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Abstract

There is a long standing hypoth-
esis in Developmental Psychology
that children use statistical infor-
mation to segment acoustic speech
streams into words. Additionally,
several experiments have demon-
strated that infants are able to
find word breaks using distribu-
tional cues. In this paper we pro-
pose an algorithm for the unsuper-
vised segmentation of audio speech,
based on the Voting Experts (VE)
algorithm. We show that this al-
gorithm can reproduce results ob-
tained from segmentation experi-
ments performed with 8-month-old
infants.

1. Introduction

Spoken human language contains no analogue to
the spaces placed between written words. The
pauses that do exist in audio speech appear between
phrases, when the speaker takes a breath, or when
the airflow is stopped in the pronunciation of cer-
tain consonants. The sounds that are separated by
these pauses are rarely composed of a single word,
and there are no universal markers to indicate where
those single words might be (Klatt, 1979). However,
when we hear our native language, we hear discrete
words. We unconsciously break the stream into its
constituents, rendering it comprehensible. This is
possible because we know the language, and are fa-
miliar with the large lexicon of words we might ex-
pect to hear. When confronted with a novel word,
we need only segment the words before and after it
to identify it as a brand new token.

Infants, however, do not share this luxury. They
must learn to segment their mother’s tongue from
scratch. Every word is a novel word, and their lex-
icon starts off empty. Fortunately, human beings
have an apparently innate ability to use statistical in-
formation to segment continuous spoken speech into

words, and that ability is present in infants as young
as 8 months old. Apparently, they can perform this
task without any feedback or other salient cues as
to the locations of word breaks (Saffran et al., 1996)
(Saffran et al., 1999).

An accurate characterization of this ability would
presumably be theoretically and practically advan-
tageous. Along those lines, this paper proposes a
method for the unsupervised segmentation of spo-
ken speech, based on an algorithm designed to seg-
ment discrete time series into meaningful episodes.
We suggest that our model may capture part of the
human process of speech segmentation. To substan-
tiate our claim, we replicate an experiment that was
performed on 8-month-old infants, and show that our
algorithm performs similarly to the children.

2. Related Work

There are two main fields that are related to this
topic. The first is the study of the speech segmenta-
tion methods that are used by infants. This consti-
tutes a very broad area of research, with many sub-
fields. This work is most related to the study of sta-
tistical learning in developmental psychology, which
focuses on infants’ ability to use statistical cues to
segment language streams. These studies are the di-
rect inspiration for this line of research, but they
suggest no practical algorithm for replicating the re-
sults they have observed. The second related field of
research pertains to algorithms for the segmentation
of time series data. These studies suffer from the op-
posite problem. That is, there are many strategies
by which to segment data, but not many that serve
as a plausible model of infant segmentation.

2.1 Statistical Learning

The idea that infants use statistical cues to segment
speech streams is very old (Harris, 1955). Specifi-
cally, the canonical theory is that they use the transi-
tional probabilities between syllables as an indicator
of word boundaries. Suppose that α and β are sylla-
bles in some language. Then the transitional prob-
ability TP (α → β) is the probability that β follows



α when α appears in the speech stream. It stands
to reason that syllables that appear together inside
of a word would have a higher transitional probabil-
ity than those that do not. Therefore, the argument
goes, the transitional probabilities between syllables
inside of words should be high, but the TP between
syllables that cross a word boundary should be low.
Hence, a child might easily segment a sequence of
syllables by noting whenever the transitional proba-
bility dips down low.

This is precisely the strategy suggested in
a series of experiments performed by Saffran
et. al. (Saffran et al., 1996) (Saffran et al., 1997)
(Saffran et al., 1999). The first of these experiments
demonstrated that 8-month-old infants can, in fact,
segment words based solely on statistical informa-
tion. The children were played an artificially gener-
ated acoustic stream composed of the words tupiro,
golabu, bidaku and padoti repeated in random order.
After two minutes they were played a second stream
consisting of a single word repeated over and over.
Half of the time the word was from the original lan-
guage, and the other half of the time it was a novel
word, generated from the same syllables. The stimu-
lus streams had no audible breaks between the words,
no variation in pitch or meter, and no other cues as to
the word breaks. The only clue was the transitional
probability between the syllables. Inside of words it
was always 100%, but between words it dropped to
25%. The stimulus stream was constructed specif-
ically to be segmentable by the TP strategy. And
the amazing result was that, after only two minutes,
the infants were able to tell the novel words from the
old.

The results of these experiments were taken as ev-
idence that human infants really do pay attention
to the transitional probabilities between syllables,
and that they use them to segment audio speech.
However, that’s not really what these experiments
showed. They showed that infants can segment au-
dio speech using some kind of statistical model, and
that it is powerful enough to work on the stimulus
stream they were presented. Dips in inter-syllable
transition probability were the simplest cue that they
could have used to segment the sequence, but virtu-
ally any sophisticated model should have picked up
this very simple pattern. And there is significant ev-
idence to suggest that infants, in fact, are not using
TP s to do this.

Most dramatically, multiple studies have showed
that the direct application of the TP strategy
performs poorly when used to segment phonetic
transcripts of speech (Cairns and Shillcock, 1997)
(Gambell and Yang, 2008). This exposes several of
the weaknesses of the traditional statistical learning
approach. First of all, a very high percentage of com-
mon words contain only one syllable. It is therefore

impossible for there to be a TP valley on both sides
of the word. Moreover, the original conclusion that
word-internal transitions should have higher proba-
bilities than word-external ones is not always true in
practice. Often, the last syllable of one word and the
first syllable of the next happen to form a perfectly
common pair. Similarly, many words contain sylla-
ble combinations that are, in general, rare (perhaps
only appearing in a handful of words). The difference
in single-syllable TP inside of and between words is
more of a trend than a reliable rule.

2.2 Segmentation Algorithms

Most of the algorithms mentioned in this section are
used to segment discrete token sequences (i.e., they
segment text - or text based phonemic transcripts of
speech). This paper describes an algorithm that runs
on real audio, and is able to perform the unsuper-
vised segmentation of individual words from acoustic
speech streams. So, in some sense, we are compar-
ing apples and oranges. However, this previous work
is certainly related, since it is also inspired by de-
velopmental psychology, and intends to accomplish
roughly the same task.

There exist a wide variety of algorithms capable
of segmenting discrete time series into meaningful
“chunks.” For instance, compression algorithms that
find minimum description lengths can often be co-
erced into segmentation by using whatever encoding
they perform (Nevill-Manning and Witten, 1997)
(Cohen et al., 2007). Several studies have attempted
to train Neural Nets to predict the subsequent
phoneme given the last few, and induce breaks
whenever the prediction is uncertain (Elman, 1990)
(Cairns and Shillcock, 1997). Gambell and Yang
suggested a method of segmenting speech by as-
suming that every word contains a single stressed
syllable (Gambell and Yang, 2008). They reported
very good results on the CHILDES dataset, tran-
scribed to phonemes and then concatenated into syl-
lables. Michael Brent published a thorough sur-
vey of many different strategies for attacking this
problem (Brent, 1999b). In fact, his own algorithm
has set the bar for the unsupervised segmentation
of phonemic transcripts of infant directed speech
(Brent, 1999a). It incrementally builds a lexicon
and induces maximum likelihood parses in short
phrases. Using this strategy, Brent was able to seg-
ment phonemic transcripts of child directed speech
with precision and recall above 80%. This remains
the best performing algorithm on this type of data.

However, Brent’s algorithm pays no attention to
statistical regularities in phoneme sequences, and
typically builds very large lexicons with many wrong
words. For instance, this algorithm would be inca-
pable of segmenting the stimulus streams used in the
statistical learning experiments, since they contained



no phrase boundaries. This demonstrates that, while
some kind of bootstrapping, lexicon-based segmenta-
tion method might be useful, it does not completely
model the human system. Perhaps infants use a sim-
ilar process as part of their strategy, but they are also
sensitive to statistical cues.

Recently the ACORNS project has been cre-
ated to investigate human language acquisition
(Boves et al., 2007). This research is unique, in that
it attempts to learn the grounded meaning of words
in an unsupervised way. However, the automatic seg-
mentation of speech into words is a secondary goal
to the extraction of semantic meaning. These two
strategies are certainly complimentary, and children
must perform both of these tasks in order to acquire
language. In this paper, we do not address word
learning, but instead focus entirely on unsupervised
segmentation. Our goal is to introduce a unique un-
supervised method for segmenting continuous data
streams, to apply the method to speech, and suggest
that such a model might characterize the statistical
segmentation abilities of human infants.

2.3 Voting Experts

Voting Experts (VE) is an algorithm for the unsuper-
vised segmentation of discrete time series into mean-
ingful episodes (Cohen et al., 2007). It is a purely
distributional algorithm, in that it relies solely on
statistics calculated from the time series itself. VE
has demonstrated an ability to accurately segment
text, phonetic transcripts, vertical pixel columns
scanned from text, discrete robot sensor data and
even a text transcript of the acoustic streams
used in this paper (Miller and Stoytchev, 2008a)
(Cohen et al., 2007). It’s based on the hypothesis
that natural breaks in a sequence are usually ac-
companied by two information theoretic signatures.
These are low internal entropy of chunks, and high
boundary entropy between chunks.

In this context, the internal entropy of a chunk is
simply its Shannon information, or the negative log
of its probability (Shannon, 1951). So the higher the
probability of a chunk, the lower its internal entropy.
We can calculate the probability of a short sequence
of tokens by observing how often that sequence ap-
pears in a longer time series. So, essentially, this
marker picks out short sequences of tokens that ap-
pear often.

Boundary entropy is the uncertainty at the bound-
ary of a chunk. Given a sequence of tokens, the
boundary entropy is the expected information gain
of being told the next token in the time series. This
is calculated as

HB(c) = −∑m
h=1 P (h | c)log(P (h | c))

where c is this given sequence of tokens, P (h | c)
is the conditional probability of symbol h following

c, and m is the number of tokens in the alphabet.
Well formed chunks are groups of tokens that are
found together in many different circumstances, so
they are somewhat unrelated to the surrounding el-
ements. If the boundary entropy of a subsequence is
high it means that there is no particular token that
is very likely to follow that subsequence. In other
words, the next token is unpredictable.

In order to segment a discrete time series, VE pre-
processes the series to build an n-gram trie, which
represents all its subsequences of length less than or
equal to n. It then passes a sliding window of length
n over the series. At each window location, two “ex-
perts” use the trie to vote on how they would break
the contents of the window. One expert votes to min-
imize the internal entropy of the induced chunks, and
the other votes to maximize the entropy at the break.
After all the votes have been cast, the sequence is
broken at the “peaks” - locations that received more
votes than their neighbors, so long as the total votes
at the location exceeded a threshold Vt. For all of
our experiments we chose n = 7, and we varied Vt

over a range of values. The effect of this variation
will be discussed later, and evident in the results of
our experiments. The choice of n roughly approxi-
mates the expected length of an individual “chunk.”
This algorithm runs in linear time with respect to the
length of the sequence, and can therefore be used to
segment very long sequences. For further technical
details of VE, or a more in-depth discussion of the
roles of Vt and n, see (Cohen et al., 2007).

This model bears a strong resemblance to the sta-
tistical learning approach mentioned before. If the
conditional probability between each syllable within
a word is high, then by definition the internal en-
tropy of the word is low. But instead of evaluating
each transitional probability in isolation, VE looks
for short sequences of tokens where all of the TP s
are high. Similarly, the boundary entropy of a se-
quence is high precisely when there is no particular
token that is very likely to come next. However,
instead of focusing on the transition probability be-
tween two syllables that happened to be adjacent,
VE looks at whether the TP is expected to be low.
This is an important difference, and it solves one of
the major problems with the transitional probability
approach. When the last syllable of one word and
the first syllable of the next happen to form a likely
pair, the TP based approach fails. But VE isn’t af-
fected when the TP at the word boundary is high,
as long as the next token is unpredictable based on
several previous tokens. This extra power is afforded
by the use of the more sophisticated entropy metrics.
Moreover, the model should still be extremely sen-
sitive to the transitional probability cues, since the
entropy cues must be present wherever the TP cues
are.



In this paper we extend VE to work on audio data.
We then use this algorithm to reproduce Saffran et
al.’s original experiments. VE might not be the best
possible unsupervised distributional segmentation al-
gorithm, but it is certainly a powerful one. Addi-
tionally, the complexity of its metrics seems close
to the horizon of biological plausibility. It is not
unrealistic to think that humans naturally pick out
commonly recurring sequences of sounds, and tend
to place breaks at moments of unpredictability. Ac-
cordingly, we suggest that VE is a strong candidate
for a usable model of the human distributional seg-
mentation mechanism.

3. Datasets

We obtained two stimulus streams from the
original infant speech segmentation experiments
(Saffran et al., 1996). Each audio stream is about
60 seconds long and contains roughly 90 “words.”
The first stream (stream A) was composed, as de-
scribed above, of randomly ordered instances of the
four words tupiro, golabu, bidaku and padoti. The
second stream (stream B) was composed of random
instances of the words tilado, dapiku, pagotu and
burobi. The second language is composed of the same
syllables as the first, but arranged so that the con-
catenation of words in either language cannot pro-
duce a word from the other. So in some sense these
two audio streams are disjoint.

In the original experiment, the infants were played
a stream created in the same way as stream A, and
then tested on a single word repeated over and over.
This method is useful when evaluating infants be-
cause it is simple. However, we can perform a more
thorough evaluation of our model since it produces
explicit break locations. We found it more informa-
tive to test our model by training it on one stimulus
stream and then testing it on the other. This pro-
vides more information on the performance of the
model, but the results can clearly be compared to
those of the infant experiments.

In order to evaluate the segmentations induced by
our algorithm, we manually recorded the timestamps
of all of the word boundaries in the two stimulus
streams. It is impossible for this process to be ab-
solutely precise, since spoken audio is not actually
composed of distinct phonemes, and word breaks are
not always marked by silence. The sound morphs
from one allophone to the next, providing few clear
boundaries. However, the speech in the streams used
by Saffran et al. is very regular, which allowed us
to consistently place breaks at the same location in
each word. The waveform in between each word pair
was identical every time it appeared, since it was
generated artificially. The beginning and ending of
each word was verified acoustically once, and then
the boundaries could be placed in exactly the same

location for each instance of each word. The result-
ing “answer keys” were therefore consistent, and as
close to the ground truth as possible.

4. Audio Segmentation Algorithm

The raw audio of both stimulus streams was
converted into a sequence of Mel-cepstral fea-
ture vectors, along with their first and sec-
ond order time derivatives and their log energy
(Davis and Mermelstein, 1980). The standard 13
cepstral features were used, so that each time slice of
the audio was represented by a 42-dimensional real
valued feature vector. That’s 13 cepstral features, 13
first order and 13 second order time derivatives, and
the log energy of each. This is a standard method of
feature extraction for speech processing, and it was
performed using the Matlab package “Voicebox.”

Since VE is designed to work on a sequence of to-
kens, these feature vectors must be quantized into a
manageable alphabet. A common technique in au-
tomatic speech recognition is to use Hidden Markov
Models with continuous observation densities to rec-
ognize phonemes (Rabiner, 1990). We will draw in-
spiration from these models, however we cannot ap-
ply the techniques exactly. In the infant experi-
ments the children learned to segment novel language
streams in a completely unsupervised way. There-
fore, any model of this process must also be entirely
unsupervised. These HMMs are typically trained on
labeled data, disqualifying them as plausible mod-
els. Specifically, a separate Markov chain is typically
trained to represent each phoneme in the language.
The models are built using a large set of hand-labeled
instances of each phoneme, and then their param-
eters are improved by bootstrapping over a large
audio corpus. Instead, we will suggest an unsuper-
vised model that can convert an audio stream into
a state sequence suitable for segmentation, but one
that does not necessarily correspond to the phoneme
sequence as a human would label it.

4.1 Unsupervised Acoustic Model

The critical observation is that we don’t necessar-
ily need a sequence that corresponds to the true
phonemes of the language. All that’s needed is a
model that decomposes an audio stream into a se-
quence of its most salient acoustic features. These
may or may not correspond to the “phonemes” as a
human might label them. But that is irrelevant, at
least as far as VE is concerned.

Just such a model was suggested by
(Iwahashi, 2006), and implemented by
(Brandl et al., 2008). We used a version of that
model in this work. Each phoneme was represented
using a 3-node Markov chain with Bakis-topology,
with the observation probability density of each
state represented by a mixture of Gaussian functions



(Rabiner, 1990). In order to train these models
without labeled data, we first trained a completely
connected Markov network containing 10 Gaussian
mixture states on the acoustic stream. The param-
eters of the network were initialized using k-means,
and then optimized using EM, so no labeled data
was required. Then, we stochastically sampled
paths of length 3 through that network based on
the learned transition probabilities. The m most
common paths were used to initialize m 3-node
Markov chains. The last state of each chain was
connected to the first state of every other chain,
including itself, initialized with uniform transition
probability. The parameters of this larger Markov
model were then optimized over the corpus using
EM.

In one implementation, m was set using the Akaike
information criterion (Brandl et al., 2008). Instead
we used m = 10 to build the models used in this
paper. We varied this parameter, and found that
it did not have a strong effect on the performance of
the model on this task. The results of that evaluation
are not included for space considerations. However,
if this model were to be applied to a larger or more
complex dataset, such an evaluation would certainly
be necessary.

4.2 Segmentation

Given a model as described above and an acoustic
stream for segmentation, we converted the stream
into a state sequence using Viterbi decoding. The
state sequence was simplified by assuming that all
nodes from the same Markov chain were equiva-
lent. So instead of a sequence of nodes in the
HMM, the stream was represented as a sequence of
3-node Markov chain labels. However, this created
sequences with long stretches of the same label re-
peated over and over. These repeated labels were
collapsed into a single token. So the final token se-
quence represented the order in which these chains
were visited in the decoding of the stimulus stream,
with no information about how long the sound stayed
in the same chain. If the chains corresponded to the
phonemes of the language, as they do in more typical
acoustic models, the result would be a transcription
of the spoken phonemes of the stream. The idea
is that the unsupervised model approximates the
phoneme sequence, but perhaps extracts a slightly
different set of fundamental sounds.

We ran VE on the resulting label sequence. VE
placed breaks at locations of low internal entropy and
high boundary entropy. Then, after accounting for
the collapsed (i.e., repeated) states, it produced the
time stamps of all of the induced break locations in
each audio stream. These breaks were then checked
against the answer keys that had been manually cre-
ated for each stimulus stream (See Figure 1).

. . . 7  9  8  3  5  7  2  6  5  8. . .
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VE Breaks

bu pa do ti tu

Figure 1: Evaluation of the breaks induced by VE. Each

break is mapped to its location in the expanded state

sequence, which corresponds to a timestamp in the audio

stream. The break counts as correct if it falls within the

marked boundary between two words. The states are

represented by their numeric index in the Markov model.

5. Evaluation Methodology

In order for an induced break to count as a correct
break, it had to be placed between the specified end
of the previous word and the beginning of the next
one, within an error of one time slice. The feature
vectors that composed the audio stream were calcu-
lated using a window that was 0.016 seconds wide
with a 50% overlap. This means that the additional
time slice allowed at each boundary increased the
break window by 0.008 seconds. This leeway was
provided to compensate for labeling errors or other
boundary conditions.

An induced break was counted as breaking two
words if it was placed anywhere in the window be-
tween them. Both stimulus streams were 61.2 sec-
onds long. Stimulus stream A contained approxi-
mately 7.7 seconds of “break” time, and stream B
contained 7.2 seconds. The reason for the discrep-
ancy is that the different pronunciations of the first
and last syllables of the words in each stream led to
slightly different amounts of time between them. It
should be noted that these “breaks” are not perceiv-
able when listening to the stream, and are no longer
than the space between the phonemes within words.

Unfortunately these boundaries make it easier for
the algorithm to accidentally induce a break be-
tween two words. Thus, even random breaks will be
counted as correct some of the time. Accordingly, we
used a Monte Carlo method to simulate random seg-
mentations for each experiment. Each reported re-
sult is accompanied by the results of inducing a large
number of random segmentations, each one having
the same number of induced breaks as the algorithm
produced. The random breaks were induced in the
same compressed state sequence used by VE, and
were evaluated in the same manner. These random
trials are averaged and provide a baseline from which
to evaluate the algorithm.

The quality of the segmentation is evaluated based



on the accuracy, hit-rate and f-measure of the in-
duced breaks. In this case, accuracy is the percent-
age of induced breaks that are correct, hit-rate is the
percentage of true breaks found by the algorithm,
and the f-measure is the harmonic mean of the two,
given by

f-measure= 2∗accuracy∗hitrate
accuracy+hitrate

The f-measure is treated as most important, since
it strikes a balance between the other two. It’s pos-
sible to increase the accuracy of the segmentation
by inducing fewer breaks, but being more confident
about those that are induced. However, this will
lower the hit-rate. Similarly we can raise the hit-
rate by inducing more breaks, but this will lower the
accuracy. The Voting Experts algorithm lets us ex-
plicitly make this tradeoff by adjusting the threshold
Vt for the minimum number of votes required to in-
duce a break at a location. All three of these metrics
will be reported for each of our experiments. Addi-
tionally, the experiments will be repeated for a range
of thresholds Vt, and the sensitivity of these metrics
to variation in that threshold will be demonstrated.

6. Experimental Results

We have outlined a general, unsupervised algorithm
for the segmentation of an audio stream. First,
convert the stream into an appropriate sequence
of feature vectors - in our case the Mel-cepstrum.
Then train an unsupervised Gaussian Mixture HMM
(GMHMM) on the sequence as described above. Use
this model to produce a sequence of Markov chain la-
bels based on the audio stream. Finally, collapse the
repeated labels in this sequence and run VE on the
result.

This algorithm constitutes a very basic applica-
tion of the VE model to a real audio stream. The
first question is whether this can induce an accurate
segmentation. The second question is whether we
can use this system to model the human segmen-
tation mechanism. The following experiments were
designed to answer both of these questions.

Experiment 1: We ran the segmentation process
described above separately on each stimulus stream
(A and B). We then compared the induced breaks to
the true breaks for each stimulus stream. The results
are shown in Figure 2.

The segmentation induced on both audio streams
was significantly more accurate than chance. Clearly
this model is capable of segmenting the given stim-
ulus streams. These results are even more surpris-
ing when considering that these models were each
trained on only one minute of audio. Presumably in-
fants might be better equipped to perform this task
since they have the advantage of a previously trained
acoustic model. They do not have to learn it from
scratch in just one minute as we have done here. But
even with that limitation, VE performs very well.
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Figure 2: The F-measure, accuracy and hit-rate of the

segmentation of both stimulus streams in Experiment 1,

along with the performance of random segmentations on

both datasets.

It should be noted that the initialization of the
acoustic models is a stochastic process, and leads to
a unique model every time. The EM algorithm does
not necessarily find a global optimum for the model
parameters, but only a local maximum. Therefore,
the model should not be evaluated based on a sin-
gle instantiation, but rather based on several trials.
Accordingly, we trained 10 different acoustic models
on each of the two stimulus streams. All three ex-
periments were performed 10 different times with 10
different pairs of models. The results were averaged
to produce the results reported.

Additionally, the segmentation step, where VE
was run on the token sequence, was repeated for dif-
ferent threshold values ranging from 1 to 8 for each
experiment. Notice the tradeoff between accuracy
and hit-rate as Vt varies. The f-measure, accuracy
and hit-rate are reported both for the aggregate over
all 10 models, as well as for the random trials over
the same data. For each trial that was done with a
single model, 10 random trials were performed. So,
overall, 100 random trials were performed in each
experiment for each stimulus stream.

Experiment 2: The point of this experiment is to
demonstrate that an acoustic model trained on stim-
ulus stream A can still be used to segment the audio
from stream B, and vice versa. The two streams
are composed of the same set of syllables. The only
difference is the order in which the syllables are spo-
ken, which may produce some interaction effects that
the GMHMM cannot model. However, most of the
sounds are the same. So, for instance, the tokeniza-
tion of stream B by an acoustic model trained on
stream A should still be useful for inducing a seg-
mentation on B.
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Figure 3: The F-measure, accuracy and hit-rate of the

segmentation of both stimulus streams in Experiment 2.

Once again, the performance of random segmentation is

also shown.

To demonstrate this, we trained an acoustic
model on each stream to obtain GMHMMA and
GMHMMB . Then we used GMHMMA to tokenize
the feature vectors from stimulus stream B and
GMHMMB to tokenize stream A. Then we trained
a VE model on each of the token sequences and in-
duced a segmentation. Once again we used the true
breaks to evaluate the results (see Figure 3).

There is a slight drop in both the accuracy and hit
rate of each segmentation in this experiment. How-
ever, in each case the algorithm still performed much
better than chance. There is not a tremendous loss
due to the unmodeled interaction of the diphones in
the stimulus streams. This fact is important in un-
derstanding the results of experiment 3.

Experiment 3: This experiment is intended to
replicate the results of the infant studies. In those
experiments, the children listened to one stimulus
stream, and were then presented a novel token from
the second stream. Similarly, in this experiment, our
model is trained on one stimulus stream, and then
used to segment the other. That is, the GMHMM
and the statistical model of VE (the experts) are
trained on stream A, and then that model is used to
segment stream B and vice versa.

Figure 4 shows that the algorithm is almost com-
pletely unable to induce a segmentation. It performs
only slightly better than chance, and this is most
likely due to its ability to pick out syllables. From the
results of experiment 2 we can conclude that the poor
performance is not the fault of the acoustic model.
Instead, the language model trained on one language
is insufficient to induce a segmentation in another.

As the threshold increases, the algorithm induces
very few breaks. When Vt is higher than 5, almost
no breaks are induced (e.g., no breaks were induced
at all when Vt = 8). This explains why the accuracy

becomes erratic at higher threshold levels, and the
hit-rate drops very low. The random segmentations
only contained as many breaks as the algorithm in-
duced, so the random hit-rate drops as well. The fact
that not very many breaks were induced indicates
that the experts did not vote for the same break lo-
cations very often. They could not agree on suitable
breaking points, and therefore did not create many
breaks. Essentially, the algorithm was confused.
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Figure 4: The F-measure, accuracy and hit-rate of the

segmentation of both stimulus streams in Experiment 3,

along with the results of the random segmentation.

This corresponds precisely with the situation of
the 8-month-old who listens to stimulus stream A,
and then hears a novel word from stream B. The child
has learned the sounds present in the stream, and
has learned a statistical model that characterizes it.
Then, suddenly, that model is violated. The child is
initially unable to use the old model to “understand”
the novel word, and therefore becomes confused.

7. Conclusions and Future Work

We have described an unsupervised technique for
transforming spoken audio into a discrete sequence
of tokens suitable for segmentation by the Voting
Experts algorithm. This algorithm is novel in its ap-
plication to real audio, and its reliance on simple but
powerful information theoretic cues. We have shown
that the VE model is capable of inducing an accu-
rate segmentation on an audio stimulus stream with
very limited training data. Finally, we have shown
that the behavior of this model mimics the behavior
of 8-month-old infants. This should be counted as a
small victory for VE as a model of human segmen-
tation. It also demonstrates that distributional cues
can be used to segment audio streams. Specifically,
the low internal entropy and high boundary entropy
of chunks provide sufficient markers to do so.

The psychological studies that have explored in-
fant statistical learning have used stimulus streams



that could be segmented using transitional probabil-
ities. Infants can segment these simple streams, but
the full extent of their capabilities remains unknown.
VE can segment the same stimulus streams, and
therefore is not disqualified as a possible model of
the human distributional speech segmentation mech-
anism. If an algorithm can pass that test, it’s at least
a plausible candidate. However, this may be an eas-
ier task than children face with natural language.

It is simply unknown how important a role dis-
tributional segmentation really plays in the acquisi-
tion of language, and how sophisticated that mecha-
nism is. Presumably it is significantly useful, or else
children wouldn’t demonstrate this ability at such a
young age. Since some studies have shown that the
simple statistical learning approaches are not suffi-
cient to segment natural language, we should con-
clude that infants have a more sophisticated strategy.
VE has the advantage of being able to segment many
different kinds of speech, including natural language
phoneme sequences (Miller and Stoytchev, 2008a).
This makes it a much more attractive candidate for
modeling human segmentation, since the approaches
based on transitional probabilities have not done the
same. The next logical step is to use this model on
a natural language corpus to see how effective it can
really be.
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