
Learning to Detect the Functional Components of Doorbell Buttons
Using Active Exploration and Multimodal Correlation

Vladimir Sukhoy and Alexander Stoytchev

Abstract— This paper describes a large-scale experimental
study, in which a humanoid robot learned to press and detect
doorbell buttons autonomously. The models for action selection
and visual detection were grounded in the robot’s sensorimotor
experience and learned without human intervention. Exper-
iments were performed with seven doorbell buttons, which
provided auditory feedback when pressed. The robot learned
to predict the locations of the functional components of each
button accurately. The trained visual model was also able to
detect the functional components of novel buttons.

I. INTRODUCTION

Buttons are everywhere around us. There are buttons
in every room, in every car, and in every elevator. These
simple 1-dof devices are the method of choice for controlling
the state of many mechanisms and systems. The average
human interacts with dozens of buttons every day without
even noticing. By necessity, robots that operate in human-
inhabited environments will have to learn how to use buttons.
Otherwise, they will not be very useful.

Pressing buttons is still challenging for robots for two
reasons. First, buttons are designed for humans, not for
robots. Their shapes and sizes are optimized for human
fingers. Buttons that are pressable by humans may not be
pressable by robots (e.g., because they are too small for
robotic fingers). Furthermore, seemingly small differences
in finger morphology can lead to significantly different use
patterns. For example, some plastic buttons may be too
slippery for robotic fingers made of brushed aluminum,
forcing the robot to use approach trajectories that rely on
the external button housing in order to perform the push.
Second, different buttons produce different feedback when
their state changes. Some buttons click, others light up, still
others provide auditory feedback when pressed. This large
variety of buttons makes it impossible to write one program
that all robots can use in order to press all possible buttons.

The goal of this work is to develop a framework and
a visual model for detecting the functional components of
buttons that can be trained from experience. The experiments
were performed with seven doorbell buttons that provide
auditory feedback when pressed, but the framework can be
applied to other buttons as well. For each button the robot
performed a large number of oscillatory pushing movements
in the vicinity of the button and recorded the auditory, pro-
prioceptive, and visual events that occurred. A visual model
was learned, which from the resulting dataset predicted the
locations of the functional parts of buttons, i.e., the parts that

Developmental Robotics Laboratory, Iowa State University, 3128 Coover
Hall, Ames, IA 50011-3060, USA. {sukhoy, alexs}@iastate.edu

Fig. 1. All experiments were performed with the upper-torso humanoid
robot, shown here in front of the buttons.

actually produced sound when pressed. The model was able
to generalize to novel buttons.

As the robot explores buttons it keeps track of the location
of its fingertip when the buzzer goes off. The spatial density
of the auditory events in the robot’s visual space is used to
train a classifier that maps image patches from visual space to
their likelihood of triggering the buzzer. This classifier serves
as the robot’s model of what the functional component of a
button looks like. The model was able to detect the functional
components of both familiar and novel buttons.

Finally, the visual model is capable of monitoring its own
learning progress in order to estimate the amount of training
experience that is required. Specifically, the robot is able
to estimate when the predictions of its visual model stop
changing. For most buttons this condition is reached after
50-100 trials, which allows our method to learn in real time.

II. RELATED WORK

A. Robotics

The related work on button pushing in robotics can be
divided into three main categories as described below.

1) Pressing buttons is easy, but detecting them is hard.
This category assumes that the physical act of pressing a
button is trivial and focuses on the problem of visually
detecting the button, which is presumed to be more difficult.
The feedback from the button (e.g., click, light, sound) is not
commonly used to detect it. In fact, this feedback is typically
ignored. Work in this category has focused on detecting
elevator buttons [1] [2] [3]. In some of these studies [2] [3],
the detection of elevator buttons was improved using the fact
that they are often arranged in a grid.

2) Both pressing and detecting buttons is hard. The second
category assumes that both detecting and pressing buttons,
switches, and other small widgets designed for humans is still
too difficult for robots. Therefore, they choose to make these
widgets more visible and manipulable by attaching tags to
them (e.g., reflective markers or RFID tags) [4]. For a button,
this tag carries information about how and where a robot can
press it and what would be the result of this action. The main
focus of this research is on robotic applications in the home
that are enabled by these augmentations [5].

3) Button pressing as a social learning task. This category
has focused on social learning strategies for teaching a robot
to press buttons. It was demonstrated that a robot can learn to
press a button using human social cues as feedback [6]. The
main focus, however, was on interpreting and learning from
human social cues and not on the physical task of pressing
a button.

Our work differs from previous approaches in the follow-
ing ways: 1) We treat both the detection task and the pressing
task as challenging; 2) The visual model for detecting a
button is constructed incrementally from the multimodal
events produced by the button (i.e., we don’t ignore the
feedback that the button generates when it is pressed); 3)
Our approach does not rely on a human to tell the robot
how and where to press the button.

Because of the different embodiments of the human and
the robot, it is not always possible to tell a robot how to press
a button. Therefore, the robot learns its own representation
by actively exploring the button and detecting the multimodal
events resulting from this interaction. As the robot gathers
training data it learns a visual model to detect the button. The
model’s generalization properties improve with additional
experience and it can be used to detect novel buttons.

The strategies that the robot used to explore the buttons
were formulated in the information-theoretic paradigm of
active learning [7] [8] [9]. Active learning has been used
successfully for grasping tasks [10] [11] [12] [13]. The
exploration strategies are analyzed in more detail in [14],
which is based on the same dataset. The focus of this paper is
on combining active learning with an ability to generalize the
experience obtained from it. The experience is generalized
across different modalities: it is obtained primarily using
proprioception and audio, but the generalization occurs in
the visual domain.

B. Developmental Psychology

In psychology, E.J. Gibson [15] analyzed a large body of
research on exploration and knowledge acquisition and con-
cluded that, for a human infant, “observations made possible
via both exploratory and performatory actions provide the
material for his knowledge of the world – a knowledge that
does not cease expanding, whose end (if there is an end) is
understanding.”

Others have also noted that the experience that infants
obtain while exploring objects stimulates their further interest
in these objects [16]. 7-11 months old infants are not inter-
ested in seeing objects, or people who manipulate objects,

(a) (b)
Fig. 2. The experimental setup: (a) the robot exploring button number 4;
(b) The back side of the experimental fixture.

until the infants have had the chance to play with these
objects [16]. Only after playing with the objects the infants
became interested in observing how people manipulate these
objects [16]. There is also evidence that human infants
can anticipate events that occur during manipulation. In
particular, infants as young as 9 months old can predict that
an interesting sound will be heard or a bright light will be
seen when an experimenter presses a colored button [17].

III. EXPERIMENTAL SETUP
A. Robot

The button pushing experiments were performed with the
upper-torso humanoid robot shown in Fig. 1. The robot used
in the experiments had two Barrett Whole Arm Manipulators
(WAMs) as arms with two Barrett BH8-262 Hands as end
effectors. A color marker was attached to the fingertip of
finger F3 on the left hand – the hand used to press the buttons
– in order to simplify its visual tracking.
B. Experimental Fixture with Doorbell Buttons

Seven different doorbell buttons were mounted on a
wooden fixture as shown in Fig. 2. The middle segment of
the fixture could slide horizontally, which allowed different
buttons to be placed in front of the robot without moving
the fixture or the robot. This was necessary for the proper
collection and analysis of such a large-scale dataset. The
button currently explored by the robot was connected to a
buzzer, which produced loud auditory feedback.
C. Experimental Trials

The robot explored the buttons with 3 different explo-
ration strategies: random, stimulus-driven, and uncertainty-
driven (see Section IV-A). For each strategy, the robot per-
formed 200 trials. In addition, an evaluation set of 400 trials
was collected for each button, which was used to evaluate
the performance of the three strategies. The evaluation set
was collected using the random strategy, but the data was
used only for testing and not for training. To summarize, for
each of the 7 buttons the robot performed 3× 200 + 400 =
1000 trials, for a total of 7×1000 = 7000 trials. Each trial
consisted of 5 pushing behaviors (see Fig. 3), which resulted
in a dataset with 35,000 pushing behaviors.

Time in seconds

A
ud

io
V

id
eo

?

Start of trial

?

Random start point

?

Push 1 (no buzzer)

?

Push 2 (buzzer)

?

Push 3 (buzzer)

?

Push 4 (buzzer)

?

Push 5 (no buzzer)

Fig. 3. A sample trial performed by the robot. Video frames for each of the five pushing behaviors are matched to the corresponding sound spectrogram.
The robot’s field of view is larger than the images shown here, which were cropped to show only the area around the button.

The starting position for each push was the end position
of the previous push. The end point of the push was selected
based on the learning strategy that was used. To randomize
the starting position of each trial, the robot started with a
random push that was not counted toward the 5 pushes in
the trial. Each trial lasted for approximately 18-20 seconds
(the setup time was 3–5 seconds and each of the 5 pushing
behaviors took ∼3 seconds).

All 1000 trials with each button were performed sequen-
tially without interruptions. It took about 6 hours of explo-
ration to collect all the data for one button (3 exploration
strategies plus evaluation set). The total time for collecting
the dataset with 7 buttons was about 7×6 = 42 hours.

This large dataset was necessary to properly analyze the
effects of more experience on the generalization abilities of
the robot under the three exploration strategies. As described
below, the robot learned to press and detect even the most
challenging buttons in far fewer trials.

D. Behavioral Parametrization

Each trial was started from a fixed reference arm position,
for which the robot’s finger was above a button. At the start
of each trial, the robot pushed the area around the button
at random. This push randomized the start position of the
exploration and did not count towards it, even if it happened
to trigger the buzzer. Then the robot performed 5 exploratory
pushing behaviors in the area around the button. The start
position for each of these behaviors was the end position of
the previous push. The end position was determined using
the current exploration strategy. From the start position, the
robot backed up its arm halfway towards the fixed reference
position without reaching it and then pushed towards the end
position. At the end of the trial the robot returned its arm
completely to the reference position and started the next trial.

A vector x ∈ R6, which was a concatenation of two
unit vectors x(b),x(p) ∈ R3 in the robot’s Cartesian space,
parameterized each pushing behavior. x(b) was the direction
of the backup movement towards the fixed arm reference
position. x(p) was the direction of the following push. To
provide equal weights for both backward and forward move-
ments, which constitute a pushing behavior, both x(b) and
x(p) are movement directions rather than exact positions.
The parameters for the pushing behaviors were sampled
uniformly in joint space, which resulted in non-uniform
sampling in Cartesian and visual space. Even though the

reference arm position was the same for all behaviors, the
parametrization, and the resulting movement, was different
for behaviors with different start and stop positions on the
surface of the experimental fixture.

To summarize, the behaviors in each trial resulted in oscil-
latory finger movements around the button. Infants perform
repetitive movements when they learn similar tasks [18].

E. Sensory Data

The robot recorded sensory data using 3 modalities: video,
audio, and proprioception. Video was recorded at 10 fps and
640×480 pixels per frame from the Logitech QuickCam Pro
4000 webcam in the robot’s left eye. Audio was recorded at
44.1 KHz (16-bit stereo) from the Audio-Technica U853AW
Hanging Microphone mounted in the robot’s head. Joint an-
gles and joint torques for each of the 7 joints of the left WAM
arm were recorded at 500 Hz. Audio and proprioception
were processed in real time to detect events and to train the
predictive models used by the 3 exploration strategies (see
Section IV-A). The data from all modalities was timestamped
and stored to disk for additional analysis.

Proprioceptive events were detected when the magnitude
of the torque for any of the 7 joints exceeded a predefined
threshold. These events were recorded when the robot’s
finger was “stuck” and could not move any further (e.g.,
because it was pressing hard against the wall or the button).
Whenever a proprioceptive event was detected, the robot
interrupted the current movement and started the next one.

Auditory events were recorded when the robot heard the
buzzer. The detection was achieved in two steps. First,
candidate regions were extracted from the audio stream when
the volume exceeded a predefined threshold. Regions shorter
than 0.03 seconds were not analyzed. Longer candidate
regions were truncated after 0.1 seconds. If the buzzer was
heard more than once during a pushing behavior then only
the first instance was recorded. Second, the Discrete Fourier
Transform was applied to each candidate region to get its
spectrogram (with 257 frequency bins and a Hamming win-
dow of 512 samples overlapped at 50%). A 20-bin frequency
component histogram was calculated from the spectrogram
and its bin values were used as input features for a cascade of
two classifiers (Naive Bayes and K∗ [19]), which made the
final decision. The cascade structure was determined from
a similar dataset [20], in which candidate regions with and
without the buzzer sound were labeled manually.

IV. METHODOLOGY

A. Exploration Strategies
Three different exploration strategies were evaluated: ran-

dom, stimulus-driven, and uncertainty-driven. Each strategy
used a different predictive model M to choose the next
pushing behavior from a set of N = 25 random candidates,
generated from scratch every time. From these random
candidates, the current strategy selected one, which was then
performed by the robot. The strategies differed in the specific
rule that they used to select the winning behavior from the set
of random candidates, given the current state of the model.

More formally, as the robot explored a button, it recorded
tuples (bi,oi) where bi ∈R6 were the behavioral parameters
and oi ∈ {buzzer,no buzzer} was the observed outcome.
These tuples constituted experience that the robot obtained
from exploration. The predictive model M was trained using
this experience to estimate the conditional probability Pr(o|b)
of an outcome o given the candidate behavior b. The three
strategies were formulated as follows.

1) Random Strategy: always selected the first behavior
from the 25 random candidates, i.e., j = 1. This strategy
did not use a predictive model and the resulting exploration
was random.

2) Stimulus-Driven Strategy: selected the behavior that
was most likely to produce the buzzer outcome among the
N candidates according to the predictive model M. More
formally, the behavior j parametrized by x j ∈ {x1, . . . ,xN}
was chosen such that:

j = argmax
i=1,...,N

Pr(buzzer|xi).

3) Uncertainty-Driven Strategy: selected the behavior for
which the predictive model M was most uncertain about its
outcome. For each of the N = 25 candidate behaviors, the
entropy of the conditional distribution of its outcomes quan-
tified the uncertainty. More formally, this strategy selected
behavior j parametrized as x j ∈ {x1, . . .xN} such that

j = argmax
i=1,...,N

∑
o∈O
−Pr(o|xi) log(Pr(o|xi)).

The choice of a mechanism for a predictive model M
was motivated by the need to update it incrementally as
the robot collected more experience. The results of a pilot
study [20] showed that the k-NN classifier performed well
for a similar task. The k-NN classifier is data-driven and
the computational cost of updates as more training instances
become available is low. In this study we set k = 5 (an
odd k is useful to avoid tied votes), i.e., the classifier
estimated Pr(o|x) from the outcome distribution of the 5
nearest neighbors of x in the robot’s experience. For example,
if 4 out of 5 of these neighbors had buzzer outcomes, the
estimate for Pr(buzzer|x) was 4/5.

B. Spatial Distributions of Auditory Events

As the robot explored a button, it recorded the visual
location of its fingertip every time it heard the buzzer.
Fig. 6(e) shows the resulting 2D point clouds for the

Fig. 4. Snapshots from the dataset showing different ways in which the
robot was able to ring the doorbell buttons. Note that the red marker on the
robot’s fingertip does not necessarily have to overlap with the functional
component of the button.

uncertainty-driven strategy. The point clouds for the test set
are shown in Fig. 6(b). The apparent scattering of the points
is due to the fact that the robot can press a button with
parts of its finger other than its fingertip, which was the only
thing that was tracked. Fig. 4 shows several examples of the
robot successfully pressing a button even though the visual
position of its fingertip does not coincide with the functional
component of the button.

The point clouds offer a good way to visualize the posi-
tions of the auditory events in camera coordinates. A better
way to visualize this data, however, is to compute the density
of the auditory events, shown in Fig. 6(c) and 6(f). These
densities were estimated using k-NN with k = 5, which is a
standard technique [21]. The density of the auditory events
contains information that can be used by the robot to decide
where a button should be pressed. Furthermore, as described
below, the density can be used to learn a visual model of
what a button looks like.
C. Visual Features

As the robot explored a button, it attempted to simultane-
ously build a visual model that could detect the functionally
meaningful part of the button (i.e., the part that produces au-
ditory feedback when pressed). The robot extracted features
from the color image using the feature detector described in
[22]. These features have been used successfully by a robot
to detect grasp points in novel objects, which was one reason
why they were selected for this task.

The features aim to extract texture, edge, and low-
frequency color information from the original RGB image,
which is converted to YCbCr before further processing.
Texture is extracted from the Y image, which is convolved
with nine 3×3 Laws’ masks. Edge information is extracted
also from the Y image by convolving it with six 5×5 edge
filters. Finally, low-frequency color information is obtained
from the Cb and Cr images, which are convolved with the first
Laws’ mask. Fig. 5 shows this procedure, which results in 17
images. These images are squared before the next operations
are performed on them to extract the features.

The original image is then partitioned into 10× 10 pixel
patches and a 459-dimensional feature vector is computed for

Y

∗ =
Nine 3×3 Laws’ masks

Extract texture information

Extract edge information

Extract low-frequency color information

Y

∗ =
{ }

Six 5×5 edge filters

CB

CR

∗ ={ }
First Laws’ mask

∗ =
{ }

First Laws’ mask

Fig. 5. Illustration of the convolution step that is used by the feature
detector. The RGB image is converted to YCbCr and the three channels
are convolved with different convolution masks. The resulting 17 images
are used to compute the features. For the purposes of visualization, the
convolution results were clamped at the 1st and the 99th percentile.

each patch as follows. For a patch p, the first 17 components
of the feature vector are calculated by summing up the 100
pixel values of the corresponding 10× 10 pixel patches in
the 17 convolved images. This procedure is repeated for the
24 neighbors of p in a 5× 5 patch window centered at p.
This results in another 24× 17 features (computed from a
50×50 pixel window in the original image).

Two extra spatial scales that capture more global properties
of the image are included in the feature vector as well.
For the first scale, the original 640× 480 RGB image is
zoomed out by 3x. This results in a 214×160 pixel image,
which is convolved with the 17 convolution masks shown
in Fig. 5. For the patch of interest, p, in the original image,
corresponding patches of size roughly equal to 10×10 pixels
are identified in the 17 convolved images for the zoomed
out image. Their pixel values are summed up to produce
17 features. The same procedure is repeated for the second
spatial scale, which uses a zoom out factor of 9x. For more
details, see [22] and the corresponding source code.

To summarize, the number of features computed for every
10×10 pixel patch in the original image is:(

1
patch

+ 24
neighbors

+ 2
scales

)
× 17

convolutions
= 459

features
.

D. Learning a Visual Model for a Button

The visual model was implemented as a Logistic
Regression-based classifier [23] that mapped visual features
to a binary class variable [22]. In other words, given a
10× 10 pixel patch and its corresponding 459-dimensional
feature vector, the classifier predicted whether the patch
belonged to a functional component or not. The classifier
model was learned only from training instances grounded in
the robot’s own experience with the buttons. Feature vectors
for training the model were computed only for the image
patches explored by the robot. For the purposes of training,
a patch was marked as belonging to a functional component
if the average spatial density of auditory events for this

patch was greater than µ + 3σ (where the mean, µ , and
the standard deviation, σ , were computed using all explored
patches for a given button). Otherwise, the patch was marked
as not belonging to a functional component.

While it is easy to specify what is a button, it is much
harder to specify what is not a button. Because the robot
recorded only images of buttons during the exploration
process, training the classifier required negative examples
in order to improve its generalization performance. These
additional negative examples were provided from synthetic
images, in which the pixels were filled with uniform random
noise. This is based on the assumption that pixels filled with
uniform random noise cannot represent anything meaningful
in the robot’s environment.

V. RESULTS
A. Performance Measures

The performance was measured on the task of predicting
whether a given 10×10 pixel patch in the image of the button
belongs to a functional component for this button or not. The
visual model described in Section IV-D was used to generate
these predictions given the visual features calculated for this
patch. The predictions were compared to the ground truth
for these patches, which was obtained using the data from
the evaluation set.

The typical size of the exploration region for a single
button in visual space was 110× 120 pixels, or 11× 12
patches. In contrast, the functional component of a typical
button occupies less than 10 patches. A naive strategy can
mark all 132 patches as containing no functional compo-
nents, achieving accuracy of about 92.4%. Even though the
accuracy is high, the predictions are useless. Thus, raw
accuracy is an inadequate performance measure in this case.
A better measure is the Cohen’s kappa statistic [24], which
takes the probability of chance agreement into account:

κ =
Pr(a)−Pr(e)

1−Pr(e)
,

where Pr(a) is the probability of a correct prediction by the
model and Pr(e) is the probability of a correct prediction
by chance. In our example, Pr(a) = 122

132 and Pr(e) = Pr(a),
so κ = 0. Now, suppose that there were 6 true positives,
1 false positive, 4 false negatives, and 121 true negatives.
Then Pr(a) = 127

132 , Pr(e) = 10
132 ·

7
132 + 122

132 ·
125
132 ≈ 0.879, and

κ ≈ 0.686, which is a more useful performance measure.
Fig. 7(a) shows the raw accuracy for all three explo-

ration strategies (averaged over all 7 buttons). For reasons
described above, the accuracy is very high even with little
training. The corresponding values for the kappa statistic are
shown in Fig. 7(b). Fig. 6(h) shows the kappa values for
individual buttons. The robot’s learning performance is very
good (results with κ ≥ 0.8 are considered very strong). For
further discussion on different kappa-like measures and their
characteristics the reader is referred to [25].

B. Evaluating the Visual Model

To evaluate the visual model we obtained “ground truth”
measurements for all buttons. This was done by collecting a

gB
ut

to
ns

.g
1 2 3 4 5 6 7

(a) The seven doorbell buttons explored by the robot.

(b) Auditory events localized in visual space. Each point corresponds to the location of the robot’s finger when the buzzer went off.

LO

HI

(c) Densities for the auditory events in visual space shown in (b), estimated using k-NN with k = 5.

T e
st

in
g

se
t

us
ed

fo
r

ev
al

ua
tio

n
(4

00
ra

nd
om

tr
ia

ls
).

(d) “Ground truth” about the visual positions of the functional components extracted by thresholding the densities shown in (c).

(e) Auditory events localized in visual space. Each point corresponds to the location of the robot’s finger when the buzzer went off.

LO

HI

(f) Densities for the auditory events in visual space shown in (e), estimated using k-NN with k = 5.

(g) Functional components for each button learned after 200 trials performed with the uncertainty-driven strategy.

T r
ai

ni
ng

se
t

co
lle

ct
ed

us
in

g
20

0
tr

ia
ls

of
th

e
un

ce
rt

ai
nt

y-
dr

iv
en

st
ra

te
gy

.

0 50 100 150 200

0

20

40

60

80

100

0 50 100 150 200

0

20

40

60

80

100

0 50 100 150 200

0

20

40

60

80

100

0 50 100 150 200

0

20

40

60

80

100

0 50 100 150 200

0

20

40

60

80

100

0 50 100 150 200
0

20

40

60

80

100

0 50 100 150 200

0

20

40

60

80

100

(h) Two measures of learning progress. The predictions after 200 trials are shown in (g). The “ground truth” is shown in (d).
The kappa statistic(blue line, %) and the normalized smoothed rate of change(red line, %) are shown as functions of the number of trials.

Fig. 6. Summary of the experimental results for a familiar button. See text for more details.

0 50 100 150 200
0

10

20

30

40

50

60

70

80

90

100

Trials

R
a

w
 a

c
c

u
ra

c
y

 (
%

)

Random

Stimulus−Driven

Uncertainty−Driven

(a) Raw accuracy

0 50 100 150 200
0

10

20

30

40

50

60

70

80

90

100

Trials

K
a

p
p

a
 s

ta
ti

s
ti

c
 (

%
)

Random

Stimulus−Driven

Uncertainty−Driven

(b) Kappa statistic
Fig. 7. Results for predicting whether a 10×10 pixel patch in an image
belongs to the functional component of a familiar button as a function of
the number of trials (average over all 7 buttons).

test set of 400 trials, each with 5 random pushing behaviors.
The locations of the auditory events in visual space for the
test set are shown in Fig. 6(b). The density of these events
in visual space is shown in Fig. 6(c). The densities were
estimated from the points shown in Fig. 6(b) using k-NN
with k = 5. The densities were then thresholded as described
in Section IV-D and the high-density image patches were
labeled as belonging to a functional component. Figure 6(d)
shows these 10×10 image patches highlighted in green.

The performance of each exploration strategy was quanti-
fied by comparing its classifier model predictions against the
“ground truth.” Figure 6(g) shows the final predictions after
200 trials with the uncertainty-driven strategy for a familiar
button. The auditory events and their densities are shown in
Fig. 6(e) and Fig. 6(f). The kappa statistic and the normalized
rate of change are shown in Fig. 6(h). For each button, the
best performance with this strategy is obtained in 50-100
trials. The final predictions after 200 trials match the ground
truth very well (κ ≈ 0.8 or above). This can be confirmed
by visually comparing Fig. 6(d) and Fig. 6(g).

Figure 7 shows the median performance of the visual
models when tested on familiar buttons as a function of
the number of trials (the plots are averaged over all seven
buttons). Both active learning strategies outperform the ran-
dom strategy. The uncertainty-driven strategy is the fastest
learning strategy. As more learning trials are performed, the
performance of all strategies improves while the distinctions
between them become less pronounced. This is to be ex-
pected, because when more and more data becomes available
their visual models become very similar (they are based on
the same logistic regression classifier).

The visual models were also tested on images of novel
buttons. To do this the models were trained on 6 buttons and
tested on the remaining one. Figure 8 shows the prediction
results for button number 7 after 5, 20 and 50 training
trials with the uncertainty-driven strategy. For comparison,
the predictions in the familiar condition are shown as well.
As the robot gains more experience its visual model zooms
in on the functionally meaningful part of the button. The
results for the other two exploration strategies were similar.

Finally, we tested the visual model trained with the data
for all 7 explored buttons on completely novel pictures of
the buttons. Fig. 9 shows that the robot was able to identify

Fa
m

ili
ar

N
ov

el

5 trials 20 trials 50 trials
Fig. 8. Predictions for the visual locations of functional components after
different amounts of training using the uncertainty-driven strategy. For the
novel button, predictions are made using the data collected with each of the
remaining 6 buttons over 5, 20, and 50 trials.

the buttons in these pictures. There are a few false positives,
which can be attributed to the limited amount of experience.
In particular, the negative examples used to train the model
were not sufficient to eliminate all false positives.

C. When to Stop Exploring?

This section describes how the robot can estimate its own
learning progress and decide when to stop exploring a given
button. One possible solution is to stop exploring when the
predictions of the robot’s visual model stop changing. To
quantify this approach, the rate of change of the predictions
was computed. More formally, the rate of change is the
square root of the number of 10×10 pixel patches for which
the class labels changed from one trial to the next. The class
labels were computed by thresholding the density of auditory
events in visual space (see Section IV-D).

The results for the seven explored buttons are shown in
Fig. 6(h). The rate of change curves were smoothed using
a running average filter over a window of 20 trials. As
the learning performance measured by the kappa statistic
increases the rate of change decreases. Unlike the kappa
statistic, however, the rate of change can be computed by
the robot without the “ground truth” (see Fig. 6(d)). Thus,
it can be used as a criterion for deciding when to stop the
exploration process. The robot can stop exploring a button
when the rate of change is zero or close to zero. For most
buttons this condition is true after 100 trials (see Fig. 6(h)).

VI. CONCLUSIONS AND FUTURE WORK

This paper described a framework that a robot can use to
learn both how and where to press buttons. The framework
was tested on doorbell buttons, which provide auditory feed-
back, but it can easily be applied to other types of buttons.
The representations learned by the robot were grounded in
its own experience with the buttons. Unlike previous work,
our approach did not require humans to label buttons in the
robot’s perceptual world in order for it to solve this task.

To detect the functional components, the robot learned
a visual model from the spatial and temporal correlations
between auditory events and visual percepts. The model

Fig. 9. After the visual model was trained with all 7 buttons, the robot was tested with images of the experimental fixture that it had never seen before.

was tested on the tasks of predicting the functional com-
ponents of: 1) familiar buttons, and 2) novel buttons. For
familiar buttons, the performance was close to perfect. For
novel buttons, the model was still able to find a decent
approximation based on the experience obtained with other
buttons. For both novel and familiar buttons, the performance
improved as the robot obtained more experience. In a way,
the trained visual model acted like an affordance detector as
it was able to label patches in as “pushable there”.

The visual model can also be used by the robot to decide
when to stop exploring a button. The rate of change in
the predictions of the model can serve as a measure of
learning progress. The robot can stop the exploration when
the predictions of the model stop changing. In other words,
the can could stop when pressing the button any further
would not help improve the visual model for detecting it.

In general, we found that the button pressing task is neither
too easy nor too difficult. Our robot learned to press buttons
in 50-100 trials. The visual model for what a button looks
like was also learned (and converged) in 50-100 trials. It
performed well for both familiar and novel buttons.

Future work can add feedback from touch sensors to the
framework, which already supports audio and video. The
next generation BarrettHand (BH8-280), which has 96 tactile
sensors, should make this a feasible option for our robot.
Another possibility is to include the physical resistance of a
button as one of its properties. Currently we are exploring
whether the resistance of a button during its small travel
distance (1- 2mm) can be detected reliably by the WAM.

At present, the exploration strategies do not take into
account the predictions of the visual model. The framework
can be extended to incorporate the patch-based representation
into the selection of the next pushing behavior.

The mechanism for detecting events in the current frame-
work is engineered for very specific types of auditory
and proprioceptive events: the buzzer sound and high joint
torques. The events are mapped to vision using the color
tracking of a marker on the robotic fingertip. Future work
can replace these mechanisms with more general models
for detecting, categorizing, and matching events in different
modalities with the robot’s actions.

Finally, the framework can be extended to handle other
small widgets, including: light switches, elevator buttons,
sliders, and levers. One possible challenge task for a robot
would be to learn how to manipulate the widgets on a novel
instrument panel.

REFERENCES

[1] J. Miura, K. Iwase, and Y. Shirai, “Interactive teaching of a mobile
robot,” in Proc. of ICRA, 2005, pp. 3378–3383.

[2] K.-T. Song and T.-Z. Wu, “Visual servo control of a mobile manipula-
tor using one-dimensional windows,” in Proc. of Industrial Electronics
Society, vol. 2, 1999, pp. 686–691.

[3] E. Klingbeil, B. Carpenter, O. Russakovsky, and A. Ng, “Autonomous
operation of novel elevators for robot navigation,” in Proc. of ICRA,
2010, pp. 751–758.

[4] R. Katsuki et al., “Handling of objects with marks by a robot,” in
Proc. of IROS, vol. 1, 27-31 2003, pp. 130 – 135.

[5] H. Nguyen, T. Deyle, M. Reynolds, and C. Kemp, “PPS-tags: Physical,
Perceptual and Semantic tags for autonomous mobile manipulation,”
in Proc. of the IROS Workshop on Semantic Perception for Mobile
Manipulation, 2009.

[6] A. Thomaz, “Socially guided machine learning,” Ph.D. dissertation,
Massachusetts Institute of Technology, 2006.

[7] A. Baranes and P.-Y. Oudeyer, “R-IAC: Robust intrinsically motivated
active learning,” in Proc. of ICDL, 2009.

[8] A. Barto, “Intrinsically motivated learning of hierarchical collections
of skills,” in Proc. of ICDL, 2004, pp. 112–119.

[9] F. Kaplan and P.-Y. Oudeyer, “Motivational principles for visual know-
how development,” in Proc. of the 3rd Intl. Workshop on Epigenetic
Robotics, no. 101. Lund Univ. Cognitive Studies, 2003, pp. 73–80.

[10] M. Salganicoff, L. Ungar, and R. Bajcsy, “Active learning for vision-
based robot grasping,” Machine Learning, vol. 23, no. 2-3, pp. 251–
278, 1996.

[11] L. Montesano and M. Lopes, “Learning grasping affordances from
local visual descriptors,” in Proc. of ICDL. Los Alamitos, CA, USA:
IEEE Computer Society, 2009, pp. 1–6.

[12] A. Morales and E. Chinellato, “Active learning for robot manipula-
tion,” in Proc. of the European Conference on AI, 2004, pp. 905–909.

[13] O. Kroemer, R. Detry, J. Piater, and J. Peters, “Active learning using
mean shift optimization for robot grasping,” in Proceedings of IROS,
2009, pp. 2610–2615.

[14] V. Sukhoy, J. Sinapov, L. Wu, and A. Stoytchev, “Learning to press
doorbell buttons,” in Proc. of ICDL, 2010, pp. 132–139.

[15] E. Gibson, “Exploratory behavior in the development of perceiving,
acting, and the acquiring of knowledge,” Annual review of psychology,
vol. 39, no. 1, pp. 1–42, 1988.

[16] P. Hauf, G. Aschersleben, and W. Prinz, “Baby do-baby see!: How
action production influences action perception in infants,” Cognitive
Development, vol. 22, no. 1, pp. 16 – 32, 2007.

[17] P. Hauf and G. Aschersleben, “Action-effect anticipation in infant
action control,” Psych. Research, vol. 72, no. 2, pp. 203–210, 2008.

[18] J. Piaget, The origins of intelligence in children. Intl. Univ. P., 1952.
[19] J. Cleary and L. Trigg, “K∗: An instance-based learner using an

entropic distance measure,” in Proc. of ICML, 1995, pp. 108–114.
[20] L. Wu, V. Sukhoy, and A. Stoytchev, “Toward learning to press

doorbell buttons,” in Proc. of AAAI, 2010, pp. 1965–1966.
[21] R. Duda, P. Hart, and D. Stork, Pattern classification, 2nd ed. Wiley,

2001.
[22] A. Saxena, J. Driemeyer, and A. Y. Ng, “Robotic grasping of novel

objects using vision,” The International Journal of Robotics Research,
vol. 27, no. 2, pp. 157–173, 2008.

[23] S. le Cessie and J. van Houwelingen, “Ridge estimators in logistic
regression,” Journal of the Royal Statistical Society. Series C (Applied
Statistics), vol. 41, no. 1, pp. 191–201, 1992.

[24] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and Psychological Measurement, vol. 20, no. 1, pp. 37–46, April 1960.

[25] K. Gwet, Handbook of Inter-Rater Reliability, 2nd ed. Advanced
Analytics, 2010.

