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Abstract

This paper shows how a robot can detect its
self-image in a TV monitor and use the real-
time video to guide its own actions in order
to reach an object that can only be observed
through the TV image. The robot exploits
the temporal contingency between its motor
commands and the observed self-movements
in the TV monitor to extend its body schema
representation. The extended body schema
allows the robot to guide its arm movements
through the TV image as if it were observing
its own arm directly.

1. Introduction

Humans are capable of performing many behaviors
in which they receive visual feedback about their own
actions only through indirect means, e.g., through a
mirror reflection or a real-time video image. Some
examples include: driving a car in reverse using the
rear view mirrors, playing a video game using a
joystick to control a virtual character, and using a
computer mouse to position the mouse pointer on
a computer monitor. As robots continue to spread
to human-inhabited environments the ability to per-
form video-guided behaviors will become increas-
ingly more important. This problem, however, has
not been well addressed by the robotics community.

Some primates can also perform video-guided be-
haviors. For example, consider the task shown in
Figure 1 which is described by Iriki et al. (2001).
The hands of the monkey and the incentive object are
placed under an opaque panel such that they cannot
be observed directly. In order to reach and grasp the
incentive object the monkey must use the real-time
video feedback of its own movements captured by a
camera and projected on a TV monitor.

To solve this problem the monkey must solve at
least three sub-problems. First, it must realize that
the TV monitor displays a real-time video of its own
hands and not, say, a recording of the movements
of another monkey. Second, the monkey must figure
out the similarity transformation between the posi-
tion of its real arm (estimated from proprioceptive

Figure 1: The figure shows the experimental setup that

was used by Iriki et al. (2001). The setup consists of a

TV monitor that displays real-time images captured by

the camera. An opaque panel prevents the monkey from

observing the movements of its hands directly. Instead,

it must use the TV image to guide its reaching behaviors

in order to grasp the food item (a piece of apple). During

the initial training phase a transparent window located

close to the eye level of the monkey was left open so that

it can observe the movements of its hands directly as well

as in the TV monitor.

information as it cannot be seen directly) and the
image of the arm in the TV monitor. Finally, the
monkey must use the video image to guide its hand
toward the incentive object (usually a piece of apple).

This paper describes a computational framework
that was used successfully by a robot to solve the
three sub-problems described above and thus to
achieve video-guided behaviors. The robot solves
the first sub-problem by detecting the temporal con-
tingency between its own motor commands and the
observed self movements in the video image. As
the video image is projected in real time the vi-
sual self-movements detected in it occur after the ex-
pected proprioceptive-to-visual efferent-afferent de-
lay of the robot (a.k.a. the perfect contingency (Wat-
son, 1994)). The second sub-problem is solved by es-
timating the similarity transformation (translation,
rotation, and scale) between two sets of points. The
first set consists of the positions of specific locations
on the robot’s body (e.g., the wrist) which are esti-
mated from proprioceptive information as they can-



not be observed directly. The second set consists of
the observed positions of the same body locations in
the video. Once the similarity transformation is cal-
culated the robot can perform video-guided grasping
by modifying the representation which encodes its
own body, i.e., by extending its body schema.

As far as we know, this paper describes the first
example of video-guided behaviors in the robotics
and AI literature.

2. Related Work

2.1 Experiments with Animals

Menzel et al. (1985) reported for the first time
the abilities of chimpanzees to perform video-guided
reaching behaviors. The chimpanzees in their study
were also capable of detecting which of two TV moni-
tors shows their self image and which shows a record-
ing from a previous trial. They succeeded even when
the TV image was rotated by 180◦.

Experiments in which the visual feedback comes
from a mirror instead of a video image have also been
performed. Itakura (1987) reported that Japanese
monkeys can reach for targets that can only be ob-
served in the mirror image. Epstein et al. (1981)
trained pigeons to peck a spot on their body that
could be seen only in a mirror. After Gallup (1970)
discovered that chimpanzees can self-recognize in the
mirror there has been a flood of studies that have
used mirrors in primate experiments. These studies
are far too numerous to be summarized here. See
(Barth et al., 2004) for a comprehensive summary.

More recently, Iriki et al. (2001) have performed
reaching experiments with Japanese monkeys (see
Figure 1) while simultaneously recording the firing
patterns of neurons located in the intraparietal sul-
cus that are believed to encode the body schema of
these monkeys. Their results show that these neu-
rons, which fire when the monkey observes its hand
directly, can be trained to fire when the hand is ob-
served in the TV image as well. Furthermore, they
showed that the visual receptive fields of these neu-
rons shift, expand, and contract depending on the
position and magnification of the TV image. An im-
portant condition for learning these skills is that the
“monkey’s hand-movement had to be displayed on
the video monitor without any time delay [...] the
coincidence of the movement of the real hand and
the video-image of the hand seemed to be essential”
(Iriki et al., 2001, p. 166).

2.2 Related Work on Body Schemas

The notion of body schema was first suggested by
Head and Holmes (1911) who studied the perceptual
mechanisms that humans use to perceive their own
bodies. They define the body schema as a postural
model of the body and a model of the surface of the
body (Head and Holmes, 1911). It is a perceptual
model of the body formed by combining informa-

tion from proprioceptive, somatosensory, and visual
sensors. They suggested that the brain uses such a
model in order to register the location of sensations
on the body and to control body movements.

Indirect evidence for the existence of a body
schema comes from numerous clinical patients who
experience disorders in perceiving parts of their bod-
ies - often lacking sensations or feeling sensations in
the wrong place (Frederiks, 1969; Head and Holmes,
1911). One such phenomenon called phantom limb is
often reported by amputees who feel sensations and
even pain as if it were coming from their amputated
limb (Ramachandran and Blakeslee, 1998).

Direct evidence for the existence of a body schema

is provided by recent studies which have used brain
imaging techniques to identify the specialized regions
of the primate (and human) brain responsible for
encoding it (Berlucchi and Aglioti, 1997; Graziano
et al., 2000; Iriki et al., 1996, 2001). Other stud-
ies have shown that body movements are encoded in
terms of the body schema (Berthoz, 2000; Graziano
et al., 2002). This seems to be the case even for reflex
behaviors (Berthoz, 2000).

Perhaps the most interesting property of the body
schema is that it is not static but can be modified
and extended dynamically in very short periods of
time. Such extensions can be triggered by the use of
noncorporeal objects such as clothes, ornaments, and
tools (Iriki et al., 1996; Maravita and Iriki, 2004).
Thus, the body schema is not tied to anatomical
boundaries. Instead, the actual boundaries depend
on the intended use of the body parts and the ex-
ternal objects attached to the body. For example,
when people drive a car they get the feeling that
the boundary of the car is part of their own body
(Schultz, 2001) but when they get out of the car their
body schema goes back to normal.

2.3 Related Work in Robotics and AI

The robotics work on body schemas is still in its
infancy as only a few researchers have attempted to
tackle this subject.

Yoshikawa et al. (2002) formulated a fully con-
nected neural network model that identified the
common firing patterns between tactile, visual, and
proprioceptive sensors. Their model was capable
of making the right associations between sensory
modalities but lacked extensibility properties which
are necessary for video-guided behaviors.

Nabeshima et al. (2005, 2006) describe a method
for changing the properties of the robot’s controller
(which is based on inverse kinematics) to accommo-
date attached tools. The extension is triggered by
the coincidence in the firing of tactile sensors (at the
hand which is grasping the tool) and the diminish-
ing visual distance between the free end of the tool
and some visual landmark. Their extension method
requires direct physical contact and thus is also not



suitable for achieving video-guided behaviors.

This paper builds upon our previous work
(Stoytchev, 2003) which introduced a computational
model for an extendable robot body schema (RBS).
The model uses visual and proprioceptive informa-
tion to build a representation of the robot’s body.
The visual components of this representation are al-
lowed to extend beyond the boundaries of the robot’s
body. The proprioceptive representation, however,
remains fixed at all times and allows the robot to per-
form visually-guided movements even when its body
representation is extended.

In our previous study the extension of the RBS was
triggered by tactile sensations generated by objects
that are attached to the robot’s body, e.g., tools. The
novel extension mechanism described here is trig-
gered by the temporal contingency between the ac-
tions of the robot and the observed self-movements in
the video image. Thus, the extension mechanism no
longer requires direct physical contact as the TV im-
age can be arbitrary translated, rotated, and scaled
relative to the robot’s body.

3. Experimental Setup

The experimental setup for the robot experiments
(which are described below) is shown in Figure 2.
All experiments were performed using a CRS+ A251
manipulator arm. The robot has 5 degrees of free-
dom (waist roll, shoulder pitch, elbow pitch, wrist
pitch, wrist roll) plus a gripper. During the experi-
ments, however, the two roll joints were not allowed
to move away from their 0◦ positions, i.e., the robot’s
movements were restricted to the vertical plane.

The experimental setup uses 2 cameras. The first
camera (Sony EVI-D30) is the only camera through
which the robot receives its visual input. The second
camera (Sony Handycam DCR-HC40) was placed be-
tween the robot and the first camera such that it
can capture approximately 1
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of the working enve-

lope of the robot. The frames captured by the second
camera were displayed in real-time on a TV monitor
(Samsung LTN-406W 40-inch LCD Flat Panel TV).

Six color markers were placed on the robot’s body.
The positions of the markers were tracked using his-
togram matching in HSV color space implemented
with the openCV library. The same procedure was
applied to track the positions of the color markers in
the TV. Thus, after the color segmentation is per-
formed the robot sees only a point-light display of
the movements of different markers.

Through its camera the robot can observe both its
real arm as well as the image of its arm in the TV
monitor (see Figure 3.a). During some experiments
the robot was not allowed to see its own body. For
these experiments the left half of each frame captured
by the robot’s camera was digitally erased (zeroed)
before it was processed (see Figure 3.b).

Figure 2: Experimental setup for the robot experiments.

(a) (b)

Figure 3: a) View from the robot’s camera. b) During

some experiments the robot is not allowed to see its own

body (see text for details).

4. Self-Detection in the TV

This section describes how the robot can detect that
the movements in the TV image are generated by its
own motor commands (sub-problem 1 described in
Section 1.). This problem is related to the general
problems of self-detection and “self” versus “other”
discrimination.

The novel method for self-detection described here
makes the following assumptions. Let there be a set
of visual features F = {f1, f2, . . . , fk} that the robot
can detect and track over time. Some of these fea-
tures belong to the robot’s body. Other features be-
long to the external environment and the objects in
it. The robot can detect the positions of visual fea-
tures and detect whether or not they are moving at
any given point in time. The goal of the robot is to
classify the set of features, F , into either “self” or
“other.” In other words, the robot must split the set
of features into two subsets, Fself and Fother, such
that F = Fself ∪ Fother.

The self-detection problem described above is
solved by splitting it into two sub-problems: 1) esti-
mating the efferent-afferent delay of the robot; and
2) using the value of this delay, coupled with two
probabilistic estimates, to classify the features as ei-
ther “self” or “other.”

The robot can estimate its efferent-afferent delay
by measuring the elapsed time from the start of a
motor command to the start of a visual movement



for some feature fi (see Figure 4). A reliable esti-
mate can be computed by executing multiple motor
commands over and extended period of time.

Four different experiments lasting 45 minutes each
were performed to estimate the value of the delay
when the TV was not part of the scene. Figure 5
shows a histogram of the measured efferent-afferent
delays during the first experiment; the results for the
other three experiments are similar.

Figure 4: The efferent-afferent delay is defined as the

time between the start of a motor command (efferent

signal) and the start of visual movement (afferent signal).

This delay can be learned from self-observation data.
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Figure 5: Histogram of the measured efferent-afferent de-

lays for the robot during an experiment lasting 45 min.

The average delay value after the four experimets
was estimated at 1.035 seconds. Once the value
of the efferent-afferent delay is calculated the robot
can identify which features have movements that
are temporally contingent upon its own motor com-
mands. This also includes the features in the TV im-
age as they are displayed in real time. A movement
is considered to be temporally contingent if its start
occurs within ±25% of the average efferent-afferent
delay following a motor command.

Up to this point, our method for self-detection is
somewhat similar to the method described in (Michel
et al., 2004). Their method, however, performs self-
detection through movement detection at the pixel
level and thus cannot keep a permanent track of
which features belong to the robot’s body. Our
method performs the detection at the feature level
(body markers) and also maintains a probabilistic

estimate across all features. The other novel modifi-
cations are described below.

For each feature the robot maintains two inde-
pendent probabilistic estimates which jointly deter-
mine how likely it is for the feature to belong to
the robot’s body. The two probabilistic estimates
are the necessity index and the sufficiency index de-
scribed by Watson (1994). The necessity index mea-
sures whether the feature moves consistently after ev-
ery motor command. The sufficiency index measures
whether for every movement of the feature there is
a corresponding motor command that preceded it.
Figure 6 shows an example with three visual fea-
tures. The formulas for the necessity and sufficiency
indexes are given below.

Necessity = # of temporally contingent movements
# of motor commands

Sufficiency = # of temporally contingent movements
# of observed movements for this feature

Figure 6: The figure shows the calculated values of the

necessity (Ni) and sufficiency (Si) indexes for three vi-

sual features. After two motor commands feature 1 is

observed to move twice but only one of these movements

is contingent upon the robot’s motor commands. Thus,

feature 1 has a necessity N1 = 0.5 and a sufficiency in-

dex S1 = 0.5. The movements of feature 2 are contingent

upon both motor commands (thus N2=1.0) but only two

out of four movements are temporally contingent (thus

S2=0.5). All movements of feature 3 are contingent upon

the robot’s motor commands and thus N3 = S3 = 1.0.

Based on these results, feature 3 can be classified as “self”

and features 1 and 2 can be classified as “other”.

Both of these indexes are updated over time as new
evidence becomes available, i.e., after a new motor
command is issued or after the feature is observed to
move. The belief of the robot that fi is part of its
body at time t is given jointly by Ni(t) and Si(t). If
both are greater than some threshold value, α, then
feature fi is classified as “self,” i.e.,

fi ∈

{

Fself : iff Ni(t) > α and Si(t) > α

Fother : otherwise

Ideally, both Ni(t) and Si(t) should be 1. In prac-
tice, however, this is rarely the case as there is al-



ways some sensory noise that cannot be filtered out.
Therefore, for all robot experiments the threshold
value, α, was set to 0.75.

The above formula is valid only if all body mark-
ers of the robot start to move at the same time for
every motor command, i.e., if all joints start to move
together. If this condition is violated the necessity
indexes must be preconditioned on the type of mo-
tor command, m, performed by the robot for each
movement. Thus, feature fi is classified as “self”
if there exists at least one motor command, m, for
which both Nm

i and Si are above the threshold α

after some time interval t. In other words,

fi ∈

{

Fself : iff ∃m : Nm
i (t) > α and Si(t) > α

Fother : otherwise
In order to detect the body markers in the TV

image as “self” their Nm
i and Si indexes should be

updated only when these features are visible and not
when they are outside the TV frame. The correspon-
dence between individual body markers and their im-
age in the TV is established using the nearest neigh-
bor rule in color space.

To test this method for self-detection in the TV
three experiments were conducted. During each one
the robot performed 500 random motor commands
while observing both its own body and its image in
the TV (see Figure 3.a). Figure 7 shows the suffi-
ciency indexes for the six TV markers plotted over
time during one of three experiments (the results are
typical for all three experiments). The plots for the
necessity indexes are similar to this one when the
individual motor commands are taken into account.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45

Su
ffi

cie
nc

y 
In

de
x

Time (in minutes)

TV0
TV1
TV2
TV3
TV4
TV5

Figure 7: The sufficiency indexes calculated over time for

the six TV markers. These results are calculated after

taking the visibility of the markers into account.

In all three experiments all TV markers were cor-
rectly identified as “self.” The only exception was
the yellow marker whose position detection noise was
larger than that for the other markers. The redun-
dancy in the body markers (2 per rigid body in this
case) ensures that the robot’s video-guided behaviors
described below can be performed even if some TV
markers are incorrectly classified as “other.”

5. Morphing the Body Schema

This section describes the method for calculating the
similarity transformation (translation, rotation, and
scale) between the position of the real robot arm and
the image of the arm in the TV monitor, i.e., sub-
problem 2 described in Section 1. First, however, the
representation for the robot’s body is described.

Once the robot has identified which features be-
long to its body it can build a model for their most
likely positions given the robot’s joint vector, i.e.,
the robot can learn its own body schema. Due to
space limitations this section provides only a brief
description of the robot body schema model which is
described in our previous work (Stoytchev, 2003).

The model is built around the concept of a body

icon which is a pair of vectors (µ̃i, β̃i) represent-
ing the motor and sensory components of a spe-
cific joint configuration of the robot. The vector

µ̃i =
[

θ̃i
1
, θ̃i

2
, . . . , θ̃i

M

]

represents a specific joint con-

figuration. The vector β̃i =
[

ṽi
r1

, ṽi
r2

, . . . , ṽi
rN

]

repre-
sents the coordinates in camera-centric coordinates
of the robot’s body markers for the given joint vec-
tor µ̃i. A large number of empirically learned body

icons,
[

(µ̃i, β̃i), i = 1, . . . , I
]

, is used. It is believed

that the brain uses a similar representation encoded
as a cortical map (Morasso and Sanguineti, 1995).

Figure 8 shows 500 observed positions for the red
and the blue body markers (see Figure 2). These
positions were recorded from real robot data while
the robot was performing motor babbling when the
TV was not part of the scene.

0 640

480

0

(a) 0 640

480

0

(b)

Figure 8: The visual components, ṽri
, in 500 body icons

corresponding to: a) the red body marker; and b) the

blue body marker (see Figure 2).

This body representation has several useful prop-
erties. Most notably, for an arbitrary joint vector µ

the forward model β = β(µ̃) can be approximated as

βapprox(µ) ≈
∑

i

β̃iUi(µ) (1)

where U is a normalized Gaussian or softmax func-
tion (Morasso and Sanguineti, 1995). Formula 1 is
used to approximate the position of the body mark-
ers when they are hidden from the robot’s view as
described below (also see Figure 9).

The similarity transformation is calculated using
the method described by Umeyama (1991) which re-
quires two sets of points. The first set consists of dif-
ferent positions of a specific body marker (the blue



Figure 9: The robot calculates the similarity transforma-

tion (translation, rotation, and scale) between the posi-

tion of its real arm and the image of its arm in the TV

using two sets of points as shown in the figure. See text

for more details.

marker shown in Figure 9 was used). These positions
are estimated from proprioceptive information using
Formula 1 as the body marker cannot be observed
directly (see Figure 3.b). The second set consists of
the corresponding positions of the same body marker
but observed in the TV image. The robot gathers
the two sets while performing motor babbling. If the
wrist marker cannot be detected for some joint con-
figuration (e.g., because it is out of the TV frame) the
robot picks a new random joint vector and continues
the motor babbling. For more details see (Stoytchev,
2007).

The next section describes 30 experiments (see Ta-
ble 1) which were conducted to test this method for
morphing the body schema. The calculated trans-
formation parameters are used to extend the visual
components of the body icons. After the extension
the TV image can be used for video-guided behaviors
as described in the next section.

The body schema representation can also be used
for control of goal directed movements. The idea is
to specify the movements in visual space but carry
them out in motor space. The body schema repre-
sentation allows that without the need for inverse
kinematics transformations because the two spaces
are combined into one in the form of body icons.
For robots with multiple degrees of freedom several
nested body schemas can be used. For more details
see (Stoytchev, 2003, 2007).

The grasping behavior used in the next section was
hand coded using the robot’s body schema. During
the reaching phase the robot moves its blue marker
over the target. It then orients its wrist (using a sec-
ond body schema for the wrist relative to the arm).
Next, it lowers its arm by controlling the blue marker
again. Finally, it closes its gripper.

6. Video-Guided Grasping
This section builds upon the previous two sections
to achieve video-guided grasping behaviors, i.e., sub-
problem 3 described in Section 1.

Three experimental conditions were used to test
the robot’s abilities to perform video-guided grasp-
ing behaviors. For each condition 10 experiments
were performed. The conditions differ by the rota-
tion and zoom of the camera which affects the ori-
entation and the scale of the TV image. The three
test conditions are similar to the ones described by
Iriki et al. (2001). In the first condition the TV im-
age is approximately equal to the image of the real
robot (see Figure 10.a). In the second condition, the
camera is rotated by 50◦ and thus the TV image
is rotated by −50◦ (see Figure 10.b). In the third
condition the camera is horizontal but its image is
zoomed in (see Figure 10.c). The zoom factor is 1.6.

Because the setup was in 2D and stereo vision was
not used there are only two meaningful translation
parameters (tx and ty) and only one rotation pa-
rameter (θz). The scale factor was also estimated
automatically. The transformation parameters were
estimated correctly in all 30 trials (see Table 1).

Condition Statistic tx ty θz Scale

Normal Mean 336.8 234.9 +0.23◦ 0.932
(10 trials) Stdev 18.5 17.2 2.61◦ 0.077

Rotated Mean 258.9 425.0 -49.84◦ 0.985
(10 trials) Stdev 17.5 11.6 2.64◦ 0.055

Zoomed in Mean 206.8 80.5 -1.16◦ 1.606
(10 trials) Stdev 16.5 24.3 2.76◦ 0.065

Table 1: Estimated parameters for the similarity trans-

formation used to extend the robot’s body schema.

For each of the 3 test conditions the robot was
tested on the task of grasping an incentive object
(pink object in Figure 10) which could only be seen
in the TV image (see Figure 3.b). The grasping ex-
periment was performed five times for each of the 3
test conditions after the transformation parameters
have been estimated. The robot successfully grasped
the incentive object in 5 out of 5 times in the normal
condition; 4 out of 5 in the rotated condition; and 0
out of 5 in the scaled condition. In other words, the
robot was able to successfully perform video-guided
grasping in the normal and the rotated test condi-
tions but not in the zoomed in test condition.

The reason why the robot failed in the scaled con-
dition is due to the poor quality of the color tracking
results at this high level of magnification. This re-
sult is counter-intuitive as one would expect just the
opposite to be true. However, when the image of the
robot’s arm is really large the auto color calibration
of the Sony Handycam (which could not be turned
off) is affected even by the smallest movements of
the robot. Shadows and other transient light effects
are also magnified.



(a) (b) (c)

Figure 10: The figure shows three views from the robot’s camera, one for each of the three experimental conditions.

The image of the robot in the TV is: a) approximately the same size as the real robot; b) rotated by negative 50◦;

and c) scaled (zoomed in) by a factor of 1.6. During the video-guided grasping experiments, however, the robot cannot

observe its own body (see Figure 3.b)
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Figure 11: The figure shows the extended positions of the body icons (visual components for the blue wrist marker

only) after the extension of the RBS. By comparing this figure with Figure 8 it is obvious that the visual components

of the body icons are: (a) translated; (b) rotated and translated; and (c) scaled, rotated and translated relative to

their original configuration. Furthermore, the new positions coincide with the positions in which the blue marker can

be observed in the TV. Because the extended positions are no longer tied to the camera coordinates some of them may

fall outside the 640×480 camera image.

Thus, it proved difficult to track the body mark-
ers in the zoomed in test condition using the current
tracking method. Nevertheless, the transformation
parameters for this test case were estimated correctly
(see Figure 11.c) because the ten data points needed
for the calculation are collected only when the wrist
marker can be observed in the TV(which was pos-
sible for some body configurations but not others).
The failure in the rotated test case was also due to
poor color tracking results.

7. Conclusions

This paper described the components of a system
which can be used by a robot to achieve video-guided
behaviors. The paper showed how a robot can detect
its self-image in a TV monitor and use that real-time
video image to guide its own actions in order to reach
an object that can only be observed through the TV
image. To the best of our knowledge, this constitutes
the first example of video-guided behaviors in robots
reported in the robotics and AI literature.

To achieve this goal the paper introduced two

novel methods. First, the paper introduced a novel
method for feature-level self-detection in robots.
This method maintains probabilistic estimates of ne-
cessity and sufficiency across visual features as to
whether or not they belong to the robot’s body. The
methods was successfully used by the robot to detect
its self-image in the TV.

Second, the paper introduced a novel method for
extending the body schema of the robot which is trig-
gered by the temporal contingency between the ac-
tions of the robot and the observed self-movements
in the video image. Through extension of the body
schema the robot can use the TV image to guide its
arm movements in the same way as if it were observ-
ing its own arm directly.

Future work can build upon the principles de-
scribed in this paper and extend the domains in
which robots can use video-guided behaviors. For
example, using a mouse to position a cursor on a
computer monitor or using a rear view camera (or
mirror) to back up a car are just two possible appli-
cations.



At this point it might be premature to try and
draw conclusions from this study and apply them
to analyze the ways in which the body schema of
primates works. The experiments described by Iriki
et al. (2001) served only as an inspiration to the
robotics work. The specific representations described
in this paper, while biologically plausible, are prob-
ably different from the representations used by the
brain. What representations the brain uses is any
body’s guess at this point.

Nevertheless, robot studies can be used to model
the main building blocks of the biological body
schema. If these building blocks are treated as black
boxes (i.e., if we focus more on what they do rather
than how they do it) then roboticists can research
the ways in which these black boxes interact with
each other. This paper makes a small step in that
direction.
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