configuration
of the card at the moment when the human experimenter
would interrupt the program.

When the constrained movement detector was disabled,
but feedback from the card reader was enabled, the robot was
able to achieve several successful card reads before bending
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(a) Constraint Detector Enabled
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(b) Constraint Detector Disabled

Fig. 8. Efficiency for card swiping behaviors that start with the card already
in the gap of the card reader.
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Top−down slides
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Fig. 9. Efficiency for complete card swiping behavioral sequences that
consist of selecting the start position, inserting the card into the gap, and
sliding the card through the gap. The constraint detector was enabled for
each of the four conditions shown in this figure.

the card out of the gap. This focused subsequent behaviors
and prevented future failures. Eventually, the robot achieved
90% card swiping efficiency in this condition. Even though
the robot succeeded, there was a chance that it could force
the card out of the gap before it could read it at least once,
so this success may not be always reproducible.

When the constrained movement detector was on, but
feedback from the reader was off, the robot kept the card
in the gap and interrupted the behaviors that could bend it.
Eventually it achieved 22% card swiping efficiency in this
condition. In other words, the constrained movement detector
allowed the robot to preserve the integrity of the experimental
setup without relying on the card reader feedback.

Finally, when both learning from the card reader feed-
back and the constrained movement detector were on, the
robot achieved 93% card swiping efficiency. This experiment
showed that the constrained movement detector is very useful
when learning to manipulate flexible objects. In the next
set of experiments, where the robot had to learn to both
insert and swipe the card through the gap, the constrained
movement detector was always enabled.

B. Card Swiping Behaviors Starting Outside the Gap

The goal of the second experiment was to see if the
robot can learn complete manipulation sequences that can
successfully swipe a magnetic card through the card reader.
This included selecting the start position outside the card
reader, inserting the card into the gap of the card reader,



and sliding the card through the gap. The framework was
evaluated for learning to slide the card in two directions:
top-down and bottom-up. The swiping efficiency was also
measured when the robot was not allowed to learn from the
card reader feedback in order to estimate how often the robot
can swipe the card simply by chance.

In each of the four experimental conditions, the robot per-
formed 100 swiping sequences, which consisted of the three
manipulation behaviors described in Section V. The results
are shown in Fig. 9. The robot achieved 85% efficiency for
top-down slides and 96% efficiency the bottom-up slides.
The efficiency of the card swiping behaviors performed
without learning was 5% for top-down swipes and 10% for
bottom-up swipes.

These results show that using constrained movement de-
tection and learning from card reader feedback can help
achieve high card swiping efficiency. These results also show
that the robot can learn complete card swiping behavioral
sequences. Even though completing the sequence requires
successful execution of each of the three phases, the robot
was able to swipe the card efficiently in both directions.

VII. CONCLUSION AND FUTURE WORK

This work proposed a constraint detection algorithm based
exclusively on proprioception. The algorithm was tested on
the task of sliding a magnetic card through a card reader.
The results of the experiments indicate that the algorithm
can be used to associate unconstrained movement of the card
with task completion. Manipulation strategies based on this
concept were learned, which increased the robot’s ability to
complete the task successfully. Our algorithm can be used
to enable robots to interact with environments in conditions
where visual models cannot be created.

The method presented in this paper can be applied in many
different ways. We have shown that it can be used to explore
constraints and to learn from them. We foresee this method
being used in other areas as well. One possible extension
of this method is detecting that a key has been inserted
into a keyhole and figuring out how to turn it. Using the
exploration featured in our method, the robot may be able
to open a lock. Furthermore, this method could allow robots
to associate different keys with different locks. Observation
of how the key turns in the lock would allow the robot to
determine which key works for which lock.

Spatial semantic hierarchies could be also constructed
using our method. For example, opening a door allows one
to access the space behind it. Our method could detect that
a closed door is a constraint that blocks the robot from
accessing that space. Once open, however, the door no longer
acts as a constraint.

Mobile robots could be able to use this method to extend
the range of possible locations that they can access. Robots

that have to pass through doors may use our method to learn
how to use door handles and how to open doors. For instance,
exploring the directions of possible door movements would
allow the robot to open a door regardless of whether it opens
in or out. The robot may also learn to manipulate many
different door handles by exploring how the unconstrained
directions of movement change when the handle is grasped.
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