
Hierarchical Voting Experts: An Unsupervised

Algorithm for Hierarchical Sequence Segmentation

Matthew Miller and Alexander Stoytchev

Developmental Robotics Lab

Iowa State University

{mamille | alexs}@iastate.edu

Abstract—This paper extends the Voting Experts (VE) algo-
rithm for unsupervised segmentation of sequences to create the
Hierarchical Voting Experts (HVE) algorithm for unsupervised
segmentation of hierarchically structured sequences. The paper
evaluates the strengths and weaknesses of the HVE algorithm to
identify its proper domain of application. The paper also shows
how higher order models of the sequence data can be used to
improve lower level segmentation accuracy.

I. INTRODUCTION

The world is too complex to be considered all at once, both

computationally and conceptually. Instead, it must be broken

into manageable pieces, or chunks, and dealt with one piece at

a time [1]. However, this is not a trivial task. It isn’t clear what

segmentation strategy one should use, or even what metric

should be used to evaluate the quality of a segmentation.

Human beings have an astounding and apparently innate

ability to induce such a segmentation [2], and this mechanism

has been variously described and measured [1], [3], [4], [5],

[6]. Modeling this process would certainly be an academically

and practically fruitful endeavor. The Voting Experts (VE) al-

gorithm suggests just such a model, and has demonstrated the

capability to accurately segment natural language text [7]. It

proposes that chunks have a certain signature, i.e., they exhibit

two information theoretic characteristics, namely low internal

entropy and high boundary entropy. In other words, chunks

are composed of elements that are frequently found together,

and that are found together in many different circumstances.

VE looks for these two properties and uses them to segment

text. It is surprisingly powerful given its simplicity, suggesting

that the principle of segmenting based on low internal entropy

and high boundary entropy is promising.

Real world data often exhibits an inherently hierarchical

structure, and it is well known that humans chunk the world

hierarchically [1], [3]. When we read text our eyes scan the

letters and sense black and white shapes. These shapes are

chunked into letters, which are chunked together into words,

which are chunked into phrases and so on. This hierarchical

grouping is fundamental to our interaction with the world.

This paper extends the VE algorithm to segment hier-

archically structured sequences. We show that VE can be

generalized to work on hierarchical data and investigate the

applicability of this extension to determine its strengths and

limitations. More specifically, we strive to understand when

the underlying information theoretic model for segmentation

is valid, and when it is not. We then show that the higher

order models can be used to improve the accuracy of the

segmentation at lower levels.

II. RELATED WORK

Several algorithms have been described in the literature

for unsupervised sequence segmentation. In particular there

exist segmentation algorithms that use statistical properties of

sequences [8], [9], [10], [11], [12]. There also exist models of

infant speech segmentation based on clustering or Bayesean

approaches [13], [14]. Additionally the SEQUITUR algorithm

has demonstrated the ability to discover hierarchical structure

in sequence data, and has been altered to perform unsuper-

vised segmentation tasks [15], [7]. However, its segmentation

performance is inferior to that of VE [7].

The work presented here, however, is more closely related

to the field of Statistical Learning. A paper by Saffran, John-

son, Aslin and Newport demonstrated that humans possess

a general mechanism for segmenting audio data [5]. They

claim that the segmentation was induced based on “statistical

cues.” These are the “sequential properties” of the phonemes

or tones [5]. Specifically, given two sequential tones A and B,

the probability that B follows A is generally higher if the two

tones are part of the same word, and generally lower if there is

a word break between them. The study concludes that humans

must use these statistical cues to segment audio streams [5].

But these cues are simply more impoverished versions of the

“low internal entropy” and “high boundary entropy” signatures

of chunks used by VE.

When we say that a sequence has low internal entropy,

this literally means that the transition probability between

each element in the sequence is high. When we say that a

sequence has high boundary entropy we literally mean that,

given the sequence, there is no particular element that has a

high probability of being next. Specifying these markers in

terms of information theory [16] gives us a very clear and

well understood characterization. The VE model can be seen

as a refinement and artificial implementation of this model of

human segmentation. This model may or may not capture the

true human strategy. However, it seems complimentary to the

findings of Saffran, Aslin and others.

III. VOTING EXPERTS

The VE model uses two measures of entropy to induce a

segmentation on a sequence. They are defined as follows. Let

Γ = {e1, e2, ..., em} be an alphabet and s = (s1, . . . , sn)
be a sequence where each element si ∈ Γ. The internal

entropy of a subsequence c = (sj , . . . , sk) is given by

HI(c) = log(Pr(c)). The boundary entropy of c is given

by HB(c) = −
∑m

h=1
P (h, c)log(P (h, c)), where P (h, c) is

defined as P (h, c) = Pr(sk+1 = eh|sj , . . . , sk).
VE uses a sliding window to make local splitting decisions.

This allows the algorithm to run in linear time, and work on

very large datasets. The VE algorithm consists of three main

steps. Given a sequence of characters for segmentation:

Step 1: Build an ngram trie of the sequence and use it

to calculate the internal entropy and boundary entropy of

each subsequence of length less than or equal to n. Each

value is then standardized across all subsequences of the

same length. Let H l
I be the average internal entropy for all

sequences of length l, and σl be the standard deviation of

the internal entropy for all sequences of length l. Then the

standardized internal entropy of a chunk c of length l is

defined as ĤI(c) = (HI(c) − H l
I)/σl. The boundary entropy

is standardized analogously.

Step 2: Pass a sliding window of length N along the

sequence. At each location, let each of two experts vote on how

they would split the contents of the window - one minimizing

the internal entropy of the two induced subsequences, the other

maximizing the entropy at the split. More technically, given

a window w = (x1, . . . , xN), expert 1 votes to break w into

two chunks c1 = (x1, . . . , xi) and c2 = (xi+1, . . . , xN) such

that ĤI(c1)+ĤI(c2) is minimized. Expert 2 votes to break w
into two chunks c1 = (x1, . . . , xj) and c2 = (xj+1, . . . , xN)
such that ĤB(c1) is maximized. Both experts use the trie to

perform these calculations.1

A window length of N = 7 was chosen for the experiments

in this paper. This was the window size used to test the original

VE algorithm, and it is appropriate given the average length

of English words.

Step 3: Choose a threshhold t. Induce a split at each point

in the sequence that recieved more votes than its neighbors,

so long as its total number of votes is greater than t.
For further technical and implementation details of the

algorithm, or for a comparison of VE with other segmentation

algorithms, see the journal article [7].

IV. HIERARCHICAL VOTING EXPERTS

The original application of VE was to segment text that

had been stripped of punctuation and spaces. The implemen-

tation took sequences of characters as input and chunked

them together to produce strings. However, the model for

1Instead of directly minimizing the internal entropy of induced subse-
quences, the original VE maximized the frequency, since the entropy of a
sequence is given by the log of its frequency [7]. In our implementation of
VE we did not maximize the frequency but instead minimized the entropy of
the induced subsequences. This change caused a slight improvement in the
baseline performance of VE of about 1%, which accounts for the difference
between our results and those in the original paper.

segmentation is a general one, and the implementation can be

extended to work in more general domains. The most natural

extension is to segment any sequence of tokens instead of just

characters. In order to efficiently build and use an ngram trie

the tokens must be comparable, and it must be possible to

impose a total ordering on them. Assuming this is the case,

the same information theoretic metrics can be used by each

expert to induce boundaries between tokens in the sequence.

The resulting chunks, then, are not strings but sequences

of tokens. Notice that it is possible to compare sequences of

tokens lexicographically in the same way we compare strings

lexicographically based on their characters.

The extension to Hierarchical Voting Experts (HVE) is then

natural. Generalized VE is run on a sequence of tokens to

obtain a sequence of chunks, each chunk composed of a

short sequence of tokens. Those chunks are treated as the

tokens of a new sequence, which can be chunked to create

chunks of chunks. To do this, generalized VE is run again

on the new sequence, building the ngram trie by imposing

a lexicographical ordering on the chunks. The experts use

the trie to vote on how to split the sequence of chunks, and

boundaries are induced in the same way as on a set of tokens.

This process can be repeated indefinitely for any number of

hierarchical layers.

0 6 4

0 6 4

0 6 4 6 1 2 6 0 5 1 1 6 0 3 3

6 1 2 6 0 5 1 1 6 0 3 3

6 1 2 6 0 5 1 1 6 0 3 3

i

i

Fig. 1. An illustration of hierarchical chunking. The digits are grouped into
chunks that represent letters. Those chunks are then grouped into chunks that
represent words.

Consider text as an example. Suppose we created a mapping

from each letter to a random three digit integer, and then

translated a piece of text by replacing each letter with its

three digits (see Figure 1). This sequence would have a

simple hierarchical structure. Three digit subsequences could

be grouped into letters, and the letters could be grouped into

words. If we ran two level HVE on this data it would first

segment the digit sequence in just the same way as VE.

Assuming it was successful, it would produce a sequence of

chunks, each one of them containing three integer tokens. HVE

would then run VE again on this sequence of chunks. The

second level of HVE would produce a sequence of chunks of

chunks of tokens. Ideally they would correspond to the words

of the original text. In fact, we performed this experiment, and

the results are included as experiment 4.

HVE is a general extension of VE that can accept any

sequence of comparable tokens as input. It is not at all

necessary to use characters as the fundamental tokens. Any

type of object that can be ordered and compared is valid. This

includes RGB pixels or class labels or intensity values from

a Fourier transform of an audio signal. It is one step further

towards a general chunking algorithm. However, it is limited

to one-dimensional ordered sequences with low token noise.

So it is not a truly general solution, but it is a step in the right

direction.

V. EXPERIMENTS WITH HVE

We designed several experiments to test the HVE algorithm.

They demonstrate that the application of HVE to hierarchical

data can induce accurate segmentation at each level.

However, the experiments also show that HVE is sensitive to

the structure of its input. HVE segments a sequence based on

the assumption that the true subsequences will be marked with

low internal entropy, and their boundaries will be marked with

high entropy. Sequence data that does not follow this pattern

will be inscrutable to any incarnation of HVE. Conversely, the

more the data conforms to this pattern the more successful

HVE will be in segmenting it. This gives a clear theoretical

delineation of the proper domain of this algorithm.

Dataset: For our experiments we used the first 35,000

words (converted to lower case and stripped of punctuation

and spaces) of George Orwell’s novel “1984” as our base text.

This was one of the benchmark datasets used to evaluate the

original VE algorithm, so it was chosen for comparison [7].

To perform our experiments, we translated this data in several

ways.

VE and HVE run in linear time with respect to the size of

the dataset, and so they can be used to segment very long

sequences [7]. However, the accuracy of the segmentation

asymptotically approaches an upper bound, and there is little

utility in using a corpus much larger than our base dataset.

Additionally, our translations multiplied the length of the

sequence, causing it to approach a million characters for some

experiments. Even so, each experiment took only 5 to 10

minutes to run on a standard desktop computer.

Metrics: Three different metrics were used to evaluate the

segmentation results for each experiment: f-measure, accuracy,

and hit rate. These are the same metrics used to evaluate the

original VE algorithm [7]. They are defined as follows. Let n
be the number of correctly induced boundaries and let m be

the total number of induced boundaries and let c be the total

number of true boundaries in the sequence, then the accuracy

of the segmentation is given by a = n/m and the hit-rate is

given by h = n/c. The f-measure of the segmentation is then

defined to be f = 2ah/(a + h). The value of the f-measure

ranges from 0 to 1, 1 being perfect segmentation. It was chosen

because it strikes a balance between measuring the accuracy

of the induced boundaries, and the overall percentage of true

boundaries that are found. The f-measure on the original text

data set for single level HVE is 0.776. This value will be used

as the baseline for evaluation of all second level segmentation,

and it is included in each of the pertinent tables. If the first

level segmentation is perfect, we would expect the second level

segmentation to have the same f-measure as the base text.

The choice of threshhold t in step three of the VE algorithm

has an effect on these metrics. Specifically, as t is raised, it

Fig. 2. Fonts 1, 2 and 3 used in Experiment 1. Fonts 1 and 2 both have
resolution 8x8 for each letter, and font 3 has resolution 12x8. However, even
though fonts 1 and 2 have the same resolution, font 2 is more complex than
font 1, in that each letter is composed of more unique pixel columns.

takes more votes to induce a split. This causes the accuracy

of the segmentation to go up, and the hit rate to go down.

Conversly, lowering t generally lowers the accuracy and raises

the hit rate. In each of our experiments we chose the t that

struck a balance between the two. This method was also used

in the original VE algorithm [7]. We hope to eventually find a

principled way to set t, so that the algorithm needs no hand-

tuning.

Experiment 1: We simulated the process of optically scan-

ning the text to see if HVE could segment out the letters and

then group them into words. For each character we considered

each vertical column of black and white pixels in order, from

left to right, ignoring all white space. A pixel column can

be represented as a sequence of bits, which can be translated

into a unique integer. We replaced each character in the text

with the sequence of integers corresponding to the sequence

of vertical columns of pixels that compose that character. Each

integer became a fundamental token of the sequence, as if the

pixel column was viewed as a single token by the algorithm

(see Figure 3). We used three fonts, whose resolution and

complexity varied (see Figure 2). For each font we transcribed

the text and then ran a two-level HVE on the translated data to

segment the letters and then the words. The results demonstrate

that HVE successfully segmented the sequence at both levels

of the hierarchy (see Table I).

30 3040 40 40

=

0

0

0

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

1

0

1

0

0

0

X X X

Fig. 3. An illustration of the conversion of the letter “a” to a sequence of
integers corresponding its pixel columns. The pixels are converted to bits,
and each column of bits is converted to a decimal number. The white space
is removed before and after each letter so that there are no boundary markers
in the sequence.

TABLE I
EXPERIMENT 1: PIXELS TO CHARACTERS TO WORDS. THE RESULTS ARE

SHOWN FOR EACH FONT AT BOTH LEVELS OF SEGMENTATION. THE

BASELINE SEGMENTATION IS INCLUDED FOR COMPARISON.

Font F-measure Accuracy Hit Rate

L
ev

el
2 Font 1: 8x8 0.551 0.533 0.569

Font 2: 8x8 0.742 0.734 0.750
Font 3: 12x8 0.754 0.750 0.758
Baseline 0.776 0.756 0.797

L
ev

el
1 Font 1: 8x8 0.751 0.739 0.763

Font 2: 8x8 0.931 0.943 0.918
Font 3: 12x8 0.972 0.985 0.959

A. Strengths and Limitations of HVE

In addition to demonstrating its power, we also set out to

find the limitations of HVE, to clearly delineate its proper

domain of applicability. The following experiments were de-

signed to illustrate why and how HVE can fail to yield an

accurate segmentation. Understanding its performance in these

cases will allow us to understand what kinds of problems it

should not be used to solve. Table II illustrates the translation

applied to the dataset for each of these experiments. The results

show that HVE had poor performance in experiments 2 and 3,

but was successful on experiment 4 (see Table III).

TABLE II
TRANSLATIONS FROM THE ORIGINAL TEXT TO HIERARCHICAL

SEQUENCES FOR EXPERIMENTS 2-4.

Letter i t w a s

Morse Code 0 0 1 0 1 1 0 1 0 0 0

ASCII Octal 1 5 1 1 6 4 1 6 7 1 4 1 1 6 3

Random Octal 0 6 4 6 1 2 6 0 5 1 1 6 0 3 3

Experiment 2: We translated each character in the text

into its Morse code representation. We represented the Morse

code with a sequence of bits - 0 corresponded to “dit” and 1

corresponded to “dah.” Then we ran a two-level HVE on the

data to attempt to segment the Morse code into letters, and

then the letters into words.

Experiment 3: We translated each character in the text into

its standard ASCII octal representation. So each character was

translated into 3 digits ranging from 0 to 7. We then ran a two-

level HVE on the translated data.

Experiment 4: We generated a mapping from each letter to

a random three digit octal number. We used this mapping to

translate the base text by replacing each character in it with

its corresponding three digits. We then ran two-level HVE on

this data to segment the letters and then the words.

TABLE III
EXPERIMENT 2-4: THE RESULTS FOR EACH EXPERIMENT ARE SHOWN FOR

THE FIRST AND SECOND LEVEL OF SEGMENTATION. THE BASELINE IS

INCLUDED FOR COMPARISON.

Dataset F-measure Accuracy Hit Rate

L
ev

el
2 Morse Code 0.100 0.107 0.095

ASCII Octal 0.028 0.030 0.027
Random Octal 0.743 0.768 0.719
Baseline 0.776 0.756 0.797

L
ev

el
1 Morse Code 0.397 0.444 0.358

ASCII Octal 0.254 0.261 0.247
Random Octal 0.944 0.978 0.913

B. Phoneme Segmentation

One of the main questions we aim to eventually answer

is whether an algorithm like HVE can be used to chunk in

more complex domains like audio speech. Accordingly, text

segmentation may not be fully representative of the power of

the model. Text is not a naturally occurring sequence. It is

an encoding of a naturally occurring sequence - spoken lan-

guage. The encoding might obscure the information theoretic

signatures in the same way Morse code or ASCII octal might.

At the very least we shouldn’t expect any care to be taken

to preserve them. Therefore, it should be at least as easy to

segment sequences of phonemes into words as it is to segment

sequences of text. This is not true in practice because of the

difficulty of dealing with audio data. However, we designed an

experiment to test this hypothesis without dealing with audio.

Experiment 5: We used the CMU Pronouncing Dictionary

to translate each word in our dataset into its phonemic repre-

sentation. The CMU Dictionary uses a text base representation

of 39 phonemes to represent over 125,000 words. We looked

up the phonemic representation of each word in our dataset

and replaced it with the corresponding phonemes. For instance,

the opening phrase of Orwell’s 1984 “It was a bright cold day

in April,” became “ih1 t * w aa1 z * ah0 * b r ay1 t * k

ow1 l d * d ey1 * ah0 n * ey1 p r ah0 l” (delimiters added

for clarity). A few words in the dataset were not present in

the dictionary, including some of the proper names and some

words invented by George Orwell. These were omitted from

the translated text. We then ran one-level HVE on the translated

data. Table IV summarizes the results which are analyzed in

the next section.

TABLE IV
PHONEME RESULTS: NOTE THAT THE SEGMENTATION OF PHONEMES TO

WORDS IS SLIGHTLY BETTER THAN THE BASELINE SEGMENTATION OF

TEXT TO WORDS.

Dataset F-measure Accuracy Hit Rate

Phonemes 0.807 0.808 0.806

Baseline 0.776 0.756 0.797

VI. DISCUSSION OF HVE

It is clear that HVE is able to perform higher order seg-

mentation of hierarchically structured data, given that the

data exhibits the necessary information theoretic markers. In

experiment 1 (font conversion) the first order segmentation

f-measure increased as the complexity of the font increased.

In particular, it performed very well on fonts 2 and 3. As ex-

pected, the second order segmentation approached the baseline

in both of these cases. The first order segmentation for font 1

was not as good, and as a result the second order segmentation

was worse. However, even though the level 1 segmentation was

only 74% accurate, the f-measure for level 2 was still .551.

This indicates that the algorithm it at least partially robust to

segmentation noise between levels. And we can see with font

2 that, once the level 1 segmentation accuracy reaches roughly

90%, the level 2 segmentation is very close to the baseline. It

seems that the algorithm can compensate for a small amount

of segmentation error in the lower level.

In experiments 2 and 3 (Morse code and ASCII), HVE

had considerably poor performance and was unable to find

the letter boundaries at the lowest level of segmentation.

Naturally, the second level segmentation was also very poor.

It is important to understand why this happened in order to

understand the limitations of this model.

In experiment 2 there was too much ambiguity in the

sequence. Every binary string of length less than 5 has a

meaning in Morse code. Given a sequence of dits and dahs,

it is simply indeterminate where the breaks should go. In

practice, Morse code is not sent in one continuous stream.

The sender places short pauses between each letter, and longer

pauses between each word. Thus the receiver does not have

to perform a segmentation task, but only a translation. Our

algorithm was not given these breaks, but was asked to induce

them. However, as stated, virtually any segmentation of the

Morse code would have induced legal letters. In HVE’s terms,

this means that the internal entropy of the true subsequences

is no lower than the internal entropy of false subsequences

of roughly the same length. HVE relies on the assumption

that most combinations of symbols of a given length are not

a proper chunk, and are in fact random noise. Non-chunks

should have high internal entropy - they should be uncommon.

The true subsequences should occupy only a small subset of

the total space of possible subsequences. But in this case all

sequences of the appropriate length could have been a chunk.

The “low internal entropy” marker was not present, so the

algorithm was unable to segment the sequence.

In experiment 3 the ASCII octal subsequences did, in

fact, have low internal entropy compared with the false

subsequences. Only 26 of the possible 512 three digit octal

numbers are used to map lowercase letters. So most three digit

combinations had very high entropy (appeared infrequently)

compared to the ones associated with characters. However,

the octal representation of the ASCII character set for English

lowercase letters ranges from 141 to 172. Every number starts

with a 1. This means that at the end of each three digit

number in the translated text, it is always certain which digit

is coming next. It will be the leading “1” from the next

letter’s representation. This means that the boundary entropy

at the end of each octal number is 0. The “high boundary

entropy” marker was not present, so the algorithm was unable

to segment the sequence.

In experiment 4 an octal representation was still used for

each character, except the mapping was generated randomly

instead of being taken from the ASCII table. The internal

entropy of the correct subsequences was just as low as in

experiment 3, but the boundary entropy was much higher.

Randomly distributing the character representations through

the domain disambiguated them. Accordingly, HVE was able

to segment the lower level with a high accuracy and hit

rate. And since that segmentation was accurate, the second

order segmentation’s performance approached the baseline

segmentation of the original text (see Table III).

In experiment 5 the segmentation of the phonemes is

slightly better than the baseline segmentation of the original

text. This is and encouraging result, which seems to indicate

that it might be possible to segment audio speech using our

model. However, it is impossible to determine from this exper-

iment whether the information theoretic signatures of chunks

are more pronounced in audio speech than in written text. Our

translation from text to phonemes ignores interactions between

words, and is therefore not an entirely complete model. All

we can say for sure at this time is that HVE segments single

word phonemic representations more accurately than text. It

is an interesting open question whether this will hold true for

audio speech.

VII. HVE-3E

In addition to extending VE to work on hierarchical data, we

devised a mechanism to use higher order model information to

increase segmentation accuracy at the lower level. To do this

we ran standard HVE on a given sequence to obtain a sequence

of chunks. Then we built the second order model (ngram trie)

using those chunks. Finally, we re-ran the algorithm on the

original sequence with the addition of a third voting expert.

We call this modification of the algorithm HVE-3E, where 3E

stands for 3 voting experts.

The third voting expert uses the higher order model to help

split the lower order sequence. For each position of the sliding

window, it checks whether any subsequence starting at the

beginning of the window matches one or more chunks known

to the higher order model. If so, it votes to place a break

after the most common of those subsequences (see Figure 4).

If no match is found, it does not vote. After the third expert

has added its votes to those of the first and second experts,

the sequence is split based on the cumulative votes. When

inducing the split, it is necessary to raise the threshhold t by

one to accomodate the additional votes. This process can be

repeated at each level of the hierarchy. So, when using the

third voting expert, segmentation must be done twice at each

level - once to build a temporary second order model for use

by the third expert, and a second time to produce the final

segmentation.

3rd Expert

Model

 i t w a s a b r i g

“was”

Vote

3rd Expert

Model

 i t w a s a b r i

no match
(no vote)

match:

Fig. 4. An illustration of the third voting expert. Given a sliding window,
it tries to find a sequence that its model recognizes, starting at the beginning
of the window. If it doesn’t, it does not vote. If it does, it votes to place a
break after that sequence. This vote is combined with those from the other
two experts.

The rationale behind the third voting expert is that, after

building a higher order model, the most common tokens in

that model will correspond to true common segments in the

lower level sequence. So the third expert can recognize se-

quences that commonly become chunks, and vote to reinforce

them. This reinforcement improves the overall segmentation

accuracy.

Experiment 6: To test the third voting expert we re-ran

experiments 1 and 4 with the additional expert added. We used

the third expert to increase segmentation accuracy on both the

first and second level of the hierarchy. Table V demonstrates

the improvement at both levels.

TABLE V
EXPERIMENT 6: HVE-3E. COMPARE WITH TABLE I AND TABLE III. THE

% CHANGE OF THE F-MEASURE IS INCLUDED FOR COMPARISON.

Dataset F-measure Accuracy Hit Rate
Result % Change

L
ev

el
2 Font 1: 8x8 0.642 +16.5% 0.614 0.672

Font 2: 8x8 0.772 +4.0% 0.771 0.773
Font 3: 12x8 0.768 +1.9% 0.756 0.781
Random Octal 0.775 +4.3% 0.776 0.781

L
ev

el
1 Font 1: 8x8 0.806 +7.3% 0.795 0.817

Font 2: 8x8 0.959 +3.0% 0.999 0.921
Font 3: 12x8 0.974 +0.2% 0.989 0.959
Random Octal 0.972 +3.0% 0.992 0.959

A. Discussion of HVE-3E

Experiment 6 clearly shows the improvements gained from

the addition of the third voting expert. They are small, but

present at each level of segmentation, and for each data

set. This shows that it is possible to improve lower level

segmentation by using information from higher order models.

Additionally, the improvement is more substantial on the more

difficult data sets. It seems that there is more to gain from

reinforcing common chunks on difficult sequences.

More generally we would expect the higher order model to

be able to help bootstrap the lower level in many ways. HVE-

3E is a very simple implementation of this idea, in that it only

finds exact matches inside the current window. It is expected

that more sophisticated methods of propagating information

back down the hierarchy could improve segmentation even

more.

Cheng and Mitzenmacher have described a more sophis-

ticated third expert which improved segmentation accuracy

slightly more than ours [17]. Their algorithm, however, was

not hierarchical, and was much more complex than our third

expert. Additionally, both experts are compatible, i.e., they

could be used simultaneously to increase accuracy even fur-

ther. In any case, we already see improvements at each level

of the hierarchy with simple chunk matching, demonstrating

that information from higher order models can be put to good

use increasing the segmentation accuracy at lower levels.

VIII. CONCLUSIONS AND FUTURE WORK

We have described a natural extension of the Voting Experts

(VE) algorithm [7], called Hierarchical Voting Experts (HVE),

which segments hierarchically structured sequences. We have

shown that HVE can successfully perform hierarchical seg-

mentation on a variety of datasets. Also, we have demonstrated

that HVE is sensitive to information theoretic features of the

dataset. Specifically it requires that the information theoretic

signatures of chunks be present and unobscured. We have

also demonstrated a technique for improving the segmentation

accuracy by making use of higher order models, and shown

that it is effective at each level of the hierarchy.

It seems that many of the domains in which we would like

to be able to apply this kind of algorithm naturally exhibit the

signatures of chunks. Therefore, the possible applications of

the HVE chunking model are numerous. We intend to explore

its applicability to audio speech in particular. But there is no

reason to stop there. A general method for the segmentation

of any kind of sensory data based on internal and boundary

entropy would presumably be a powerful and fascinating

model. We are nowhere close to such an algorithm, but we

are interested in its feasibility and possible applications. In

any case, the VE model has continually proven itself powerful,

and it deserves further study.

ACKNOWLEDGMENTS

We would like to acknowledge Paul Cohen and Wesley

Kerr from the University of Southern California for generously

sending us the source code for the original VE algorithm, and

Paul Cohen for his helpful comments about our algorithm.

REFERENCES

[1] G. Miller, “The magical number seven, plus or minus two: Some limits
on our capacity for processing information,” Psychological Review,
vol. 63, pp. 81–97, 1956.

[2] J. Saffran, R. Aslin, and E. Newport, “Statistical learning by 8-month-
old infants,” Science, vol. 274, no. 5294, pp. 1926–1928, 1996.

[3] J. Fiser and R. Aslin, “Encoding multielement scenes: statistical learning
of visual feature hierarchies.” J Exp Psychol Gen, vol. 134, no. 4, pp.
521–537, November 2005.

[4] ——, “Statistical learning of higher-order temporal structure from visual
shape sequences,” Journal of Experimental Psychology, 2002.

[5] J. Saffran, E. Johnson, R. Aslin, and E. Newport, “Statistical learning
of tone sequences by human infants and adults,” Cognition, 1999.

[6] J. Fiser and R. Aslin, “Unsupervised statistical learning of higher-order
spatial structures from visual scenes,” Psychological Science, 2001.

[7] P. Cohen, N. Adams, and B. Heeringa, “Voting experts: An unsupervised
algorithm for segmenting sequences,” Intelligent Data Analysis, 2007.

[8] M. Brent, “An efficient, probabilistically sound algorithm for segmen-
tation and word discovery,” Machine Learning, 1999.

[9] M. Creutz, “Unsupervised segmentation of words using prior distribu-
tions of morph length and frequency,” in Proceedings of the 41st Annual

Meeting on Associ. for Computational Linguistics, 2003, pp. 280–287.
[10] M. Hafer and S. F. Weiss, “Word segmentation by letter successor

varieties,” Information Storage and Retrieval, vol. 10, no. 11-12, pp.
371–385, 1974.

[11] A. Kempe, “Experiments in unsupervised entropy-based corpus segmen-
tation,” 1999.

[12] D. Magerman and M. Marcus, “Parsing a natural language using mutual
information statistics,” in National Conference on Artificial Intelligence,
1990, pp. 984–989.

[13] D. Swingley, “Statistical clustering and the contents of the infant
vocabulary,” Cognitive Psychology, 2005.

[14] S. Goldwater, T. Griffiths, and M. Johnson, “Contextual dependencies
in unsupervised word segmentation,” in Proceedings of the 21st Inter-

national Conference on Computational Linguistics and the 44th annual

meeting of the ACL, Morristown, NJ, 2006, pp. 673–680.
[15] C. Nevill-Manning and I. Witten, “Identifying hierarchical structure in

sequences: A linear-time algorithm,” 1997.
[16] C. Shannon, “Prediction and the entropy of printed english,” Bell System

Technical Journal, Tech. Rep., 1951.
[17] J. Cheng and M. Mitzenmacher, “The markov expert for finding episodes

in time series,” in Proceedings of the Data Compression Conference,
2005, pp. 454–454.

