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Introduction
This paper describes an approach to solving insertion tasks
by a robot that uses exploratory behaviors and propriocep-
tive feedback. The approach was inspired by the develop-
mental progression of insertion abilities in both chimpanzees
and humans (Hayashi et al. 2006). Before mastering inser-
tions, the infants of the two species undergo a stage where
they only press objects against other objects without releas-
ing them. Our goal was to emulate this developmental stage
on a robot to see if it may lead to simpler representations for
insertion tasks. Experiments were performed using a shape-
sorter puzzle with three different blocks and holes.

Prior work on insertion tasks in Robotics (also known
as peg-in-hole tasks) showed that proprioceptive feedback
was effective in improving performance. Learning from this
feedback allowed a robot to complete insertions more often
(Lee and Kim 1988) and eliminated the need for very precise
interaction models (Gullapalli 1995). In contrast, very accu-
rate geometric and kinematic models were required to plan
insertions without proprioception (Bruyninckx et al. 1995).

The closest analog to our approach to insertion tasks is the
work under the COSPAL project, in which individual stages
of the solution were verified using visual feedback (Felsberg
et al. 2005). Our work differs from the COSPAL project
in two ways: 1) our robot was fully autonomous, while in
COSPAL it was bootstrapped by demonstration; and 2) our
robot did not use vision, relying only on proprioception.

Experimental Setup
All experiments were performed using the upper-torso hu-
manoid robot shown in Fig. 1. The robot’s arms are
two backdrivable 7-dof Barrett Whole Arm Manipulators
(WAMs), each equipped with a 3-finger Barrett Hand. Only
the left arm was used in the experiments.

Three different blocks and holes were used: circle, cross,
and hexagon (see Fig. 1). Each block could fit into only
one hole, for which there was less than 1 mm of free space
between the block and the hole boundaries. The board with
the three holes was mounted on a wooden fixture as shown
in Fig. 1.a. It could slide left and right to present a different
hole in front of the robot, which was stationary.

The robot performed 20 trials for each of the 9 combi-
nations of 3 blocks and 3 holes for a total of 180 trials. A
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Figure 1: Experimental setup: (a) the upper-torso humanoid robot
used in the experiments, shown here while inserting a block; (b)
the 3 blocks – circle, cross, and hexagon; (c) the 3 holes.
typical trial lasted about 50 seconds. Each trial was started
from a fixed position in joint space with the block already
grasped by the robot. During each trial the robot performed
five exploratory behaviors, which consisted of pushing, slid-
ing, and rotating the block in the vicinity of the hole. All
behavioral parameters were generated at random, so each
behavior was unique. If the robot inserted the block suc-
cessfully, then the human experimenter signaled the robot to
try to perform five more exploratory behaviors in the same
trial, while the block was in the hole.

Proprioceptive data was recorded at 500 Hz in the form of
joint torques and positions for the left arm. Audio and video
were also recorded, but were not analyzed in this paper.

Methodology
The proprioceptive data for each trial was partitioned into
two categories. All data recorded before an insertion was
assigned to one category. All remaining data (if any) was
assigned into another category. The partitions for one trial
are shown in Fig. 2. Visual inspection shows that there are
differences between the categories. For a more principled
analysis, the joint torques recorded by the robot were split
into 8-second segments with 50% overlap. For each trial
there were about 11-12 segments. For all 180 trials there
were 2020 segments. These segments were also partitioned
into the before and after insertion categories.
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Figure 2: Sample joint torque data recorded from the WAM for
eight seconds before (a) and after (b) the robot successfully in-
serted the cross-shaped block during one of the trials.

For every 8-second segment, a 7 × 7 correlation matrix
was calculated to quantify the pairwise correlations between
the joint torques. To measure the differences between differ-
ent 8-second segments, the Euclidean distance between their
correlation matrices was computed. This process resulted in
a 2020× 2020 distance matrix D.

Results
To quantify the ability of the robot to solve insertion tasks
using exploratory behaviors, the percentage of trials with
insertions was computed for all three matching block-hole
combinations (see Fig. 3). The robot inserted the circle 55%
of the time (11 out of 20 trials). The cross block was in-
serted 25% of the time and the hexagon 20%. The success
rate was unexpectedly high, given that the explorations were
performed randomly, without explicitly focusing on the in-
sertion task. This suggests that insertion tasks may not be as
hard as the complex topological contact models utilized by
previous approaches seem to imply. If the robot is allowed to
collide the peg with the walls and use random exploration to
solve the rest of the task, then these detailed models might
be unnecessary. Even more surprisingly, the results show
that random exploration can solve insertion tasks using pro-
prioception alone, completely ignoring visual feedback.

The data was analyzed to find differences between seg-
ments recorded before and after insertions. For all seven
joints, the variance of the torque increased after insertions.
In addition, the mean torque increased for all joints above
the robot’s wrist (joints 1, 2, 3, and 4). When the robot per-
formed exploratory behaviors after an insertion, the torque
safety limits were often exceeded because the robot’s move-
ments were constrained. If torque in any joint reached its
safety limit, then all joint torques were reset to zero, the cur-
rent behavior was interrupted, and the next one was started.

Additional analysis was performed to detect differences in
joint torque correlations. The distance matrix D described
above was embedded in lower dimensions using Isomap
(Tenenbaum et al. 2000). In the 3D embedding, shown in
Fig 4.a, there is a separation between the data points for the
segments recorded before and after insertions. In particular,
the sample means and standard deviations for the coordi-
nates of the two groups of points (shown in Fig. 4.b) indicate
significant differences between the categories. Even the data
points recorded for the circle block were separated, despite
the fact that this block affords relatively unconstrained wrist
rotations to the robot. This suggests that the joint torques
are correlated differently before and after insertions. The
2D embedding was not useful because its residual error was
too high (see Fig. 4.c).
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Figure 3: Trials with successful insertions as a percentage of the
trials with matching block-hole combinations. In each trial the
robot performed five random exploratory behaviors that consisted
of pushing, sliding and rotating the block in the vicinity of the hole.
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(c) Isomap error
Figure 4: Isomap embedding of the distance matrix D: (a) the 3D
embedding; (b) ellipsoids fitted to the data points shown in (a);
(c) residual error of the embedding as a function of dimensionality.

Conclusion and Future Work
This paper showed that a robot can use exploratory behav-
iors combined with proprioceptive feedback to perform in-
sertion tasks. Even though the exploration was not focused,
i.e., the robot was not actively trying to insert the blocks, the
three blocks were inserted in at least 20% of trials.

It was demonstrated that proprioception can be used to
verify insertions. In particular, it was shown that joint
torques recorded before and after insertions were statisti-
cally different. Future work can use this to let robots verify
insertions autonomously (e.g., a robot can release the peg af-
ter it reaches, say, 95% confidence of a successful insertion).

Future work can evaluate how the proposed approach gen-
eralizes. In another experiment, the robot was able to insert a
240V electric plug into its socket using the same exploratory
behaviors. This suggests that the approach can solve other
insertion tasks. In other words, it can scale up.

For more details and a video of the experiments see:
http://www.ece.iastate.edu/~alexs/lab/projects/reu2010/.

This work was funded in part by NSF Research Experi-
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