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Abstract: This paper describes a framework that a robot can use to complete the or-

dering of a set of objects. Given two sets of objects, an ordered set and an unordered

set, the robot’s task is to select one object from the unordered set that best completes

the ordering in the ordered set. In our experiments, the robot interacted with each ob-

ject using a set of exploratory behaviors, while recording feedback from two sensory

modalities (audio and proprioception). For each behavior and modality combina-

tion, the robot used the feedback sequence to estimate the perceptual distance for

every pair of objects. The estimated object distance features were subsequently used

to solve ordering tasks. The framework was tested on object completion tasks in

which the objects varied by weight, compliance, and height. The robot was able to

solve all of these tasks with a high degree of accuracy.
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1. Introduction

Humans can detect order in an unordered set of objects at a very early age. Ordering

tasks frequently appear on modern intelligence tests [7, 8]. They are also tightly in-

tegrated in many educational methodologies. For example, in the Montessori method

[12], a 100-year-old method of schooling for children that has been shown to outper-

form standard methods [10, 11], children are encouraged to solve different object

ordering tasks with specialized toys [16]. These strongly suggest that the ability to

discover orderings among sets of objects is an important skill. Indeed, studies in



psychology have revealed that this skill is learned at a very early age [22, 6, 2, 3].

Because order completion skills are so important for humans they should be im-

portant for robots that operate in human environments as well. Previous research has

shown that robots can successfully form object categories [15, 14, 13, 24] and solve

the odd-one-out task [19]. Object ordering tasks, however, have not received a lot of

attention from the robotics community to date.

This paper proposes a method for discovering orderings among groups of ob-

jects. The experiments were conducted with an upper-torso humanoid robot, which

interacted with the set of objects using a set of stereotyped exploratory behaviors.

The robot recorded both auditory and proprioceptive data during each interaction and

then extracted features from the sensory records. Using the extracted features for

each object, the robot was able to estimate a pairwise distance matrix between every

pair of objects. Then given three objects that form an ordered set, the robot’s model

was queried to pick one object from another group of four to complete the ordering

in the first set. The results show that the robot was able to pick the correct object that

completes the ordering with a high degree of accuracy and that different exploratory

behaviors and sensory modalities are required to capture different ordering concepts.

2. Related work

Object ordering tasks appear on multiple intelligence tests. For example, on the In-

telligence and Development Scales (IDS) test [7], children are asked to sort lines of

varying length. In a more common test, the Wechsler Intelligence Scale for Children

(WISC) [8], participants are asked to place images from a story into a logical se-

quence. While it is not currently feasible for a robot to understand the events taking

place in an image, these two tests show that, given an understanding of the objects,

knowledge of how to order them is a strong indicator of intelligence.

Several studies have shown that young children have a fundamental understand-

ing of the concepts underlying ordering. G r a h a m et al. [6] found that children

between the ages of 2 and 41
2

can easily judge an object as “big” or “small” when

compared to another object. Two studies by E b e l i n g and G e l m a n [2, 3]

found similar results. Interestingly, all three studies found that children were much

better able to judge an object as “big” or “small” when compared with immediately

viewable objects as opposed to making the judgment based on the object’s absolute

size [6], its normative size (i.e., how big it is compared to the typical object in the

category) [2], or its functional size (i.e., how big it is in relation to the function it is

to perform) [3]. The ability to compare an object to other directly viewable objects is

a prerequisite for successfully performing the task of ordering and since it is present

more strongly than other types of comparisons (absolute, normative, or functional) at

such an early age, it must be fundamental to intelligence.

In another study with 1 to 3-year-olds, S u g a r m a n [22] found that the order in

which children interact with objects tends to be influenced by the class and perceptual

similarity of the current object to the previously explored object. Additionally, it

was observed that the older children relied less on the class of the object to pick the



(a) Weight Cylinders (b) Pressure Cylinders (c) Cones and Noodles
Fig. 1. The three sets of objects used in the experiments

next object and more on perceptual similarity. This paper uses a similar method to

determine orderings. The perceptual distances between each pair of objects is used

to determine the best object to complete the ordering.

In machine learning, the problem of ranking (i.e., placing a set of data in the

correct order) has been well studied [1]. There are many algorithms that can solve

ranking with a high degree of accuracy. It is difficult to use standard ranking meth-

ods, however, to perform order completion tasks, especially when the number of ob-

jects is small. Additionally, standard ranking methods are often supervised or semi-

supervised. On the other hand, the method proposed in this paper solves the task in

both unsupervised and supervised settings.

Not a lot of research has been done in robotics on discovering orderings in small

groups of objects. Measuring the similarity between objects, however, is a common

way to solve tasks in robotics. There have been numerous experiments that have

demonstrated robots’ ability to measure perceptual as well as functional object simi-

larity for varying tasks [15, 14, 13, 24, 23, 18, 4, 19]. Multiple studies [13, 17, 20, 18]

have used the similarity of perceptual features to categorize objects in an unsuper-

vised manner. In [19], perceptual distances between objects were used to solve the

odd-one-out task. This paper builds on this previous work by proposing a method to

solve the order completion task.

3. Experimental platform

All experiments were performed with the lab’s upper-torso humanoid robot, which

has two 7-DOF Barrett Whole Arm Manipulators (WAMs) as its actuators, each

with an attached Barrett Hand. The robot captured proprioceptive information from

the built-in sensors in the WAM that measure the angles and the torques applied to

each joint at 500 Hz. The robot also captured audio data through an Audio-Technica

U853AW cardioid microphone mounted in its head at the standard 16-bit/44.1 kHz

over a single channel.

The robot was tested on three ordering concepts: ordering by weight, ordering

by compliance, and ordering by height. Fig. 1 shows the three sets of objects that

were used in the experiments. The first two are standard Montessori toys. The weight

cylinders are composed of six pairs of objects (for a total of twelve objects) that vary

by weight, with the objects in each pair having the same weight. All the weight

cylinders are functionally identical except for their weight. The pressure cylinders

are composed in a similar manner (six pairs of objects) except that they vary by the



amount of pressure required to depress the rod on top of the object. The cones and

noodles are composed of five green, styrofoam cones of varying sizes and five pink,

foam pieces (cut from a water noodle) ranging in size from small to large. Because

the object’s in the first two sets are visually identical, this task cannot be solved with

vision alone. In fact, the robot did not use vision at all to solve the ordering task.

The robot performed nine behaviors on each of the objects: grasp, lift, hold,

shake, drop, tap, poke, push, and press. Additionally, the behavior rattle was per-

formed on the weight cylinders and the pressure cylinders. Each behavior was en-

coded as a trajectory in joint-space for the left arm using the Barrett WAM API and

executed using the default PID controller. All behaviors were performed identically

on each object with the exception of grasp and tap, which were adjusted automati-

cally based on the current visually detected location of the object. Fig. 2 shows the

robot performing each behavior on one of the pressure cylinders.

At the start of each trial, the experimenter placed one of the objects on the table

in front of the robot. The robot then performed the exploratory behaviors on the

object, with the experimenter placing the object back on the table if it fell off. This

was repeated five times for each of the cones and noodles and ten times for the rest

of the objects. The data for the cones and noodles was collected at an earlier time

than for the rest of the objects, which is why only five repetitions were done and the

behavior rattle was not performed on them. During each behavior, the robot recorded

proprioceptive data in the form of joint torques applied to the arm over time and

auditory data in the form of a wave file. Visual input was used only to determine the

location of the object for the grasp and tap behaviors.

Fig. 2. The ten exploratory behaviors that the robot performed on the objects. From left to right and top

to bottom: grasp, lift, hold, shake, drop, tap, poke, push, press, and rattle. The rattle behavior wasn’t

performed on the cones and noodles. The object in this figure is one of the pressure cylinders. After

some of the behaviors (e.g., drop), the object was moved back to the red marker location on the table by

the experimenter.



4. Feature extraction

4.1. Sensorimotor feature extraction

The auditory feedback from each behavior was represented as the Discrete Fourier

Transform (DFT) of the sound’s waveform, computed using 33 frequency bins. Thus,

each interaction produced a 33×n matrix, where each column represented the inten-

sities for different frequencies at a given point in time (i.e., n was the number of

samples). The DFT matrix was further discretized uniformly into 10 temporal bins

and 10 frequency bins. Thus, the auditory feature vector for each interaction was a

10×10 = 100 dimensional real-valued vector.

The proprioceptive feedback was represented as 7 time series of detected joint-

torques, one for each of the robot’s joints. To reduce the dimensionality of the data,

each of the series was uniformly discretized into 10 temporal bins. Thus, the propri-

oceptive features for each interaction were represented by a 7×10 = 70 dimensional

real-valued vector. As described next, the computed auditory and proprioceptive fea-

tures were used to estimate the pairwise distances for each pair of objects.

4.2. Object feature extraction

Let C be the set of sensorimotor contexts, i.e., each c ∈ C corresponds to a behavior-

modality combination (e.g., audio-shake), and let O denote the full set of objects. The

goal of the object feature extraction routine is to compute a distance matrix Wc such

that each entry W c
i j ∈ R encodes how perceptually different objects oi and o j are in

sensorimotor context c. Let the set X c
i = [x1, ...,xD]

c
i contain the sensorimotor feature

vectors detected for each of the D exploratory trials with object oi in context c. The

distance between two objects oi and o j in context c can be represented by the expected

distance between the feature vectors in X c
i and the feature vectors in X c

j , i.e.,

W c
i j = E[dL2(xa,xb)|xa ∈ X c

i ,xb ∈ X c
j ],

where dL2 is the L2-norm distance function. This expectation is estimated by:

W c
i j =

1

|X i
c |× |X j

c |
∑

xa∈X i
c

∑
xb∈X j

c

dL2(xa,xb).

The result is a set W of object distance matrices, where each Wc ∈W encodes the

pairwise perceptual distance for each pair of objects in O. The next section describes

how these matrices can be used to decide which one of a given set of objects best

completes a given order.

5. Methodology

5.1. Problem formulation

Each order completion task is formulated as follows. Let O denote the set of objects

explored by the robot. Let L denote an ordered subset of O, i.e., L = o1,o2, . . . ,oN

where each oi ∈O. Furthermore, let G ⊂O be an unordered set of M objects denoting

the set of candidate objects that could be selected to complete the order. Finally, let



W be a set of distance matrices such that for a given sensorimotor context c, the

|O|× |O| matrix Wc ∈ W encodes the pairwise object distances in that context.

In this setting, the task of the robot’s model is to select one object from G that

correctly completes the order specified by the ordered set L . The idea behind the

approach presented here is to define an objective function that can evaluate the quality

of a proposed order and use that function to select an object from the set G . The next

sub-section describes the objective function as well as how that function is used to

pick an object that completes the order.

5.2. Selecting the best order completion candidate

Let q(L ,Wc) denote the objective function that measures the quality of the order L
with respect to the matrix Wc. That function is defined as:

q(L ,Wc) = ∑
oi∈L

∑
o j∈L

(

W c
i j −d(oi,o j,L)

)2
,

where the function d is defined as

d(oi,o j,L) = ∑
r=oi...o( j−1)∈L

W c
r(r+1).

In other words, the function d approximates the distance between objects oi and o j

by summing up the distances between adjacent elements in the ordered set L . Thus,

the function q measures the squared difference between the true distance matrix and

the one approximated by the proposed ordering. It is used by the robot’s model

to complete a given ordered set of objects as follows. For each object ok from the

unordered set G , let {L ,ok} denote the ordered set of objects produced by adding

object ok to the end of the ordered set L . In this setting, the model selects the object

ok that maximizes the objective function q({L ,ok},W
c).

5.3. Order completion using multiple sensorimotor contexts

The method presented so far can only use one distance matrix Wc that is specific

to one sensorimotor context c. For many tasks, however, it may be desirable to use

multiple sources of information about how objects relate to each other. For example,

if the given ordered set of objects L is ordered by weight, there may be several ex-

ploratory behaviors that capture relevant proprioceptive information for solving the

task (e.g., lifting and holding in place).

The set W contains multiple matrices encoding the pairwise object dissimilarities

computed for a given set of sensorimotor contexts. For each object ok ∈ G , let the

function completes(L ,ok,W
c) return 1 if ok is selected as the object completing the

order and 0 otherwise. Given the set of all matrices W , the ordered set L , and the

candidate set G , the model selects the object ok ∈ G that maximizes the following

function:

score(ok) = ∑
Wc∈W

wc × completes(L ,ok,W
c),

where wc is a weight that encodes the relevance of sensorimotor context c.

In the experiments described in the next section, three weighting methods are

evaluated. Whereas everything in this paper so far has been unsupervised, two of



these weighting methods are supervised (methods 2 and 3). In the first method, the

weights are uniform. In other words, for all c, wc = 1.0.

In the second method, the weights are set to the estimated accuracy of using sen-

sorimotor context c to solve the specific ordering task. In other words, the robot’s

model estimates the accuracy of a context c by running the method described in the

previous subsection on a training set of tasks of the form [L ,G ] for which the cor-

rect answers are known. Once the weights for all contexts have been estimated, the

model uses those weights on subsequent tasks for which the answers are not known

in advance.

The third method that was used to combine sensorimotor contexts is boosting. It

was implemented using the AdaBoost algorithm [5]. It is briefly summarized here.

Given a set of m tasks [L1,G1], [L2,G2], ..., [Lm,Gm] for which the correct answers

o1
k ∈ G1,o

2
k ∈ G2, ...,o

m
k ∈ Gm are known, initialize the training weights as D1(i) =

1
m

for i = 1, ...,m. For each iteration t = 1, ...,T , select the sensorimotor context c∗(t)
such that c∗(t) = argmin

c∈C
ξc. The error ξc of a context c is computed as

ξc =
m

∑
i=1

Dt(i)
[

1− completes(Li,o
i
k,W

c)
]

,

where oi
k ∈ Gi is the object that correctly completes the ordering Li. Next, the param-

eter αt is computed as a function of ξc∗(t) as follows

αt =
1

2
ln

1−ξc∗(t)

ξc∗(t)
,

where ξc∗(t) is the error of the selected context in iteration t. After each iteration, the

training weights for all i = 1, ...,m are updated as follows

Dt+1(i) = Dt(i)exp
[

−αt(2∗ completes(Li,o
i
k,W

c∗(t))−1)
]

,

where Wc∗(t) is the object distance matrix of the context selected during iteration

t, and then normalized such that they sum to 1. It is worthwhile to note that the

expression −αt(2 ∗ completes(Li,o
i
k,W

c∗(t))− 1) comes out to +αt if context c∗(t)
incorrectly predicts the object to complete the ordering Li and −αt otherwise. In

essence, the training weights are altered such that tasks that context c∗(t) is incorrect

on are weighted higher and tasks that it is correct on are weighted lower.

Finally, the weight wc for each sensorimotor context is computed by

wc =
T

∑
t=1

αt [c ≡ c∗(t)],

where [c ≡ c∗(t)] is 1 if c was chosen during iteration t and 0 otherwise. In the exper-

iments described in this paper, T was set to 50. Results did not change significantly

with a higher value for T .

5.4. Evaluation

The model was evaluated independently on each of the three ordering concepts. Fifty

tasks were randomly sampled for each concept as follows: four objects were sampled

from the set O such that there existed a clear ordering amongst them (e.g., for the



weight cylinders, two objects from the same pair would not be sampled together).

The objects were then ordered (with the direction, forward or backward, determined

randomly) and the last object was removed. Thus, the first three ordered objects

formed the ordered set L for the given task. Three more objects were randomly sam-

pled from the remaining objects in O such that none validly completed the ordering.

These three objects, combined with the removed object, formed the set G . The per-

formance of the robot’s model was evaluated in terms of accuracy, i.e., the number

of tasks for which the robot’s model picked the correct object divided by the total

number of tasks.

For each concept, the performance of each sensorimotor context was evaluated.

The accuracy was also computed as more and more contexts were used by the model.

To estimate the context weights and to train the boosting method, five-fold cross-

validation was performed with the 50 sampled tasks (i.e., 10 tasks were randomly

assigned to each fold). The model was also evaluated as the number of tasks used for

training was varied from 1 to 49. In this case, all contexts were used.

6. Results

6.1. An example order completion task

Fig. 3 shows an example task in which the robot’s model is tasked with completing

an order of three objects that are ordered by height. In this case, the ordered input

set, L , consists of three pink noodles, while the candidate set, G , contains four ob-

jects – three cones and one noodle, such that only one of them is taller than the last

element in L . In this specific case, the input distance matrix encoded the perceptual

similarity of the objects in the press-proprioception sensorimotor context. The figure

shows an ISOMAP [25] embedding of the distance matrix, which makes it easy to

see that the matrix encodes an order between the objects. For this task, the model

correctly picked the cone from the set G that is taller than the tallest noodle object

in L . The next subsection describes a quantitative evaluation of the model in which

each sensorimotor context is evaluated on each of the three ordering tasks.
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Fig. 3. An example task. The box on the left shows both the ordered set L and the unordered set of

objects G to choose from. The plot on the right shows the ISOMAP embedding of the distance matrix

between the objects. The blue circles denote the three objects in L , the red circle denotes the object in

G that is selected to complete the order.



6.2. Ordering objects using a single sensorimotor context

For the first experiments, the performance of the model was evaluated using a single

sensorimotor context. Fig. 4 shows the accuracy for each context on each of the

3 concepts. As expected, lift (100%), drop (100%), hold (98.0%), shake (100%),

and rattle (98.0%) for proprioception perform very well on the task of ordering ob-

jects by weight. This is likely because the robot was supporting the full weight of

the object with its arm while performing these behaviors. For the pressure cylin-

ders, proprioception-lift (100%) and proprioception-tap (98.0%) achieve high per-

formance. The reason for this is likely due to the weight and moment of inertia dif-

ferences in the objects caused by the different springs inside the pressure cylinders.

Proprioception-press was able to achieve 100% accuracy on the cones and noodles

task as was expected since the moment at which the arm touched the object varied

depending on the object’s height. The other sensorimotor contexts did not perform as

well, with proprioception-push (84.0%) being the next highest performing context.
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Fig. 4. The accuracy of each context for each of the 3 concepts. Darker values indicate lower accuracies

with solid black being 0%; lighter values indicate higher accuracies with solid white being 100%.

6.3. Ordering objects using multiple sensorimotor contexts

Fig. 5 shows the performance of the robot on each concept as the number of contexts

varies from 1 to |C | when using the uniform, weighted, and boosted combination

methods as described in section 5.3.. The accuracy when picking just the single-best

context (based on the training tasks) is also shown for comparison. As the number of

combined contexts increases, the average accuracy also increases, which is consistent

with our previous results [17]. Additionally, in every case the weighted combination

method outperforms the uniform combination method. Also the boosted method al-

ways does at least as well as the weighted method and in most cases outperforms

it. For the weight cylinders (Fig. 5a), the weighted method reaches 98.0% accuracy

and the boosted method reaches 100% accuracy when all contexts are used. For the

pressure cylinders (Fig. 5b) the weighted and boosted combination methods reach

100% when all contexts are used. For the cones and noodles (Fig. 5c), the single-best

context is able to achieve 100%, but when all the sensorimotor contexts are combined

the robot was only able to achieve 72.0% accuracy using the weighted method. Using

the boosted method, however, it was able to reach 100%. We believe that since for the
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Fig. 5. The accuracy as the number of contexts is increased. The blue line is the accuracy when picking

the single-best context; the cyan line is the accuracy when using uniform weights to combine contexts;

the red line is the accuracy when the contexts are weighted in proportion to their individual accuracies;

and the green line is the accuracy achieved when using AdaBoost to learn the weights.

height concept, unlike for the other two, there was only one context that performed

well, the noise from combining underperforming contexts outweighed the single best

performing context for the weighted method, but the boosted method was able to

learn this and weight the best context higher.

Fig. 6 shows the average accuracy as the number of tasks used for training is

varied from 1 to 49 when combining all sensorimotor contexts. Again the single-best

context (based on the training tasks) is shown for comparison. In every case, the

weighted method converges after no more than 6 training tasks are used to estimate

the weights. The boosted method always achieves 90% accuracy after no more than 4

training tasks and 95% accuracy after no more than 7. For weight, the boosted method

and the weighted method converge at approximately the same rate. For height, the

boosted method outperforms the weighted method by a large margin. For compliance,

the boosted method converges slower than the weighted method (weighted reaches

100% after 3 tasks are used while boosted doesn’t reach 100% until 40 tasks are

used). This is likely related to the result in fig. 5, where compliance is the only

task in which the uniform combination method reaches 100%. Interestingly, while

the boosted method and the single-best context (as determined by the training set)
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achieved when using boosting. The results are averaged over 50 sets of training tasks for each size from

1 to 49.



converge to 100% for all three concepts, the boosted method converges much quicker

for both the weight cylinders and pressure cylinders, and at about the same rate for

the cones and noodles.

7. Conclusion and future work

In this paper we presented a theoretical model for performing order completion. We

evaluated this model using an upper-torso humanoid robot on three concepts: weight,

compliance, and height. The results show that the robot was able to select objects to

complete orderings with a high degree of accuracy. For each concept, there existed

at least one sensorimotor context that was able to achieve 100% accuracy, and there

were multiple such contexts for weight and compliance. When combining sensorimo-

tor contexts, on average, the best performance was achieved when all contexts were

used, though in every case the best single context did at least as well or better. This

suggests that when completing an ordering determined predominantly by only one

property (e.g., weight), if there exists at least one sensorimotor context that is able to

capture that property, then its predictions will typically align with the true ordering.

Given these results, what strategy should the robot use to solve a novel order

completion task? The results clearly show that the boosted combination method is

the best strategy for combining sensorimotor contexts because it always performs

as well as or better than every other method and because it usually takes very few

training tasks to train. The methodology used in this paper builds on our previous

work, in which we have shown that stereotyped exploratory behaviors can be used

to detect functional similarities between tools [18], perform object recognition [17],

perform object categorization [20], recognize surface textures [21], solve the odd-

one-out task [19], and now solve the order completion task. These results suggest

that a wide variety of tasks can be solved using a library of task-specific algorithms

applied on a common set of sensorimotor data extracted from exploratory behaviors.

A limitation of the method described in this paper is that while it can solve order

completion tasks in which the order is ascending or descending by one property, it

cannot solve more complicated tasks from the general domain of sequence comple-

tion. Therefore, future work will need to consider methods to solve completion tasks

in which the transitions between elements are more complex than simply increasing

or decreasing. Future work can also build on this model and others such as [19] and

[9] that analyze the structure among groups of objects by using the discovered prop-

erties to scaffold learning of more complex concepts. Pursuing this line of research

could allow robots to learn more complicated concepts that can be represented in

terms of simpler concepts such as the ones explored in this paper.
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